EE 5303 Electromagnetic Analysis Using Finite Difference Time Domain. Scattering Analysis

Similar documents
Lecture 22 Electromagnetic Waves

, on the power of the transmitter P t fed to it, and on the distance R between the antenna and the observation point as. r r t

ENGI 4430 Advanced Calculus for Engineering Faculty of Engineering and Applied Science Problem Set 9 Solutions [Theorems of Gauss and Stokes]

Lecture 5. Chapter 3. Electromagnetic Theory, Photons, and Light

Lecture 17: Kinetics of Phase Growth in a Two-component System:

Lecture 18: Kinetics of Phase Growth in a Two-component System: general kinetics analysis based on the dilute-solution approximation

Two-dimensional Effects on the CSR Interaction Forces for an Energy-Chirped Bunch. Rui Li, J. Bisognano, R. Legg, and R. Bosch

Today - Lecture 13. Today s lecture continue with rotations, torque, Note that chapters 11, 12, 13 all involve rotations

The Production of Polarization

r r r r r EE334 Electromagnetic Theory I Todd Kaiser

Orthotropic Materials

7 Wave Equation in Higher Dimensions

Computer Propagation Analysis Tools

Lecture-V Stochastic Processes and the Basic Term-Structure Equation 1 Stochastic Processes Any variable whose value changes over time in an uncertain

Fig. 1S. The antenna construction: (a) main geometrical parameters, (b) the wire support pillar and (c) the console link between wire and coaxial

Finite Difference Time Domain

Implementation of RCWA

Sections 3.1 and 3.4 Exponential Functions (Growth and Decay)

KINEMATICS OF RIGID BODIES

B da = 0. Q E da = ε. E da = E dv

( ) exp i ω b ( ) [ III-1 ] exp( i ω ab. exp( i ω ba

CS 188: Artificial Intelligence Fall Probabilistic Models

Low-complexity Algorithms for MIMO Multiplexing Systems

Probabilistic Models. CS 188: Artificial Intelligence Fall Independence. Example: Independence. Example: Independence? Conditional Independence

Chapter 2 Wave Motion

Chapter Finite Difference Method for Ordinary Differential Equations

Review and Walkthrough of 1D FDTD

Control Volume Derivation

Reinforcement learning

ÖRNEK 1: THE LINEAR IMPULSE-MOMENTUM RELATION Calculate the linear momentum of a particle of mass m=10 kg which has a. kg m s

The sudden release of a large amount of energy E into a background fluid of density

The k-filtering Applied to Wave Electric and Magnetic Field Measurements from Cluster

Physics 201 Lecture 18

An Automatic Door Sensor Using Image Processing

STUDY OF THE STRESS-STRENGTH RELIABILITY AMONG THE PARAMETERS OF GENERALIZED INVERSE WEIBULL DISTRIBUTION

ECE 3318 Applied Electricity and Magnetism. Spring Prof. David R. Jackson ECE Dept. Notes 13

POISSON S EQUATION 2 V 0

EE 5337 Computational Electromagnetics

Chapter 2: The Derivation of Maxwell Equations and the form of the boundary value problem

Chapter 7. Interference

Energy dispersion relation for negative refraction (NR) materials

Advanced FDTD Algorithms

Authors name Giuliano Bettini* Alberto Bicci** Title Equivalent waveguide representation for Dirac plane waves

Non-sinusoidal Signal Generators

a. Show that these lines intersect by finding the point of intersection. b. Find an equation for the plane containing these lines.

This is an example to show you how SMath can calculate the movement of kinematic mechanisms.

MEEN 617 Handout #11 MODAL ANALYSIS OF MDOF Systems with VISCOUS DAMPING

Representing Knowledge. CS 188: Artificial Intelligence Fall Properties of BNs. Independence? Reachability (the Bayes Ball) Example

FINITE DIFFERENCE APPROACH TO WAVE GUIDE MODES COMPUTATION

[ ] 0. = (2) = a q dimensional vector of observable instrumental variables that are in the information set m constituents of u

Ans: In the rectangular loop with the assigned direction for i2: di L dt , (1) where (2) a) At t = 0, i1(t) = I1U(t) is applied and (1) becomes

Engineering Accreditation. Heat Transfer Basics. Assessment Results II. Assessment Results. Review Definitions. Outline

rect_patch_cavity.doc Page 1 of 12 Microstrip Antennas- Rectangular Patch Chapter 14 in Antenna Theory, Analysis and Design (4th Edition) by Balanis

Pressure Vessels Thin and Thick-Walled Stress Analysis

Circular Motion. Radians. One revolution is equivalent to which is also equivalent to 2π radians. Therefore we can.

