Squared Bessel Process with Delay

Similar documents
On the martingales obtained by an extension due to Saisho, Tanemura and Yor of Pitman s theorem

1 Brownian Local Time

The Azéma-Yor Embedding in Non-Singular Diffusions

The multidimensional Ito Integral and the multidimensional Ito Formula. Eric Mu ller June 1, 2015 Seminar on Stochastic Geometry and its applications

LECTURE 2: LOCAL TIME FOR BROWNIAN MOTION

Some Properties of NSFDEs

Branching Processes II: Convergence of critical branching to Feller s CSB

On the quantiles of the Brownian motion and their hitting times.

On the submartingale / supermartingale property of diffusions in natural scale

Introduction to Random Diffusions

ON THE FIRST TIME THAT AN ITO PROCESS HITS A BARRIER

Spatial Ergodicity of the Harris Flows

ON THE PATHWISE UNIQUENESS OF SOLUTIONS OF STOCHASTIC DIFFERENTIAL EQUATIONS

Change detection problems in branching processes

An Introduction to Malliavin calculus and its applications

Parameter estimation of diffusion models

Lecture 4: Ito s Stochastic Calculus and SDE. Seung Yeal Ha Dept of Mathematical Sciences Seoul National University

Theoretical Tutorial Session 2

Convergence at first and second order of some approximations of stochastic integrals

A NOTE ON STOCHASTIC INTEGRALS AS L 2 -CURVES

Information and Credit Risk

A MODEL FOR THE LONG-TERM OPTIMAL CAPACITY LEVEL OF AN INVESTMENT PROJECT

OPTIMAL STOPPING OF A BROWNIAN BRIDGE

Exponential martingales: uniform integrability results and applications to point processes

Reflected Brownian Motion

Introduction to Diffusion Processes.

Filtrations, Markov Processes and Martingales. Lectures on Lévy Processes and Stochastic Calculus, Braunschweig, Lecture 3: The Lévy-Itô Decomposition

A Change of Variable Formula with Local Time-Space for Bounded Variation Lévy Processes with Application to Solving the American Put Option Problem 1

Exercises. T 2T. e ita φ(t)dt.

Some SDEs with distributional drift Part I : General calculus. Flandoli, Franco; Russo, Francesco; Wolf, Jochen

Exercises in stochastic analysis

The Uniform Integrability of Martingales. On a Question by Alexander Cherny

Pathwise uniqueness for stochastic differential equations driven by pure jump processes

UNCERTAINTY FUNCTIONAL DIFFERENTIAL EQUATIONS FOR FINANCE

STOCHASTIC DIFFERENTIAL SYSTEMS WITH MEMORY. Salah-Eldin A. Mohammed

A Class of Fractional Stochastic Differential Equations

A Concise Course on Stochastic Partial Differential Equations

On an Additive Characterization of a Skew Hadamard (n, n 1/ 2, n 3 4 )-Difference Set in an Abelian Group

Asymptotic behaviour of the stochastic Lotka Volterra model

Poisson random measure: motivation

On continuous time contract theory

Lecture 4: Introduction to stochastic processes and stochastic calculus

The Pedestrian s Guide to Local Time

On countably skewed Brownian motion

Nonlinear representation, backward SDEs, and application to the Principal-Agent problem

Introduction to numerical simulations for Stochastic ODEs

Man Kyu Im*, Un Cig Ji **, and Jae Hee Kim ***

ON CERTAIN INTEGRAL FUNCTIONALS OF SQUARED BESSEL PROCESSES. 1. Introduction Let X be a squared Bessel process which is the unique strong solution to

ITÔ S ONE POINT EXTENSIONS OF MARKOV PROCESSES. Masatoshi Fukushima

Brownian motion. Samy Tindel. Purdue University. Probability Theory 2 - MA 539

A Short Introduction to Diffusion Processes and Ito Calculus

(2m)-TH MEAN BEHAVIOR OF SOLUTIONS OF STOCHASTIC DIFFERENTIAL EQUATIONS UNDER PARAMETRIC PERTURBATIONS

AN EXTREME-VALUE ANALYSIS OF THE LIL FOR BROWNIAN MOTION 1. INTRODUCTION

Stability of Stochastic Differential Equations

Unfolding the Skorohod reflection of a semimartingale

MA8109 Stochastic Processes in Systems Theory Autumn 2013

Predicting the Time of the Ultimate Maximum for Brownian Motion with Drift

Risk-Minimality and Orthogonality of Martingales

Stochastic Calculus. Kevin Sinclair. August 2, 2016

Lecture 22 Girsanov s Theorem

Mathematical Methods for Neurosciences. ENS - Master MVA Paris 6 - Master Maths-Bio ( )

