S2 F1. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

Similar documents
SABIS End of Year STUDY GUIDE Grade 11 Physics Chapters 25, 27, 28, 29, 32, 33, 34, 35

1) The charge of an electron is. A) negative. B) positive. C) Electrons have no charge.

PAP Physics Spring Exam Review

Wave Motion and Sound

Study Guide: Semester Two ( )

Final Worksheet. Equation And Constant Summary

Physics Test Review Electrostatics, Electric Fields and Potential Session: Name:

Cp physics - Spring Final Review (second semester topics)

Two point charges, A and B, lie along a line separated by a distance L. The point x is the midpoint of their separation.

HIGH SCHOOL SCIENCE. Physical Science 7: Electricity & Magnetism

Electricity and Electromagnetism SOL review Scan for a brief video. A. Law of electric charges.

PHYSICS 253 SAMPLE FINAL EXAM. Student Number. The last two pages of the exam have some equations and some physical constants.

2. Determine the excess charge on the outer surface of the outer sphere (a distance c from the center of the system).

General Physics II Summer Session 2013 Review Ch - 16, 17, 18

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Electric Force and Charge. Electric Force and Charge. Electric Force and Charge. Electric Force and Charge. Electric Force and Charge

Ch Guided Reading Sound and Light

Name Class Date. What two models do scientists use to describe light? What is the electromagnetic spectrum? How can electromagnetic waves be used?

Chapter19-Magnetism and Electricity

1. If the mass of a simple pendulum is doubled but its length remains constant, its period is multiplied by a factor of

Test 4 Preparation Questions

Name Date Class _. Please turn to the section titled The Nature of Light.

Academic Physics Spring Semester Final Review

School. Team Number. Optics

PH2200 Practice Final Exam Summer 2003

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

1. For which of the following motions of an object must the acceleration always be zero?

Electromagnetism and Light

Name Final Exam May 1, 2017

8.01. Determine arc length, angular velocity, and angular acceleration.

Physics 202 Final (Monday, December 12) Fall 2016 (Saslow) White Version

PHYSICS 11. Review What is the critical angle for a glass that has an index of refraction of 1.52?

Republic of Somaliland. Somaliland National Examination Board. Form Four. Physics Examination. June 2009 TIME 2 HOURS

Physics Test Pack WALCH PUBLISHING

Properties of Waves. Before You Read. What are the features of a wave?

Year 10 End of Year Examination Revision Checklist

9. Which of the following is the correct relationship among power, current, and voltage?. a. P = I/V c. P = I x V b. V = P x I d.

Physics 6b Winter 2015 Final Campagnari Section Test Form D

Physics 6b Winter 2015 Final Campagnari Section Test Form A

Matter mass space atoms solid, a liquid, a gas, or plasm elements compounds mixtures atoms Compounds chemically combined Mixtures not chemically

Physics 11 Exam 3 Spring 2016

r1 (D) r 2 = 2 r 1 (E) r 2 = 4r 1 2

Waves Final Review. Name: Date: 1. On which one of the following graphs is the wavelength λ and the amplitude a of a wave correctly represented?

the ability to do work or cause change (work is force exerted on an object causing it to move a distance)

qq k d Chapter 16 Electric and Magnetic Forces Electric charge Electric charges Negative (electron) Positive (proton)

Symbol Meaning unit. 2. k 3. q. 4. r. 5. E 6. R Total 7. 1/R Total 8. P 9. V 10. I 11. R. 12. Q 13. N 14. e 15. F magnetic 16. v 17.

0.4 s 0.8 s 1.5 s. 2.5 s. 2. A beam of light from a ray box spreads out as shown in the diagram and strikes a plane mirror.

1P22/1P92 Exam Review Problems 2013 Friday, January 14, :03 AM. Chapter 20

battery bond capacitance

Name (LAST, First):, Block (circle): Date: / /

SECTION A Waves and Sound

GCSE PHYSICS REVISION LIST

Waves Review Checklist Pulses 5.1.1A Explain the relationship between the period of a pendulum and the factors involved in building one

Science Curriculum Matrix

to calculate gravitational force. d - Know how changes in mass or distance affect the gravitational force between two objects.

Chemistry Terms. atomic number The atomic number of an element is the number of protons in the nucleus of each atom.

Unit 4 Parent Guide: Waves. What is a wave?

Energy - the ability to do work or cause change. 1 point

NATIONAL SENIOR CERTIFICATE EXAMINATION PHYSICAL SCIENCES (P1) JUNE 2015 EXAMINATION QUESTION PAPER GRADE10

3/9/2011. Outline Chapter 7 Waves Water Waves Water Waves. Water waves are really circular. They are an example of Mechanical waves.

Topic 4 &11 Review Waves & Oscillations

DEFINITIONS. Linear Motion. Conservation of Momentum. Vectors and Scalars. Circular Motion. Newton s Laws of Motion

Optics Definitions. The apparent movement of one object relative to another due to the motion of the observer is called parallax.

SEKHUKHUNE DISTRICT GRADE 10 PRE- EXAM JUNE PHYSICAL SCIENCE PAPER

Students' Alternate Conceptions in Introductory Physics

3) 4) Which car has the greatest acceleration during the time interval 10. seconds to 15 seconds? 1) A 2) B 3) C 4) D

Physics Fundamentals Study Guide

MOCK cet paper II 2012 (PHYSICS)

Electromagnetism Review Sheet

Physics Unit Review. 3. The electric field between a positive point charge and a negative point charge is represented by

Name Date Class. Electromagnetic Spectrum. Colors

Outline of College Physics OpenStax Book

Prentice Hall: Conceptual Physics 2002 Correlated to: Tennessee Science Curriculum Standards: Physics (Grades 9-12)

Phys 2B Final Exam Name:

St Olave s Physics Department. Year 11 Mock Revision Checklist

Physics Common Assessment Unit 5-8 3rd Nine Weeks

Conceptual Questions. Fig.8.51 EXERCISES. 8. Why can t electric field lines cross? 9. In which direction do charges always move in an electric field?