3.1.3 INTRODUCTION TO DYNAMIC OPTIMIZATION: DISCRETE TIME PROBLEMS. A. The Hamiltonian and First-Order Conditions in a Finite Time Horizon

Support Vector Machines

Physics 122, Fall October 2012


ln 2 1 ln y x c y C x

RC, RL and RLC circuits

The fundamental mass balance equation is ( 1 ) where: I = inputs P = production O = outputs L = losses A = accumulation

2 Electromagnetic Theory, Antennas, and Numerical Methods.

2-d Motion: Constant Acceleration

Windowing and Grid Techniques

Projection of geometric models

Department of Chemical Engineering University of Tennessee Prof. David Keffer. Course Lecture Notes SIXTEEN

r P + '% 2 r v(r) End pressures P 1 (high) and P 2 (low) P 1 , which must be independent of z, so # dz dz = P 2 " P 1 = " #P L L,

AB for hydrogen in steel is What is the molar flux of the hydrogen through the steel? Δx Wall. s kmole

f(k) e p 2 (k) e iax 2 (k a) r 2 e a x a a 2 + k 2 e a2 x 1 2 H(x) ik p (k) 4 r 3 cos Y 2 = 4

Projection of geometric models

CptS 570 Machine Learning School of EECS Washington State University. CptS Machine Learning 1

Objects usually are charged up through the transfer of electrons from one object to the other.

Prerna Tower, Road No 2, Contractors Area, Bistupur, Jamshedpur , Tel (0657) , PART A PHYSICS

Faraday s Law. Faraday s Law. Faraday s Experiments. Faraday s Experiments. Magnetic Flux. Chapter 31. Law of Induction (emf( emf) Faraday s Law

Review: Electrostatics and Magnetostatics

Green s Identities and Green s Functions

Transfer Matrix Method

Lecture 8 - Gauss s Law

The Perfectly Matched Layer (PML)

23.2. Representing Periodic Functions by Fourier Series. Introduction. Prerequisites. Learning Outcomes

Kalman Filter: an instance of Bayes Filter. Kalman Filter: an instance of Bayes Filter. Kalman Filter. Linear dynamics with Gaussian noise

Monochromatic Wave over One and Two Bars

J. N. R E DDY ENERGY PRINCIPLES AND VARIATIONAL METHODS APPLIED MECHANICS

Chapter 8 The Complete Response of RL and RC Circuits

COORDINATE TRANSFORMATIONS - THE JACOBIAN DETERMINANT

Qualifying Examination Electricity and Magnetism Solutions January 12, 2006

DERIVATION OF LORENTZ TRANSFORMATION EQUATIONS AND THE EXACT EQUATION OF PLANETARY MOTION FROM MAXWELL AND NEWTON Sankar Hajra

MECHANICS OF MATERIALS Poisson s Ratio

Combinatorial Approach to M/M/1 Queues. Using Hypergeometric Functions

ANTENNAS. Vector and Scalar Potentials. Maxwell's Equations. D = εe. For a linear, homogeneous, isotropic medium µ and ε are contant.

( ) ( )( ) ˆ. Homework #8. Chapter 27 Magnetic Fields II.

PHYS GENERAL RELATIVITY AND COSMOLOGY PROBLEM SET 7 - SOLUTIONS

1.2 Differential cross section

KINGS UNIT- I LAPLACE TRANSFORMS

Black Body Radiation and Radiometric Parameters:

MATHEMATICAL FOUNDATIONS FOR APPROXIMATING PARTICLE BEHAVIOUR AT RADIUS OF THE PLANCK LENGTH

Stress Analysis of Infinite Plate with Elliptical Hole

Math 2142 Exam 1 Review Problems. x 2 + f (0) 3! for the 3rd Taylor polynomial at x = 0. To calculate the various quantities:

As is natural, our Aerospace Structures will be described in a Euclidean three-dimensional space R 3.

Transcription:

11/14/018 EE 5303 Elecomagneic Analsis Using Finie Diffeence Time Domain Lecue #4 caeing Analsis Lecue 4 These noes ma conain copighed maeial obained unde fai use ules. Disibuion of hese maeials is sicl pohibied lide 1 Lecue Ouline Inoducion FDTD fo caeing imulaions Fomulaion of NFFF Tansfomaion Implemenaion NFFF in Two Dimensions imulaion Eamples Lecue 4 lide 1

11/14/018 Inoducion Lecue 4 lide 3 Animaion of caeing Analsis Finie obec TF/F on all suounding sides Ineesed pimail in he scaeed field Usuall he goal is o quanif scaeing in he fa field. Lecue 4 lide 4

11/14/018 Wha is NFFF Tansfomaion? (1 of ) uppose we wan o know he elecomagneic fields VERY fa awa fom an obec. ow de we do his? Do we us use an eemel lage gid? Obec NO!! Lecue 4 lide 5 Wha is NFFF Tansfomaion? ( of ) Insead, we pefom a small simulaion and use he NFFF echnique o calculae he fields ve fa awa. This is MUC moe efficien! Obec NFFF BIG IMULATION!! Lile simulaion + NFFF Lecue 4 lide 6 3