Some Tools From Stochastic Analysis

Lecture 12. F o s, (1.1) F t := s>t

Brownian Motion. 1 Definition Brownian Motion Wiener measure... 3

The absolute continuity relationship: a fi» fi =exp fif t (X t a t) X s ds W a j Ft () is well-known (see, e.g. Yor [4], Chapter ). It also holds with

On Reflecting Brownian Motion with Drift

Affine Processes. Econometric specifications. Eduardo Rossi. University of Pavia. March 17, 2009

Particle models for Wasserstein type diffusion

Mean-square Stability Analysis of an Extended Euler-Maruyama Method for a System of Stochastic Differential Equations

for all f satisfying E[ f(x) ] <.

arxiv: v1 [math.pr] 11 Jan 2013

Partial Differential Equations with Applications to Finance Seminar 1: Proving and applying Dynkin s formula

Lyapunov Exponents of Linear Stochastic Functional-Differential Equations. II. Examples and Case Studies

Stochastic calculus without probability: Pathwise integration and functional calculus for functionals of paths with arbitrary Hölder regularity

Regularization by noise in infinite dimensions

SEPARABLE TERM STRUCTURES AND THE MAXIMAL DEGREE PROBLEM. 1. Introduction This paper discusses arbitrage-free separable term structure (STS) models

Some Aspects of Universal Portfolio

HJB equations. Seminar in Stochastic Modelling in Economics and Finance January 10, 2011

Short-time expansions for close-to-the-money options under a Lévy jump model with stochastic volatility

(2) E exp 2 M, M t < t [0, ) guarantees that Z is a martingale. Kazamaki [27] showed that Z is a martingale provided

An essay on the general theory of stochastic processes

Prof. Erhan Bayraktar (University of Michigan)

I forgot to mention last time: in the Ito formula for two standard processes, putting

arxiv: v2 [math.pr] 18 May 2017

Stochastic Differential Equations

1. Stochastic Processes and filtrations

Infinite-dimensional methods for path-dependent equations

n E(X t T n = lim X s Tn = X s

The concentration of a drug in blood. Exponential decay. Different realizations. Exponential decay with noise. dc(t) dt.

SDE Coefficients. March 4, 2008

STOCHASTIC CALCULUS JASON MILLER AND VITTORIA SILVESTRI

Functional Limit theorems for the quadratic variation of a continuous time random walk and for certain stochastic integrals

Applications of Ito s Formula

Stochastic integration. P.J.C. Spreij

Bernardo D Auria Stochastic Processes /12. Notes. March 29 th, 2012

ERRATA: Probabilistic Techniques in Analysis

Explicit Factorizations of Cyclotomic and Dickson Polynomials over Finite Fields

On pathwise stochastic integration

STAT 331. Martingale Central Limit Theorem and Related Results

STOCHASTIC DIFFERENTIAL EQUATIONS WITH INTERACTION AND THE LAW OF ITERATED LOGARITHM

Transcription:

Southern Illinois University Carbondale OpenSIUC Articles and Preprints Department of Mathematics 216 Squared Bessel Process with Delay Harry Randolph Hughes Southern Illinois University Carbondale, hrhughes@siu.edu Pathiranage Lochana Siriwardena University of Indianapolis, siriwardenal@uindy.edu Follow this and additional works at: http://opensiuc.lib.siu.edu/math_articles to appear in Contemporary Mathematics Recommended Citation Hughes, Harry R. and Siriwardena, Pathiranage Lochana. "Squared Bessel Process with Delay." Contemporary Mathematics ( Jan 216). This Article is brought to you for free and open access by the Department of Mathematics at OpenSIUC. It has been accepted for inclusion in Articles and Preprints by an authorized administrator of OpenSIUC. For more information, please contact opensiuc@lib.siu.edu.

SQUARED BESSEL PROCESS WITH DELAY LOCHANA SIRIWARDENA AND HARRY RANDOLPH HUGHES Abstract. We discuss a generalization of the well known squared Bessel process with real nonnegative parameter δ by introducing a predictable almost everywhere positive process γ(t, ω) into the drift and diffusion terms. The resulting generalized process is nonnegative with instantaneous reflection at zero when δ is positive. When δ is a positive integer, the process can be constructed from δ-dimensional Brownian motion. In particular, we consider γ t = X t τ which makes the process a solution of a stochastic delay differential equation with a discrete delay. The solutions of these equations are constructed in successive steps on time intervals of length τ. We prove that if < δ < 2, zero is an accessible boundary and the process is instantaneously reflecting at zero. If δ 2, lim inf t X t =. Zero is inaccessible if δ 2. 1. Introduction Bessel processes have been extensively studied and used in modeling many real world phenomena such as population dynamics [2 and interest rates in finance [1. We begin by introducing the squared Bessel process which is constructed as the squared distance between the origin and the position of the δ-dimensional Brownian motion at time t [12, p. 439. The process was first constructed for integer values of δ and subsequently defined and analyzed for real δ. Definition 1.1 (Squared Bessel Process). Let B t be δ dimensional Brownian motion on a complete probability space (Ω, F, P) and F t be the natural filtration. The process X = B 2 1 + B 2 2 + + B 2 δ is called a squared Bessel process of dimension δ (BESQ δ ). Construction of this process for positive integer δ is straightforward. Using the Itô formula, (1.1) dx t = δ dt + 2 X t dw t, X = x, where W t is a one-dimensional Brownian motion constructed from B t. The process BESQ δ for general real δ is defined as the solution of (1.1). This process is well suited for modeling population dynamics and financial asset pricing. Because the coefficients satisfy a linear growth condition, the equation has a global solution (no explosion in finite time) [4, p. 177. Note that the diffusion term is non-lipschitz and hence the uniqueness follows from the Yamada-Watanabe theorem [12, p. 39: Theorem 1.2 (Yamada-Watanabe Theorem). Suppose that for a one-dimensional SDE, (1.2) dx t = a(t, X t )dt + σ(t, X t )dw t ; X = x, the function a is Lipschitz continuous and there exists a strictly increasing function h: R + R + with + h 2 (x)dx = + such that, σ(t, x) σ(t, y) h( x y ) 21 Mathematics Subject Classification. Primary 6H1. 1