Continuing the Analogy. Electricity/Water Analogy: PHY205H1F Summer Physics of Everyday Life Class 8: Electric Current, Magnetism

You MUST TAKE THE FINAL, even if you are a senior!!! If you are sick that day, you will have to make it up before you are allowed to graduate!

Core Concept. PowerPoint Lectures to accompany Physical Science, 8e. Chapter 7 Light. New Symbols for this Chapter 3/29/2011

Magnets attract some metals but not others

1.4 recall and use the relationship between acceleration, velocity and time: 1.6 determine acceleration from the gradient of a velocity-time graph

CAMI - Science. CAPS - Physics Links Grade 10

Problem Solver Skill 5. Defines multiple or complex problems and brainstorms a variety of solutions

Physical Science Paper 1

Chapter 16 Assignment Solutions

Sound Waves. Sound waves are caused by vibrations and carry energy through a medium

Semester II Review part 1

Curriculum Map-- Kings School District Honors Physics

Light. Mike Maloney Physics, SHS

Basic Physics Content

Focusing on Light What is light? Is it a particle or a wave? An age-old debate that has persisted among scientists is related to the question, "Is

KCSE 2009 PHYSICS PAPER 2

Physics 25 Final Examination Fall 2010 Dr. Alward

Being a Chemist. Summary Sheets. Gleniffer High School

Chapter 33: ELECTROMAGNETIC WAVES 559

Physics Curriculum Map - Norwell High School SUBJECT: Physics Grade Level: 11 or 12. Month or Unit: September

PHY 205 Final Exam 6/24/2009 Second Semester2008 Part 1.

Useful Information. W = F x. U g = mgh P=I V. v = fλ. Conceptual Physics Final Exam Review Work and Energy. DC Circuits

Transcription:

S2 F1 Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Which has greater linear speed, a horse near the outside rail of a merry-go-round or a horse near the inside rail? a. The inside horse b. The outside horse c. Neither they both have the same linear speed. 2. Which has greater angular speed, a horse near the outside rail of a merry-go-round or a horse near the inside rail? a. Neither they both have the same angular speed. b. The inside horse c. The outside horse 3. A car travels in a circle with constant speed. The net force on the car a. is zero because the car is not accelerating. b. is directed forward, in the direction of travel. c. is directed toward the center of the curve. d. none of the above 4. The gravitational force between two massive spheres a. is always an attraction. b. depends on how massive they are. c. depends inversely on the square of the distances between them. 5. A very massive object A and a less massive object B move toward each other under the influence of mutual gravitation. Which force, if either, is greater? a. The force on B b. The force on A c. Both forces are the same. 6. Gravitational field lines show the. a. direction of the field at each point b. direction of the force on any mass c. direction a mass would be accelerated d. strength of the field e. all of the above 7. If you were to weigh yourself in an elevator that is in free fall, compared to your ordinary weight, you would weigh. a. more b. the same c. less, but more than zero d. zero 8. The speed of a satellite in a circular orbit is. a. constant b. not constant c. constantly increasing 9. The source of all wave motion is a a. region of variable high and low pressure. b. vibration. c. movement of matter.

d. harmonic object. 10. The time needed for a wave to make one complete cycle is its a. frequency. b. velocity. c. amplitude. d. period. e. wavelength. 11. The distance between successive identical parts of a wave is called its a. frequency. b. period. c. velocity. d. amplitude. e. wavelength. 12. A wave created by shaking a rope up and down is called a a. Doppler wave. b. standing wave. c. longitudinal wave. d. constructive wave. e. transverse wave. 13. Sound is an example of a a. longitudinal wave. b. constructive wave. c. Doppler wave. d. transverse wave. e. standing wave. 14. When two or more waves are at the same place at the same time, the resulting effect is called a. a standing wave. b. a Doppler wave. c. a shock wave. d. interference. e. a period. 15. The Doppler effect is the change in observed frequency due to a. the original frequency of the source. b. the type of medium the wave is in. c. the motion of the source or observer. d. the type of wave. e. all of the above 16. When a sound source moves towards you, what happens to the wave speed? a. It decreases. b. It increases. c. It stays the same. 17. If you double the frequency of a vibrating object, its period a. halves. b. is quartered. c. doubles. 18. What happens when an airplane is flying faster than the speed of sound? a. There is no sonic boom. b. It becomes very quiet inside the plane. c. Nobody can hear the plane fly overhead.

d. A shock wave is produced. 19. An observer on the ground hears a sonic boom that is created by an airplane flying at a speed a. equal to the speed of sound. b. greater than the speed of sound. c. just below the speed of sound. d. none of the above 20. The Doppler effect occurs when a source of sound moves a. away from you. b. toward you. c. both A and B d. none of the above 21. The period of an ocean wave is 10 seconds. What is the wave s frequency? a. 30.0 Hz b. 5.0 Hz c. 0.10 Hz d. 20.0 Hz e. 10.0 Hz 22. A certain ocean wave has a frequency of 0.08 hertz and a wavelength of 10 meters. What is the wave s speed? a. 1.0 m/s b. 125 m/s c. 0.80 m/s d. 10 m/s e. 0.08 m/s 23. A leaf on a pond oscillates up and down two complete cycles each second as a water wave passes. What is the wave's frequency? a. 0.5 hertz b. 1 hertz c. 2 hertz d. 3 hertz e. 6 hertz 24. Compared to the speed of light, sound travels a. faster. b. at about the same speed. c. slower. 25. Sound waves are produced by a. radio stations. b. vibrating objects. c. soft objects. d. objects under pressure. 26. Sound waves cannot travel in a. steel. b. air. c. a vacuum. d. water. e. Sound can travel in all of the above. 27. Resonance occurs when a. sound changes speed in going from one medium to another.