11/14/018 Repesening he Fa Field Usuall he fa field is ploed in clindical (D) o spheical (3D) coodinaes. Lecue 4 lide 7 Basic Ouline of caeing Analsis ep 1 Build obec on gid ep imulae obec ep 3 Calculae sead sae field ep 4 Pefom NFFF ep 5 Pos pocess NFFF Lecue 4 lide 8 4

11/14/018 FDTD fo caeing imulaions Lecue 4 lide 9 Gid cheme scaeed field oal field PML -lo PML -hi -lo -hi PML Ou souce is bounded on all sides so ha he enie oue poion of he gid is scaeed field. PML Lecue 4 lide 10 5

11/14/018 Recall he Cul Calculaions C C C E E E 1 E E Mode i1, E E i1, 1 C C C E E E Mode 1 E E i1, E E E E i1, 1 E E Noe: he ems in ed idenif ems ha equie modificaion in he TF/F famewok. Lecue 4 lide 11 -lo ide On he -lo side, onl CE and C equie modificaion. C E i1 1,, k C E E i,, k 1 i, E E 1 1 1 i 1,, k i, i 1, i 1, 1 1 i1 i1 1 1 i1, i, 1,sc,, 1 i1, E i, i 1, i1, 1 i1 1,,sc Lecue 4 lide 1 6

11/14/018 -hi ide On he -hi side, onl CE and C equie modificaion. C C E i, E E i 1, i 1, E E i, i 1, i, i, i i 1, Lecue 4 lide 13,sc i 1, i 1, 1 i 1, i 1, i, 1, i 1, 1 E i,,sc -lo ide On he -lo side, onl CE and C equie modificaion. C E 1 1 C 1 E E 1 E E 1 1 1 11 E,sc 1 i1, 1 1 1 1 1 1 i1, 1 1 11 1 1,sc Lecue 4 lide 14 7

11/14/018 -hi ide On he -hi side, onl CE and C equie modificaion. C C E E 1 E 1 E E E,sc 1 1 i1, 1 1, 1 i 1 i1, 1 1,sc Lecue 4 lide 15 Deiving a inusoidal ouce Funcion The geneal epession fo he nomalied elecic field componen of a plane wave is E, ; Pcos k Pcos kk The equivalen epession can be deived fo he magneic field b subsiuing he above epession ino Faada s law. ˆ cos ˆ cos k P k k P k k Lecue 4 lide 16 8

11/14/018 inusoidal ouce Funcions fo he E Mode The E mode has P = P = 0 and we se P = 1. Thus, he souce funcions educe o, ; cos E k k k k k ˆ, ; cos k k k ˆ, ; cos Lecue 4 lide 17 Numeical Equaions fo inusoidal ouce Funcions fo he E Mode In ems of aa indices, he souce funcions ae E E i1,, k,sc T i1 1,,sc T 0.5 i 1,,sc T i,,sc T 0.5 E E 1,sc T cos Tk ik 1 ˆ k cos T 0.5k i 0.5k 1 cos Tk i 1 k kˆ cos T 0.5k i 0.5 k costkik 1 1 1,sc T 0.5 1,sc T,sc T 0.5 ˆ k cos T 0.5 ki k 1 0.5 cos Tkik 1 ˆ k cos T 0.5ki k 0.5 Lecue 4 lide 18 9

11/14/018 Code nippes fo inusoidal ouce % TF/F FOR CURL OF E E0 = RAMP(T); %lo Esc = E0*cos(*pi*f0*T*d - k*nlo*d - k*[nlo:nhi]*d); CE(nlo-1,nlo:nhi) = CE(nlo-1,nlo:nhi) + Esc/d; %hi Esc = E0*cos(*pi*f0*T*d - k*(nhi + 1)*d - k*[nlo:nhi]*d); CE(nhnlo:nhi) = CE(nhnlo:nhi) - Esc/d; %lo Esc = E0*cos(*pi*f0*T*d - k*[nlo:nhi]'*d - k*nlo*d); CE(nlo:nhnlo-1) = CE(nlo:nhnlo-1) - Esc/d; %hi Esc = E0*cos(*pi*f0*T*d - k*[nlo:nhi]'*d - k*(nhi + 1)*d); CE(nlo:nhnhi) = CE(nlo:nhnhi) + Esc/d; % TF/F FOR CURL OF 0 = + (k/k0)*ramp(t); 0 = - (k/k0)*ramp(t); %lo sc = 0*cos(*pi*f0*(T + 0.5)*d - k*(nlo - 0.5)*d - k*[nlo:nhi]*d); C(nlo,nlo:nhi) = C(nlo,nlo:nhi) - sc/d; %hi sc = 0*cos(*pi*f0*(T + 0.5)*d - k*(nhi + 0.5)*d - k*[nlo:nhi]*d); C(nhi+1,nlo:nhi) = C(nhi+1,nlo:nhi) + sc/d; %lo sc = 0*cos(*pi*f0*(T + 0.5)*d - k*[nlo:nhi]'*d - k*(nlo - 0.5)*d); C(nlo:nhnlo) = C(nlo:nhnlo) + sc/d; %hi sc = 0*cos(*pi*f0*(T + 0.5)*d - k*[nlo:nhi]'*d - k*(nhi + 0.5)*d); C(nlo:nhnhi+1) = C(nlo:nhnhi+1) - sc/d; Lecue 4 lide 19 Animaion of CW ouce Lecue 4 lide 0 10