b. sound makes multiple reflections. c. the amplitude of a wave is amplified. d. an object is forced to vibrate at its natural frequency. e. all of the above 28. A singer shattering crystal glass with her voice is a demonstration of a. beats. b. sound refraction. c. an echo. d. interference. e. resonance. 29. The phenomenon of beats results from sound a. interference. b. reflection. c. refraction. 30. A 340-Hz sound wave travels at 340 m/s in air, with a wavelength of a. 1 m. b. 10 m. c. 100 m. d. 1000 m. 31. Electromagnetic waves are a. transverse waves. b. longitudinal waves. 32. Electromagnetic waves a. need a medium to travel through. b. can travel through a vacuum. 33. Compared to the wavelength of ultraviolet waves, the wavelength of infrared waves is a. the same. b. shorter. c. longer. 34. Compared to the velocity of radio waves, the velocity of visible light waves is a. slower. b. faster. c. the same. 35. The source of all electromagnetic waves is a. magnetic fields. b. heat. c. electric fields. d. vibrating charges. 36. The main difference between a radio wave and a sound wave is its a. basic nature. b. amplitude. c. energy. d. frequency. e. wavelength. 37. If the sun were to disappear right now, we wouldn't know about it for 8 minutes because it takes 8 minutes

a. to operate receiving equipment in the dark. b. for light to travel from the sun to Earth. c. for the sun to disappear. 38. Compared to its speed in air, the speed of light in water is a. slower. b. the same. c. faster. 39. Electromagnetic waves with higher frequencies have wavelengths that are a. shorter. b. longer. 40. If an electron vibrates up and down 1000 times each second, it generates an electromagnetic wave having a a. frequency of 1000 Hz. b. speed of 1000 m/s. c. period of 1000 s. d. wavelength of 1000 m. 41. After randomly polarized light passes through a polarizer, it is a. totally blocked. b. totally polarized. c. randomly polarized. d. partially polarized. 42. If two polarizing filters are held with their polarization axes at right angles to each other, the amount of light transmitted compared to when their axes are parallel is a. zero. b. half as much. c. the same. d. twice as much. 43. The color of an object we see is determined by the a. colors of light reflected by the object. b. frequencies of light absorbed by the object. c. colors of light shining on the object. d. frequencies of light reflected by the object. e. all of the above 44. Sunlight contains all colors of light, but much of it is a. orange. b. blue. c. violet. d. yellow. e. red. 45. Earth receives a lot of ultraviolet radiation from the sun. Luckily most of it doesn't reach the ground, because it is a. scattered by the upper atmosphere. b. Actually there isn't enough UV radiation coming from the sun to harm us. c. absorbed by the large amount of air in the atmosphere. d. absorbed by a protective layer of ozone gas in the upper atmosphere. 46. Different colors of light correspond to different light a. frequencies. b. polarities. c. intensities.

d. velocities. 47. The color of an opaque object is determined by the light that is a. absorbed. b. reflected. c. transmitted. 48. If sunlight were green instead of white, the most comfortable color to wear on a hot day would be a. yellow. b. blue. c. green. d. magenta. 49. The reason the sky is blue is that air molecules a. are blue. b. reflect blue light. c. absorb yellow light. d. absorb and then reemit blue light, scattering it in all directions. e. absorb green light. 50. Sunsets are red because a. the longest path of sunlight through the atmosphere is at sunset or sunrise. b. a lot of high-frequency light is scattered by the atmosphere. c. blue light from the sun is scattered by Earth's atmosphere. 51. The three primary colors of light for additive color mixing are. a. red, green, and blue. b. yellow, green, and blue. c. red, yellow, and blue. d. red, yellow, and green. e. yellow, cyan, and red. 52. The law of reflection says that a. the angle of reflection from a mirror equals the angle of incidence. b. waves incident on a mirror are partially reflected. c. all waves incident on a mirror are reflected. d. the angle a ray is reflected from a mirror is random. 53. When a virtual image is created in a plane mirror a. the image is upright. b. the image is located behind the mirror. c. reflected rays diverge. 54. The reason we can read print from any direction is that a. the white part of a page reflects light in all directions. b. letters emit black light in all directions. c. letters absorb black light from all directions.

55. Refraction occurs a. when a wave changes speed. b. only at a wave front. c. at any unpredictable time. d. only with light waves. e. all of the above 56. The critical angle for a light from the bottom of a swimming pool shining upward toward the pool's surface is the angle a. where light is refracted so it just skims the pool surface. b. 43 degrees. c. at which all light is refracted out of the pool. d. 42 degrees. e. at which some light is reflected from the surface. 57. A beam of light emerges from water into air at an angle. The beam is bent a. away from the normal. b. not at all. c. 48 degrees upward. d. 96 degrees upward. e. towards the normal. 58. The effect that we call a mirage has most to do with a. reflection. b. refraction. c. diffraction. d. interference. e. scattering. 59. Different colors of light travel at different speeds in a transparent medium. In a vacuum, different colors of light travel at a. the same speed. b. different speeds. 60. The spectrum produced by a prism or a raindrop is evidence that the average speed of light in the material depends on the light's a. transmission qualities. b. color. c. wave nature. d. particle nature. 61. A beam of light travels fastest in a. air. b. water. c. plastic. d. glass. e. Its average speed is the same in each of the above. 62. An image of a distant object formed by a single converging lens a. is upside down. b. can be focused on a screen. c. is real. d. can be projected on a wall. e. all of the above 63. An image formed by a single diverging lens a. is upside down.

b. can be projected on a wall. c. is virtual. d. is larger than the object. e. all of the above 64. Ray diagrams are used to a. figure out where an image will be located. b. find the focal point of a lens. c. draw pretty pictures. d. figure out what kind of lens is being used. e. all of the above 65. All lenses rely on light having a a. slower speed in the lens. b. consistent speed everywhere. c. wavelength and frequency, the product of which equals c. d. none of the above 66. The image your eye receives is a. upside down. b. right-side up. 67. On a bright day, the iris of the eye changes so the pupil a. stays the same as always. b. becomes larger. c. becomes smaller. 68. An interference pattern is produced when a. two or more light waves meet. b. the crests of two waves meet. c. the troughs of two waves meet. d. light passes through two narrow slits. e. all of the above 69. Constructive interference occurs when a. the crest of one wave meets the trough of another wave. b. two waves of the same color overlap. c. the crests of two waves overlap. 70. Destructive interference occurs when a. the crests of two waves overlap. b. two waves of the same color overlap. c. the crest of one wave meets the trough of another wave. 71. The charge of an electron is a. positive. b. negative. c. Electrons have no charge. 72. Atomic nuclei of almost all elements consist of a. only neutrons. b. protons and electrons. c. neutrons and electrons. d. only protons.

e. protons and neutrons. 73. Two like charges a. neutralize each other. b. repel each other. c. must be neutrons. d. attract each other. e. have no effect on each other. 74. Protons and electrons a. attract each other. b. repel each other. c. do not interact. 75. Electrical forces between charges are strongest when the charges are a. far apart. b. close together. c. The electrical force is constant everywhere. 76. Two charges are separated by a certain distance. If the magnitude of each charge is doubled, the force on each charge is a. halved. b. doubled. c. tripled. d. quadrupled. 77. When the distance between two charges is halved, the electrical force between the charges a. doubles. b. reduces to one fourth. c. halves. d. quadruples. 78. A difference between electrical forces and gravitational forces is that electrical forces include a. infinite range. b. repulsive interactions. c. the inverse square law. d. separation distance. 79. In a good insulator, electrons are usually a. not moving at all. b. free to move around after an impurity has been added. c. free to move around. d. tightly bound in place. e. semi-free to move around. 80. Objects can be charged by a. induction. b. friction. c. touching. 81. Charge carriers in a metal are electrons rather than protons, because electrons are a. relatively far from a nucleus. b. loosely bound. c. lighter.

82. To be safe in the unlikely case of a lightning strike, it is best to be inside a building framed with a. steel. b. wood. c. either A or B. 83. When a charged cloud passes overhead, the ground below is charged by a. induction. b. polarization. c. deduction. d. electrification. 84. The electrostatic force between two charges located 8 meters apart is 0.30 N. What will the force be between these charges when they are located 2 meters apart? a. 2.4 N b. 0.04 N c. 0.08 N d. 0.3 N e. 4.8 N 85. A 1-C charge and a 2-C charge attract each other with 12 N of force. How much will a 1-C charge and a 6-C charge attract each other when placed the same distance apart? a. 5 N b. 36 N c. 6 N d. 72 N e. 12 N 86. Two charges separated by a distance of 1 meter exert a 2-N force on each other. If the magnitude of each charge is quadrupled, the force on each charge is a. 2 N. b. 16 N. c. 32 N. d. 64 N. 87. If you walk into a region of space and suddenly feel a force, the space is said to contain a a. charged object. b. force field. c. large charge. d. black hole. e. heavy object. 88. Every proton in the universe is surrounded by its own a. gravitational field. b. electric field. c. both A and B d. none of the above 89. The direction of electric field lines shows the a. direction of the force on a test positive charge. b. size of the field. c. strength of the field. 90. If two negative charges are held close together and then released, the charges will

a. accelerate toward each other. b. accelerate away from each other. c. not move. d. move at a constant speed away from each other. 91. Two parallel plates are oppositely charged. The left plate is negative and the right plate is positive. In which direction does the electric field point? a. to the left b. to the right 92. In solid conductors, electric current is the flow of a. positive and negative charges. b. electrons. c. negative ions. d. protons. 93. Electrons move in an electric circuit a. by being bumped by other electrons. b. by interacting with an established electric field. c. by colliding with molecules. d. because the wires are so thin. 94. An ampere is a a. unit of resistance. b. unit of current. c. type of charge. d. voltage. e. current. 95. Electrical resistance in a wire depends on the wire's a. thickness. b. conductivity. c. length. 96. For most conductors, as their temperature increases, their resistance a. decreases. b. increases. c. stays the same. 97. The primary reason a bird can perch harmlessly on bare high voltage wires is that a. a bird's feet are close together. b. a bird has a very large electrical resistance. c. there is no potential difference across the bird's feet. 98. Alternating current is made by a. alternating current and voltage. b. alternating the direction of voltage of the power source. c. huge chemical batteries. d. none of the above 99. Current from a battery is always a. DC. b. AC.