11/14/018 Calculaing k and k (1 of ) The TF/F spans a lage enough amoun of space ha he numeical dispesion due o he Yee gid causes poblems. You mus compensae fo his. Uncompensaed Compensaed Lecue 4 lide 1 Calculaing k and k ( of ) ep 1 Define in dashboad. ep Calculae he efacive inde whee souce is ineced. n sc,sc,sc ep 3 Calculae k and k. k k n cos k k n 0 sc 0 sc ep 3 Calculae fudge faco f. c sin 1 sin 1 sin 0 f k k nsc sin f0 ep 4 Adus k and k. k fk k fk Noe: An alenae mehod is descibed fo he Gaussian souce ha usuall woks bee. Lecue 4 lide 11

11/14/018 1 Lecue 4 lide 3 Analical Equaions fo a Gaussian Pulse Fo a Gaussian pulse, he field componens ae 0 ˆ ˆ k k c, ; ep ˆ, ; ep ˆ, ; ep E k k This ime dela ensues he pulse begins us ouside of he TF/F egion egadless of he angle of incidence. Lecue 4 lide 4 Numeical Equaions fo a Gaussian Pulse Fo a Gaussian pulse, he field componens ae 0 0 0 ˆ ˆ, ; ep ˆ ˆ 0.5 0.5 ˆ, ; ep ˆ ˆ 0.5 0.5 ˆ, ; ep T k i k c E i T T k i k c i T k T k i k c i T k

11/14/018 Code nippes fo Gaussian ouce % TF/F FOR CURL OF E E0 = ep(-((t*d - T0)/au).^); E0 = E0(1::N,1::N); %lo Esc = E0(nlo,nlo:nhi); CE(nlo-1,nlo:nhi) = CE(nlo-1,nlo:nhi) + Esc/d; %hi Esc = E0(nhi+1,nlo:nhi); CE(nhnlo:nhi) = CE(nhnlo:nhi) - Esc/d; %lo Esc = E0(nlo:nhnlo); CE(nlo:nhnlo-1) = CE(nlo:nhnlo-1) - Esc/d; %hi Esc = E0(nlo:nhnhi+1); CE(nlo:nhnhi) = CE(nlo:nhnhi) + Esc/d; % TF/F 0 = ep(-(((t + 0.5)*d - T0)/au).^); 0 = + (k/k0)*0(::n,1::n); 0 = - (k/k0)*0(1::n,::n); %lo sc = 0(nlo-1,nlo:nhi); C(nlo,nlo:nhi) = C(nlo,nlo:nhi) - sc/d; %hi sc = 0(nhnlo:nhi); C(nhi+1,nlo:nhi) = C(nhi+1,nlo:nhi) + sc/d; %lo sc = 0(nlo:nhnlo - 1); C(nlo:nhnlo) = C(nlo:nhnlo) + sc/d; %hi sc = 0(nlo:nhnhi); C(nlo:nhnhi+1) = C(nlo:nhnhi+1) - sc/d; % CALCULATE TIME GRADIENT ACRO X GRID del = *cos(hea); del = *sin(hea); T0 = (cos(hea)*(x + del) + sin(hea)*(y + del))/c0; Lecue 4 lide 5 Animaion of Gaussian Pulse ouce Lecue 4 lide 6 13

11/14/018 Animaion of Gaussian Pulse ouce Wih a caeing Obec Lecue 4 lide 7 Compensaing fo Dispesion fo a Gaussian ouce (1 of ) The TF/F spans a lage enough amoun of space ha he numeical dispesion due o he Yee gid causes poblems. You mus compensae fo his. Uncompensaed Compensaed Lecue 4 lide 8 14

11/14/018 Compensaing fo Dispesion fo a Gaussian ouce ( of ) ep 1 Define in dashboad. ep Calculae he efacive inde whee souce is ineced. n sc,sc,sc ep 3 Calculae k and k. k k0nsccos k k n sin 0 sc ep 4 Calculae fudge faco f. c ep 5 Adus maeial aas ER and UR accoding o f. UR = f*ur; ER = f*er; 1 sin 1 sin 0 f k k nsc sin f0 Noe: This mehod of compensae woks fo he sinusoidal souce as well. Lecue 4 lide 9 Fomulaion of NFFF Tansfomaion Lecue 4 lide 30 15