100. When we say an appliance uses up electricity, we really are saying that a. electrons are taken out of the circuit and put somewhere else. b. electron kinetic energy is changed into heat and other forms of energy. c. the main power supply voltage is lowered. d. current disappears. e. electric charges are dissipated. 101. Power outlets in our homes typically have a potential difference of a. 30 V. b. 120 A. c. 60 A. d. 240 V. e. 120 V. 102. When a 15-V battery is connected to a resistor, 2 A of current flows in the resistor. What is the resistor's value? a. 2 ohms b. 7.5 ohms c. 15 ohms d. 30 ohms e. more than 30 ohms 103. The current through a 10-ohm resistor connected to a 150-V power supply is a. 1A. b. 10 A. c. 15 A. d. 150 A. 104. A 15-ohm resistor has a 2-A current in it. What is the voltage across the resistor? a. 2 V b. 15 V c. 17 V d. 22 V e. more than 22 V 105. How much power is used by a 6.0-V flashlight battery that draws 1.5 A of current? a. 1.5 W b. 6 W c. 9 W d. 30 W e. 4 W 106. When plugged into a 120-V wall outlet, how much current is used by a lightbulb rated at 100 W? a. 12,000 A b. 100 A c. 120 A d. 0.8 A 107. A power line with a resistance of 3 ohms has a current of 70 A in it. The power dissipated in the line is a. 105 W. b. 210 W. c. 420 W. d. 14,700 W. 108. In order for current to flow in a circuit, you must have

a. a switch that is open. b. a complete path for the current. c. two light bulbs in parallel. d. two light bulbs in series. e. all of the above 109. A closed circuit is a circuit in which charge a. can flow. b. is prevented from flowing. 110. When resistors are put in series next to each other, their overall resistance is a. the same as the resistance of one of the resistors. b. larger than the resistance of any individual resistor. c. smaller than the resistance of any of the resistors. 111. When resistors are put in parallel with each other their overall resistance is a. smaller than the resistance of any of the resistors. b. larger than the resistance of any other resistor. c. the same as the resistance of one of the resistors. 112. As more lamps are put into a series circuit, the overall current in the circuit a. stays the same. b. increases. c. decreases. 113. As more lamps are put into a parallel circuit, the overall current in the circuit a. increases. b. stays the same. c. decreases. 114. When one light bulb in a series circuit containing several light bulbs burns out a. none of the other bulbs will light up. b. nothing changes in the rest of the circuit. c. the other light bulbs burn brighter. 115. When one light bulb in a parallel circuit containing several light bulbs burns out, the other light bulbs a. do not burn at all. b. burn brighter. c. burn the same as before. 116. In a simple parallel circuit a. current through each branch is always the same. b. voltage across each branch is always the same. c. the value of each resistor is the same. d. the circuit won't work unless there is a fuse in it. 117. A 40-W light bulb is connected to a 12-V car battery. When another 40-W bulb is connected in parallel with the first bulb, the battery's output energy a. remains the same. b. halves. c. doubles. 118. The total resistance of a 8-ohm resistor and a 5-ohm resistor in series is a. 40 ohms. b. 13 ohms. c. 2 ohms. d. 5 ohms. e. 3 ohms.

119. The total resistance of a 6-ohm resistor and a second 6-ohm resistor in parallel is a. 12 ohms. b. 3 ohms. c. 6 ohms. d. 20 ohms. e. 37 ohms. 120. The source of all magnetism is a. moving electric charges. b. ferromagnetic materials. c. tiny domains of aligned atoms. d. tiny pieces of iron. 121. Surrounding every moving electron is a. an electric field. b. a magnetic field. c. both A and B d. none of the above 122. If the north pole of one magnet is brought near the south pole of another magnet, the poles will a. repel each other. b. attract each other. c. not interact with each other at all. 123. If you break a bar magnet in half, each half a. becomes a bar magnet with two poles. b. becomes unmagnetized. c. contains one magnetic pole. 124. Magnetic field strength is a. strongest close to a magnet. b. constant everywhere around a magnet. c. strongest far from a magnet. 125. Magnetic domains are a. regions that may or may not be magnetized. b. clusters of atoms randomly aligned. c. regions of atoms magnetically aligned. d. blocks of material. 126. When current passes through a wire, a magnetic field is created around the wire only if the a. wire is absolutely straight. b. wire is curved in a loop. c. current makes a complete loop. d. current comes from a battery. e. A magnetic field is always created around the wire. 127. Loops of wire in a motor rotate because a a. battery effectively pushes a loop around in the field. b. current exerts a force on the loop, causing it to rotate. c. magnetic field exerts forces on moving electrons in the loop. d. magnet attracts stationary electrons in the wire. 128. Earth's magnetic field is most likely due to a. millions of small magnets buried in Earth. b. a magnetized solid inner core of Earth.

c. convection currents in the molten part of Earth's interior. d. the rotation of Earth acting on all of Earth's electrons. 129. The force on an electron moving in a magnetic field will be the largest when its direction a. is at an angle other than 90 degrees to the magnetic field direction. b. is perpendicular to the magnetic field direction. c. is the same as the magnetic field direction. d. is exactly opposite to the magnetic field direction. 130. Magnetic field lines surrounding a magnet are conventionally drawn a. from south to north. b. from north to south. c. either way. 131. A transformer transforms a. magnetic field lines. b. generators into motors. c. voltage. d. unsafe forms of energy into safe forms. True/False Indicate whether the sentence or statement is true or false. 132. Polarization occurs when waves vibrate in a single direction. 133. Light sometimes acts as a wave and sometimes as a particle. 134. The distance light travels in one year is called a light-year. 135. Material in an object that selectively absorbs colored light is called a pigment. 136. When you look at the image of a candle in a plane mirror, you see a real image. 137. A real image can be projected onto a screen. 138. The eye contains a converging lens that focuses light. 139. Nearsighted people can clearly see objects that are close to them.

140. A real image formed by a single converging lens is always upside down. 141. Light entering the eye focuses at the back of the eye on a layer of light-sensitive tissue at the back of the eye called the retina. 142. Electrical forces are strong, but in comparison, gravitational forces are stronger. 143. The reason electrons are attracted to protons is that electrons and protons have the same amount of charge. 144. Charge flows from low potential to high potential. 145. In solid conductors, positive current is the flow of protons in the conductor. 146. Most of the electricity we buy through power companies is direct current. 147. When you turn on a light, electrons move at speeds near the speed of light in order to light up the light bulb. 148. When light bulbs are connected in series, all carry the same current regardless of their resistances. 149. Magnetic poles are similar to electric charges in that they both can repel and attract one another. 150. There is a magnetic field around a current-carrying wire.

S2 F1 Answer Section MULTIPLE CHOICE 1. ANS: B DIF: 2 REF: p. 123 OBJ: 9.2 STO: Ph.1.l 2. ANS: A DIF: 2 REF: p. 123, p. 124 OBJ: 9.2 STO: Ph.1.l 3. ANS: C DIF: 2 REF: p. 127 OBJ: 9.3 STO: Ph.1.f, Ph.1.g 4. ANS: D DIF: 2 REF: p. 172, p. 173 OBJ: 12.4 STO: Ph.1.e, Ph.1.m 5. ANS: C DIF: 3 REF: p. 172 OBJ: 12.4 STO: Ph.1.e, Ph.1.m 6. ANS: E DIF: 1 REF: p. 183 OBJ: 13.1 STO: Ph.1.e, Ph.1.m 7. ANS: D DIF: 3 REF: p. 186 OBJ: 13.3 STO: Ph.1.m 8. ANS: A DIF: 2 REF: p. 200 OBJ: 14.2 STO: Ph.1.f 9. ANS: B DIF: 2 REF: p. 374 OBJ: 25.2 10. ANS: D DIF: 1 REF: p. 372 OBJ: 25.1 11. ANS: E DIF: 1 REF: p. 374 OBJ: 25.2 12. ANS: E DIF: 1 REF: p. 378 OBJ: 25.5 STO: Ph.4.b 13. ANS: A DIF: 1 REF: p. 379 OBJ: 25.6 STO: Ph.4.b 14. ANS: D DIF: 2 REF: p. 379 OBJ: 25.7 15. ANS: C DIF: 1 REF: p. 383 OBJ: 25.9 16. ANS: C DIF: 3 REF: p. 383 OBJ: 25.9 17. ANS: A DIF: 3 REF: p. 375 OBJ: 25.2 18. ANS: D DIF: 2 REF: p. 385 OBJ: 25.11 19. ANS: B DIF: 1 REF: p. 385 OBJ: 25.11 20. ANS: C DIF: 2 REF: p. 382, p. 383 OBJ: 25.9 21. ANS: C DIF: 2 REF: p. 375 OBJ: 25.2 22. ANS: C DIF: 2 REF: p. 377 OBJ: 25.4

STO: Ph.4.c, Ph.4.d 23. ANS: C DIF: 2 REF: p. 374 OBJ: 25.2 24. ANS: C DIF: 2 REF: p. 393 OBJ: 26.4 STO: Ph.4.d 25. ANS: B DIF: 1 REF: p. 390, p. 391 OBJ: 26.1 STO: Ph.4.d 26. ANS: C DIF: 1 REF: p. 392 OBJ: 26.3 STO: Ph.4.d 27. ANS: D DIF: 1 REF: p. 395 OBJ: 26.8 28. ANS: E DIF: 2 REF: p. 395, p. 396 OBJ: 26.8 29. ANS: A DIF: 1 REF: p. 398 OBJ: 26.10 30. ANS: A DIF: 2 REF: p. 393 OBJ: 26.4 STO: Ph.4.d 31. ANS: A DIF: 1 REF: p. 414 OBJ: 27.7 STO: Ph.4.b 32. ANS: B DIF: 2 REF: p. 407 OBJ: 27.2 STO: Ph.4.e 33. ANS: C DIF: 2 REF: p. 408 OBJ: 27.3 STO: Ph.4.e 34. ANS: C DIF: 2 REF: p. 408 OBJ: 27.3 STO: Ph.4.e 35. ANS: D DIF: 2 REF: p. 409 OBJ: 27.4 STO: Ph.4.e, Ph.4.f 36. ANS: A DIF: 2 REF: p. 408 OBJ: 27.3 STO: Ph.4.e 37. ANS: B DIF: 2 REF: p. 406, p. 407 OBJ: 27.2 STO: Ph.4.e 38. ANS: A DIF: 2 REF: p. 410 OBJ: 27.4 STO: Ph.4.e, Ph.4.f 39. ANS: A DIF: 2 REF: p. 408 OBJ: 27.3 STO: Ph.4.e 40. ANS: A DIF: 2 REF: p. 409 OBJ: 27.4 STO: Ph.4.e, Ph.4.f 41. ANS: B DIF: 2 REF: p. 414 OBJ: 27.7 STO: Ph.4.b 42. ANS: A DIF: 2 REF: p. 414, p. 415 OBJ: 27.7 STO: Ph.4.b 43. ANS: E DIF: 2 REF: p. 422, p. 423 OBJ: 28.2 STO: Ph.4.e 44. ANS: D DIF: 2 REF: p. 425, p. 426 OBJ: 28.4 STO: Ph.4.e 45. ANS: D DIF: 2 REF: p. 432 OBJ: 28.8 STO: Ph.4.c, Ph.4.f 46. ANS: A DIF: 2 REF: p. 421 OBJ: 28.1