11/14/018 Elecomagneic Bounda Condiions Magneic Field a an Ineface J, T 1, T s J, T 1, T s nˆ ˆ n1 Js nˆ J 1 s E, ˆn J s E, 1 1 M s Elecic Field a an Ineface E E M, T 1, T s E E M, T 1, T s nˆe ˆ ne1 Ms nˆ E E M 1 s J nˆ s 1 nˆ suface nomal poining fom 1 o M nˆ E E s 1 Lecue 4 lide 31 uface Equivalence Theoem E, ˆn E, M s E, = E, 1 1 J s The fa field E and is compleel descibed b he suface cuens J s and M s flowing aound a closed suface. Lecue 4 lide 3 16

11/14/018 Calculaing he uface Cuens ince we ae onl ineesed in he fa fields E and, we ae fee o le E 1 and 1 be whaeve is convenien. Le E. 1 1 0 ˆn E, M s We can now calculae he suface cuens as J ˆ s n M nˆ E s 0 J s Noe: Calculaing J and M in his wa makes i onl possible o calculae fields ouside of he suface. Lecue 4 lide 33 Veco Poenials We wish o calculae he fields ve fa fom he suface. I is useful o do his using he veco poenials. kr e A J ds 4 R kr e F M ds 4 R R disance fom poin on suface s o he obsevaion poin. Lecue 4 lide 34 17

11/14/018 Fa Field Appoimaion In he fa field, R is eemel lage. cos R fo phase calculaions fo ampliude calculaions Noe: cos ˆ ˆ R Lecue 4 lide 35 Veco Poenials in he Fa Field Using he fa field appoimaion fo R, he equaions fo calculaing he veco poenials become k cos k e cos e A J ds 4 F M cos 4 ds cos k e kcos J e ds 4 k e kcos Me ds 4 Las, we wie hese equaions in spheical coodinaes. k e A,, N, 4 N J e ds kcos, k e F,, L, 4 L M e ds cos, k I is impoan o noe he,, and dependencies in hese equaions. Lecue 4 lide 36 18

11/14/018 Caesian o pheical Coodinaes (1 of ) andad FDTD poduces field quaniies in Caesian coodinaes. This means he cuen ems J s and M s will be in Caesian coodinaes. Usuall fa field analsis is done is spheical coodinaes so hese funcions mus be conveed o spheical coodinaes. J sincos sinsin cos J J coscos cossin sin J J sin cos 0 J N N aˆ N aˆ N aˆ kcos N Jsin cos Jsinsin J cos e ds J kcos N JcoscosJcossinJsine ds J N J sinj cos e ds kcos J Lecue 4 lide 37 Caesian o pheical Coodinaes ( of ) And he calculaion fo L, is M sincos sinsin cos M M coscos cossin sin M M sin cos 0 M L L aˆ L aˆ L aˆ Lecue 4 lide 38 kcos L Msincos M sinsin Mcos e ds M kcos L Mcoscos M cossin Msin e ds M kcos L Msin M cos e ds M 19

11/14/018 N and L Onl Depend on and (1 of 3) N, and L, ae fa field quaniies so he ae independen of he choice of he suface. Le s pick his one fo now. Lecue 4 lide 39 N and L Onl Depend on and ( of 3) The cuen ems J s and M s ae suface cuens and alwas angenial o he suface. J s M s o when we choose o be a sphee, he suface cuens have no adial componens. J M 0 when is a sphee Lecue 4 lide 40 0

11/14/018 N and L Onl Depend on and (3 of 3) We see fom he following equaions ha and ake one he same veco componens as J and M s s. kcos N, J e ds k L, M e ds Theefoe, N and L have no adial componens. N L cos We also ecognie ha his will alwas be he case since he fa field is fied and independen of he choice of. N L 0 alwas Lecue 4 lide 41 Final Epessions fo N and L N, 0, coscos cossin sin kcos N J J J e ds, sin cos kcos N J J e ds L, 0, coscos cossin sin kcos L M M M e ds, sin cos kcos L M M e ds Lecue 4 lide 4 1

11/14/018 Calculaing he Fa Fields (1 of 3) The elecic and magneic fields, E and, ae calculaed fom he veco poenials accoding o 1 A F F 1 E F A A The? ems poduce equaions wih 1/ dependence. In he fa field is ve lage so hese ems vanish. 1 1 A F E F A Lecue 4 lide 43 Calculaing he Fa Fields ( of 3) 1 1 A F E F A The cul ems become k e k e A N F N 4 4 k k e e N N 4 4 k k ke ke Naˆ Naˆ Laˆ Laˆ 4 4 k A aˆ A aˆ k F aˆ F aˆ Lecue 4 lide 44 The elecic and magneic fields ae now k k A aˆ A aˆ F E Faˆ Faˆ A

11/14/018 Calculaing he Fa Fields (3 of 3) k A aˆ A aˆ F We now combine veco componens. And las we pu hese equaions in ems of N and L. k E Faˆ Faˆ A 1 1 A F aˆ A F aˆ E A F aˆ A F aˆ 0 k ke 1 N L 4 k ke 1 N L 4 E 0 E k ke N 4 L E k ke N 4 L Lecue 4 lide 45 Impedance of he fa field medium: Rada Coss ecion The powe in he adiaed field can be calculaed fom he fa field quaniies as 1 * 1 * Pad Re Re E E 1 k N L + N L 4 The ada coss secion (RC) in hee dimensions is RC, lim 4 ad P inc inc P k N L + N L 8P Lecue 4 lide 46 3