STO: Ph.4.e 47. ANS: B DIF: 2 REF: p. 422, p. 423 OBJ: 28.2 STO: Ph.4.e 48. ANS: C DIF: 3 REF: p. 423 OBJ: 28.2 STO: Ph.4.e 49. ANS: D DIF: 2 REF: p. 432 OBJ: 28.8 STO: Ph.4.c, Ph.4.f 50. ANS: D DIF: 2 REF: p. 433, p. 434 OBJ: 28.9 STO: Ph.4.c, Ph.4.f 51. ANS: A DIF: 1 REF: p. 427 OBJ: 28.5 STO: Ph.4.c 52. ANS: A DIF: 1 REF: p. 444 OBJ: 29.1 53. ANS: D DIF: 2 REF: p. 445 OBJ: 29.3 STO: Ph.4.c, Ph.4.f 54. ANS: A DIF: 1 REF: p. 447 OBJ: 29.4 55. ANS: A DIF: 1 REF: p. 448 OBJ: 29.6 STO: Ph.4.c, Ph.4.f 56. ANS: A DIF: 1 REF: p. 457 OBJ: 29.12 STO: Ph.4.c, Ph.4.f 57. ANS: A DIF: 2 REF: p. 451 OBJ: 29.8 58. ANS: B DIF: 1 REF: p. 452 OBJ: 29.9 STO: Ph.4.c, Ph.4.f 59. ANS: A DIF: 2 REF: p. 454 OBJ: 29.10 STO: Ph.4.c, Ph.4.e, Ph.4.f 60. ANS: B DIF: 2 REF: p. 454, p. 455 OBJ: 29.10 STO: Ph.4.c, Ph.4.e, Ph.4.f 61. ANS: A DIF: 2 REF: p. 451 OBJ: 29.8 62. ANS: E DIF: 2 REF: p. 465, p. 466 OBJ: 30.2 63. ANS: C DIF: 2 REF: p. 466 OBJ: 30.2 64. ANS: A DIF: 1 REF: p. 467 OBJ: 30.3 65. ANS: A DIF: 2 REF: p. 463 OBJ: 30.1 66. ANS: A DIF: 2 REF: p. 474 OBJ: 30.6 67. ANS: C DIF: 2 REF: p. 473 OBJ: 30.6 68. ANS: E DIF: 1 REF: p. 486 OBJ: 31.3 STO: Ph.4.c, Ph.4.f 69. ANS: C DIF: 1 REF: p. 486 OBJ: 31.3 STO: Ph.4.c, Ph.4.f 70. ANS: C DIF: 1 REF: p. 487 OBJ: 31.3 STO: Ph.4.c, Ph.4.f 71. ANS: B DIF: 1 REF: p. 501 OBJ: 32.1 STO: Ph.5.e 72. ANS: E DIF: 1 REF: p. 501 OBJ: 32.1 STO: Ph.5.e

73. ANS: B DIF: 1 REF: p. 501 OBJ: 32.1 STO: Ph.5.e 74. ANS: A DIF: 2 REF: p. 501 OBJ: 32.1 STO: Ph.5.e 75. ANS: B DIF: 2 REF: p. 505 OBJ: 32.3 STO: Ph.1.m 76. ANS: D DIF: 2 REF: p. 505 OBJ: 32.3 STO: Ph.1.m 77. ANS: D DIF: 3 REF: p. 505 OBJ: 32.3 STO: Ph.1.m 78. ANS: B DIF: 2 REF: p. 506 OBJ: 32.3 STO: Ph.1.m 79. ANS: D DIF: 1 REF: p. 508 OBJ: 32.4 80. ANS: D DIF: 2 REF: p. 509, p. 510 OBJ: 32.5, 32.6 STO: Ph.5.e 81. ANS: D DIF: 2 REF: p. 508 OBJ: 32.4 82. ANS: A DIF: 2 REF: p. 508 OBJ: 32.4 83. ANS: A DIF: 2 REF: p. 512 OBJ: 32.6 STO: Ph.5.e 84. ANS: E DIF: 3 REF: p. 505 OBJ: 32.3 STO: Ph.1.m 85. ANS: B DIF: 3 REF: p. 505 OBJ: 32.3 STO: Ph.1.m 86. ANS: C DIF: 3 REF: p. 505 OBJ: 32.3 STO: Ph.1.m 87. ANS: B DIF: 2 REF: p. 518 OBJ: 33.1 STO: Ph.5.l 88. ANS: C DIF: 2 REF: p. 518 OBJ: 33.1 STO: Ph.5.l 89. ANS: A DIF: 2 REF: p. 519 OBJ: 33.2 STO: Ph.5.j, Ph.5.n 90. ANS: B DIF: 3 REF: p. 524 OBJ: 33.4 STO: Ph.5.e, Ph.5.k, Ph.5.l, Ph.5.o 91. ANS: A DIF: 2 REF: p. 519 OBJ: 33.2 STO: Ph.5.j, Ph.5.n 92. ANS: B DIF: 1 REF: p. 532 OBJ: 34.2 STO: Ph.5.a, Ph.5.e 93. ANS: B DIF: 2 REF: p. 541 OBJ: 34.9 STO: Ph.5.a, Ph.5.c 94. ANS: B DIF: 1 REF: p. 533 OBJ: 34.2 STO: Ph.5.a, Ph.5.e 95. ANS: D DIF: 2 REF: p. 534 OBJ: 34.4 STO: Ph.5.c 96. ANS: B DIF: 2 REF: p. 534 OBJ: 34.4 STO: Ph.5.c 97. ANS: C DIF: 2 REF: p. 538 OBJ: 34.6 STO: Ph.5.m 98. ANS: B DIF: 2 REF: p. 539 OBJ: 34.7