11/14/018 Flow of Equaions fo 3D NFFF ep 1 Calculae cuen ems aound a closed suface. J nˆ M nˆ E s ep Loop ove all values of and a) Calculae N and L in he fa field s kcos N JcoscosJcossinJsin e ds kcos N JsinJcos e ds kcos L Mcoscos M cossin Msin e ds kcos L Msin M cos e ds b) Calculae E and in he fa field 0 k ke 1 N L 4 k ke 1 N L 4 E 0 k ke E N L 4 k ke E N L 4 Lecue 4 lide 47 c) Calculae RC o whaeve else ou need k N L N L RC, + 8P inc NFFF in Two Dimensions Lecue 4 lide 48 4

11/14/018 uface Cuens (1 of ) We esic ou analsis o he plane. This means he nomal veco is esiced o he plane. ˆn E, M s nˆ n aˆ n aˆ This also means ha he spheical coodinae paamee is eo. 0 0 Theefoe, we wie N and L onl as funcions of. J s,,, N N L L Lecue 4 lide 49 uface Inegals o Line Inegals (1 of ) Fo he geneal case, we inegae he cuen ems J and M ove a closed suface o obain N() and L() in he fa field. N N ds ds L L ds ds In FDTD, i is mos convenien o seup ou inegaing suface o be a ecangle. oweve, in D he closed suface can be educed o a closed line. Lecue 4 lide 50 5

11/14/018 uface Inegals o Line Inegals ( of ) We mus wie ou inegaions as closed line inegals. ds d Given ha ou inegaing line is a ecangle, we divide his ino fou sepaae odina inegals. d d d 1 1 low side high side 1 1 d d high side low side low high 1 1 low high Lecue 4 lide 51 Oienaion of he uface Cuens (1 of 3) We have defined he suface cuens o be flowing in a common diecion. J, M J, M J, M J, M Lecue 4 lide 5 6

11/14/018 7 Lecue 4 lide 53 Oienaion of he uface Cuens ( of 3) oweve, his is no he inheen diecionali calculaed on he Yee gid., J M, J M, J M, J M Lecue 4 lide 54 Oienaion of he uface Cuens (3 of 3) We have o oae he suface cuen vecos abou he suface nomal., J M, J M, J M, J M ˆn ˆn ˆn ˆn

11/14/018 Roaion of uface Cuen Tems Based on his line of easoning, we mus oae ou suface cuen ems in wo of he line segmen inegals. 1 1 d d d d d 1 1 low side high side high side low side R180 R180 J, M ˆn ˆn J, M Flip sign of J, J, M, and M Flip sign of J, J, M, and M Lecue 4 lide 55 Wie Inegals as andad Inegals The las wo inegals ae calculaed fom b o a. To aive a a moe saighfowad numeical implemenaion, he ode of inegaion is evesed. When his is done, he sign of he inegal changes. 1 1 d d d d d 1 1 low side high side high side low side R180 R180 d dd d 1 R 180 1 1 low side high side high side d 1 low side R 180 Lecue 4 lide 56 8

11/14/018 Final Equaions fo D Analsis Appling all of his o ou oiginal suface inegal equaions fo N() and L(), we ge kcos kcos kcos kcos 1 1 1 1 N J e d J e d J e d J e d low side high side high side low side kcos N JcosJsine d 1 L 1 low side high side kcos cos sin cos sin 1 1 kcos JcosJsin e d kcos J J e d J J e d high side low side kcos kcos kcos kcos Me 1 1 1 1 low side high side high side low side kcos L M M e d cos sin d M e d M e d M e d kcos M cosmsin e d 1 1 low side high side kcos cos sin cos sin 1 1 high side low side Lecue 4 lide 57 kcos M M e d M M e d implificaions fo E and Modes E Mode E E ˆ a aˆ aˆ Mode E Eaˆ Eaˆ aˆ E E 0 E 0 J s na na a a Js na na a M n a n a E a M na na Ea Ea ˆ ˆ ˆ ˆ ˆ ˆ ˆ s J n n aˆ M neaˆ neaˆ s s ˆ ˆ ˆ ˆ ˆ ˆ ˆ s J naˆ naˆ M ne ne aˆ s s J J M 0 M M J 0 Lecue 4 lide 58 9

11/14/018 N(,) and L(,) fo he E Mode Given all of he simplificaions on he pevious slide, ou epessions fo N(,) and L(,) educe o 0 0 kcos kcos kcos kcos + 1 1 1 1 low side high side high side low side N e d e d e d e d N L kcos kcos cos Ee 1 1 low side high side kcos kcos cos 1 1 high side low side L sin E e d d sin E e d E e d Lecue 4 lide 59 N(,) and L(,) fo he Mode Given all of he simplificaions on he pevious slide, ou epessions fo N(,) and L(,) educe o N 0 kcos kcos cos 1 1 low side high side kcos kcos cos 1 1 high side low side N sin e d e d L L sin e d e d kcos kcos kcos kcos E e d E e d E e d E e d 0 1 1 1 1 low side high side high side low side Lecue 4 lide 60 30

11/14/018 E(,) and (,) fo D Analsis Given ha N = L = 0 fo he E mode and N = L = 0 fo he mode, he elecomagneic fa fields fo each mode ae calculaed as E k ke N 4 L E 0 0 E Mode ke 4 k L N E 0 k ke E N L 4 0 Mode ke 4 k L N Lecue 4 lide 61 P ad (,) and RC(,) fo D Analsis E Mode 1 k Pad N L 4 RC Mode k 8P inc inc N L 1 k Pad N L 4 RC k 8P N L Lecue 4 lide 6 31

11/14/018 Inciden Powe P inc The powe in a unifom plane wave is calculaed as 1 E 1 Pinc Assuming a uni ampliude plane wave souce, P inc educes o 0.5 fo E 1 Pinc 0.5 fo 1 Assuming a uni ampliude plane wave souce, P inc educes o P inc 1 0 E Mode wih E 1 P inc 0 Mode wih 1 Lecue 4 lide 63 Flow of Equaions fo E Mode NFFF Loop ove all values of a) Inegae o calculae N and L in he fa field kcos kcos kcos kcos + 1 1 1 1 N e d e d e d e d low side high side high side low side kcos sin 1 low side kcos kcos kcos L E e dcos E e d sin E e d cos E e d 1 1 1 high side high side low side b) Calculae E and in he fa field fom N and L (if desied) ke ke E N L N 4 4 k k L c) Calculae P ad and RC fom N and L (if desied) 1 k k Pad N L RC N L 4 8 Pinc Lecue 4 lide 64 3

11/14/018 Flow of Equaions fo Mode NFFF Loop ove all values of a) Inegae o calculae N and L in he fa field kcos L Ee d 1 kcos kcos kcos kcos 1 1 1 1 N sin e dcos e dsin e dcos e d low side high side high side low side k cos k cos k cos 1 1 1 E e d E e d E e d low side high side high side low side b) Calculae E and in he fa field fom N and L (if desied) k k ke ke L E N L N 4 4 c) Calculae P ad and RC fom N and L (if desied) 1 k k Pad N L RC N L 4 8 Pinc Lecue 4 lide 65 Implemenaion Lecue 4 lide 66 33

11/14/018 ep 1 eup he Gid 3D Gid PML D Gid TF/F Ineface caeing Obec Noe ha he nea field suface is locaed wihin he scaeed field egion. Lecue 4 lide 67 ep imulae o Ge ead ae Field 3D Gid D Gid Calculae sead sae field along The sead sae field fom FDTD is he same daa ha would be geneaed if simulaed b finie diffeence fequenc domain (FDFD). Lecue 4 lide 68 34

11/14/018 ep imulae o Ge ead ae Field Below is MATLAB code fom inside he main FDTD loop ha updaes he Fouie ansfom acoss he enie gid a a single fequenc defined b he kenel K. The Fouie ansfom of he souce a his same fequenc is also calculaed. % Updae Fouie Tansfoms FT_E = FT_E + (K^T*d)*E; FT_ = FT_ + (K^T*d)*; FT_ = FT_ + (K^T*d)*; FT_ = FT_ + (K^T*d)*0(nc,nc); Afe he main FDTD loop has finished, he Fouie ansfoms ae nomalied o souce using he follow code: % NORMALIZE FOURIER TRANFORM FT_E = FT_E/FT_; FT_ = FT_/FT_; FT_ = FT_/FT_; Lecue 4 lide 69 ep 3 Inepolae Field Quaniies Along We need o inepolae he field quaniies in each Yee cell a a common poin. I is convenien o choose he oigin of each cell as he common poin. E E E, k, k, k, k, k, k 1,,,, E i k E i k E i k E i k E i k E i k, 1,,,,, 1,,, 1, 1, 1,,, 1,, i k i k i k i k 4 i k i k i k i k 4 i k i k i k i k 4 1,, 1 1,,,, 1,, 1, 1, 1,,, 1,,, Lecue 4 lide 70 35