STO: Ph.5.a, Ph.5.c 99. ANS: A DIF: 1 REF: p. 539 OBJ: 34.7 STO: Ph.5.a, Ph.5.c 100. ANS: B DIF: 2 REF: p. 543 OBJ: 34.10 STO: Ph.5.a, Ph.5.c 101. ANS: E DIF: 1 REF: p. 539 OBJ: 34.7 STO: Ph.5.a, Ph.5.c 102. ANS: B DIF: 2 REF: p. 535 OBJ: 34.5 STO: Ph.5.b 103. ANS: C DIF: 2 REF: p. 535 OBJ: 34.5 STO: Ph.5.b 104. ANS: E DIF: 2 REF: p. 535 OBJ: 34.5 STO: Ph.5.b 105. ANS: C DIF: 2 REF: p. 543 OBJ: 34.11 STO: Ph.5.a, Ph.5.b, Ph.5.c 106. ANS: D DIF: 2 REF: p. 543 OBJ: 34.11 STO: Ph.5.a, Ph.5.b, Ph.5.c 107. ANS: D DIF: 3 REF: p. 543 OBJ: 34.11 STO: Ph.5.a, Ph.5.b, Ph.5.c 108. ANS: B DIF: 2 REF: p. 549 OBJ: 35.1 STO: Ph.5.a 109. ANS: A DIF: 1 REF: p. 549 OBJ: 35.2 STO: Ph.5.a 110. ANS: B DIF: 2 REF: p. 551 OBJ: 35.3 STO: Ph.5.a 111. ANS: A DIF: 2 REF: p. 552 OBJ: 35.4 STO: Ph.5.a 112. ANS: C DIF: 2 REF: p. 551 OBJ: 35.3 STO: Ph.5.a 113. ANS: A DIF: 2 REF: p. 552 OBJ: 35.4 STO: Ph.5.a 114. ANS: A DIF: 2 REF: p. 550 OBJ: 35.3 STO: Ph.5.a 115. ANS: C DIF: 2 REF: p. 552 OBJ: 35.4 STO: Ph.5.a 116. ANS: B DIF: 2 REF: p. 552 OBJ: 35.4 STO: Ph.5.a 117. ANS: C DIF: 3 REF: p. 552 OBJ: 35.4 STO: Ph.5.a 118. ANS: B DIF: 2 REF: p. 556 OBJ: 35.6 STO: Ph.5.c 119. ANS: B DIF: 2 REF: p. 556 OBJ: 35.6 STO: Ph.5.c 120. ANS: A DIF: 2 REF: p. 565 OBJ: 36.3 STO: Ph.5.e, Ph.5.f 121. ANS: C DIF: 2 REF: p. 565 OBJ: 36.3 STO: Ph.5.e, Ph.5.f 122. ANS: B DIF: 1 REF: p. 563 OBJ: 36.1

STO: Ph.5.e, Ph.5.f 123. ANS: A DIF: 1 REF: p. 564 OBJ: 36.1 STO: Ph.5.e, Ph.5.f 124. ANS: A DIF: 1 REF: p. 565 OBJ: 36.2 STO: Ph.5.f 125. ANS: C DIF: 1 REF: p. 566 OBJ: 36.4 STO: Ph.5.f 126. ANS: E DIF: 2 REF: p. 568 OBJ: 36.5 STO: Ph.5.g 127. ANS: C DIF: 2 REF: p. 572 OBJ: 36.8 STO: Ph.5.k 128. ANS: C DIF: 2 REF: p. 574 OBJ: 36.9 STO: Ph.5.f 129. ANS: B DIF: 3 REF: p. 570 OBJ: 36.6 STO: Ph.5.n 130. ANS: B DIF: 2 REF: p. 565 OBJ: 36.2 STO: Ph.5.f 131. ANS: C DIF: 2 REF: p. 584 OBJ: 37.5 STO: Ph.5.a, Ph.5.b TRUE/FALSE 132. ANS: T DIF: 1 REF: p. 414 OBJ: 27.7 STO: Ph.4.b 133. ANS: T DIF: 2 REF: p. 405 OBJ: 27.1 STO: Ph.4.e 134. ANS: T DIF: 1 REF: p. 407 OBJ: 27.2 STO: Ph.4.e 135. ANS: T DIF: 1 REF: p. 424 OBJ: 28.3 136. ANS: F DIF: 2 REF: p. 445 OBJ: 29.3 STO: Ph.4.c, Ph.4.f 137. ANS: T DIF: 1 REF: p. 465 OBJ: 30.2 138. ANS: T DIF: 1 REF: p. 473 OBJ: 30.6 139. ANS: T DIF: 2 REF: p. 475 OBJ: 30.7 140. ANS: T DIF: 1 REF: p. 465 OBJ: 30.2 141. ANS: T DIF: 1 REF: p. 473 OBJ: 30.6 142. ANS: F DIF: 2 REF: p. 505 OBJ: 32.3 STO: Ph.1.m 143. ANS: F DIF: 1 REF: p. 501 OBJ: 32.1 STO: Ph.5.e 144. ANS: F DIF: 2 REF: p. 534 OBJ: 34.3 STO: Ph.5.c 145. ANS: F DIF: 2 REF: p. 533 OBJ: 34.2 STO: Ph.5.a, Ph.5.e 146. ANS: F DIF: 2 REF: p. 539 OBJ: 34.7 STO: Ph.5.a, Ph.5.c 147. ANS: F DIF: 2 REF: p. 541 OBJ: 34.9

STO: Ph.5.a, Ph.5.c 148. ANS: T DIF: 2 REF: p. 551 OBJ: 35.3 STO: Ph.5.a 149. ANS: T DIF: 1 REF: p. 563, p. 564 OBJ: 36.1 STO: Ph.5.e, Ph.5.f 150. ANS: T DIF: 2 REF: p. 568 OBJ: 36.5 STO: Ph.5.g