11/14/018 ep 3 Inepolae Field Quaniies Along Fo D simulaions, he inepolaion equaions educe o E Mode E i E i,, 1 i i 1,, % INTERPOLATE FIELD TO ORIGIN OF YEE CELL ie = FT_E; i = 0.5*FT_; i(:,:n) = 0.5*(FT_(:,1:N-1)... + FT_(:,:N)); i = 0.5*FT_; i(:n,:) = 0.5*(FT_(1:N-1,:)... + FT_(:N,:)); Mode 1, 1 1,, 1, i i i i 4 Ei1, E E E 1 E E Lecue 4 lide 71 ep 4 Calculae N and L b Inegaing Fields Along We pick a ange of values fo, usuall < <. Fo each value of we inegae E and aound he conou. E Mode Mode kcos kcos kcos kcos + 1 1 1 1 low side high side high side low side kcos kcos kcos kcos sin cos sin cos 1 1 1 1 low side high side high side low side N e d e d e d e d L E e d E e d E e d E e d kcos kcos kcos kcos 1 1 1 1 low side high side high side low side N sin e dcos e dsin e dcos e d kcos k cos k cos k cos L Ee d Ee d Ee d Ee d 1 1 1 1 low side high side high side low side Lecue 4 lide 7 36

11/14/018 Block Diagam fo caeing Analsis (1 of 3) a Iniialie MATLAB Dashboad ouce NFFF Device Gid Calculae Gid N, N, d, d Build Device ER, ER, ER, UR, UR, UR Compue ouce Paamees d, au, ns, ns, T0, k, k, ec. Compensae fo Numeical Dispesion Iniialie FDTD Fields BC s This sep onl calculaes souce paamees, no he souce funcions. Those ae calculaed in he main FDTD loop. Culs Inegaions Lecue 4 lide 73 Block Diagam fo caeing Analsis ( of 3) es Finish Fouie Tansfoms Done? no ime Compue Cul of E CE, CE, CE andle TF/F CE, CE, CE Updae Inegaions Compue Cul of C, C, C andle TF/F C, C, C Updae Inegaions Updae E Updae Fouie Tansfoms Visualie imulaion Updae Updae D This is he odina main loop fo FDTD ecep he TF/F and calculaing Fouie ansfoms whee he NFFF is o be calculaed. Lecue 4 lide 74 37

11/14/018 Block Diagam fo caeing Analsis (3 of 3) Inepolae Fields o Oigin of Yee Cells Denomalie E E E 0 Iniialie NFFF N, N, N, 0 L, L, L, 0 E, E, 0,, 0 P, RC, 0 ad All following calculaions should use he inepolaed and denomalied field values. Inegae Aound Peimee N, N, N, L, L, L Calculae Fields (if desied) E, E,, Calculae RC (if desied) P ad,rc Done? no & es how Resuls Finish Lecue 4 lide 75 igh Level Code fo Loop % CALCULATE N AND L = 10*ma(,); PI = linspace(-ppnpi); fo nphi = 1 : NPI end % Ne Phi Angle phi = PI(nphi); n = [ cos(phi) ; sin(phi) ]; % lo apeoidal inegaion... % hi apeoidal inegaion... % hi apeoidal inegaion... % lo apeoidal inegaion... Lecue 4 lide 76 38

11/14/018 Eample Code fo Inegaion kcos kcos kcos kcos + 1 1 1 1 N e d e d e d e d low side high side high side low side kcos kcos kcos kcos sin cos Ee dsin Ee dcos Ee d 1 1 1 1 low side high side high side low side L E e d Noe: na and nb ae he lef and igh aa indices of. na and nb ae he op and boom aa indices of. % lo apeoidal inegaion N = 0; L = 0; n = na; fo n = na : nb p = [ a(n) ; a(n) ]; e = ep(-1i*k0*do(n,p)); iw = 1 - ((n==na) + (n==nb))/; N = N + iw*(n,n)*e; L = L + iw*e(n,n)*e; end Nh(nphi) = Nh(nphi) - N*d; Lphi(nphi) = Lphi(nphi) - sin(phi)*l*d; Lecue 4 lide 77 imulaion Eamples Lecue 4 lide 78 39

11/14/018 Eample #1: caeing fom a Dielecic Clinde The Poblem Wha is he RC of a dielecic clinde wih adius 0.5 0 and dielecic consan of = 4.0? 1 1 1 4.0 Lecue 4 lide 79 Eample #1: caeing fom a Dielecic Clinde The imulaion (E Mode) The imulaion ( Mode) PML PML Inegaing suface Inegaing suface TF/F ineface TF/F ineface PML PML PML PML caee caee PML PML Lecue 4 lide 80 40

11/14/018 Eample #1: caeing fom a Dielecic Clinde The uface Cuens (E Mode) Lecue 4 lide 81 Eample #1: caeing fom a Dielecic Clinde The uface Cuens ( Mode) Lecue 4 lide 8 41

11/14/018 Eample #1: caeing fom a Dielecic Clinde N and L Funcions (E Mode) Lecue 4 lide 83 Eample #1: caeing fom a Dielecic Clinde N and L Funcions ( Mode) Lecue 4 lide 84 4

11/14/018 Eample #1: caeing fom a Dielecic Clinde E and Fields (E Mode) Lecue 4 lide 85 Eample #1: caeing fom a Dielecic Clinde E and Fields ( Mode) Lecue 4 lide 86 43

11/14/018 Eample #1: caeing fom a Dielecic Clinde RC (E Mode) RC ( Mode) Lecue 4 lide 87 44