2 LOCHANA SIRIWARDENA AND HARRY RANDOLPH HUGHES for all t and x, y R. Then pathwise uniqueness holds. The construction of the squared Bessel process and other properties are discussed in Revuz and Yor and we state the main theorem here [12, p. 442: Theorem 1.3. The stochastic differential equation dx t = δ dt + 2 X t dw t, X = x, has a unique strong solution and, if δ, x, then X t. Furthermore, (1) for δ > 3 the process is transient, and for δ 2, it is recurrent, (2) for δ 2, zero is polar and, for δ 1, zero is reached a.s., (3) for δ =, zero is an absorbing boundary, (4) for δ >, the process is instantaneously reflecting at zero. The squared Bessel process was analyzed by Feller [2 in a generalized form and used in the Cox model [1. It was further generalized by Göing-Jaeschke and Yor to allow δ < dimensions [5,7. Parameter estimation of the squared Bessel process was discussed by Göing- Jaeschke in her Ph.D. dissertation [6. Squared Bessel processes in non-colliding particle systems were analyzed in [3, [8, and [9. In this paper, we construct a generalization of the Bessel process by introducing a predictable almost everywhere positive process γ(t, ω) to the drift and diffusion terms. The motivation for this construction is to define a process X t where the dynamics depend on γ t = X t τ, the state of the process at a fixed time τ units in the past. For instance, in a hypothetical population, the growth in the number of adults at time t depends on the number of adults able to reproduce at time t τ, where τ is the time required for an egg to mature to adulthood. In this model, the adult population could rebound even after reaching zero, due to the delay in the hatching of eggs and the maturation of individuals. The behavior of such a process at boundary zero is of particular interest. This analysis may be applied to other fields where the past needs to be considered in the present dynamics of the model. In [1, Mohammed gives a general formulation of a stochastic delay differential equation (SDDE). We consider the one-dimensional case. For each solution path X(t), define the segment x t : [ τ, R by x t (s) = X(t+s). The initial segment x is given by θ: [ τ, R and the coefficients of the stochastic differential equation are functionals h and g of the segments, x t : (1.3) dx(t) = h(t, x t )dt + g(t, x t )dw(t), X(t) = θ(t) for t [ τ,. As it is noted in [1, in the discrete delay case where h and g only depend on the values of X(t τ) and X(t), such a system can be solved in successive steps as stochastic ordinary differential equations (SODE) on time intervals of length τ. For t [, τ, the coefficients of the SODE are determined by θ(t). The coefficients of the SODE for t [nτ, (n + 1)τ depend on the already determined solution for t [(n 1)τ, nτ. In the following sections, we will present the construction of an SDDE that generalizes the squared Bessel process: (1.4) dx t = δx t τ dt + 2 X t X t τ dw t, X t = θ t for t [ τ,. This equation can also be solved in successive steps. Because the diffusion coefficient does not satisfy the Lipschitz condition, the uniqueness results of [1 do not apply. We turn to the Yamada-Watanabe Theorem to show uniqueness.

SQUARED BESSEL PROCESS WITH DELAY 3 2. Construction of the Generalized Squared Bessel Process Let δ be a positive integer, B t be δ-dimensional Brownian motion, F t be the natural filtration and γ : [, Ω R be an almost everywhere positive, predictable, locally integrable process. Let time-changed Brownian motions Y i be defined by Y i = γs db i s. Define X = Y1 2 + Y2 2 + + Yδ 2. Then, as for the squared Bessel process, using the Itô formula, we get dx t = δγ t dt + 2 γ t X t dw t, X = x, where W t is a one-dimensional Brownian motion. We extend this construction for a general real δ below. To study the boundary at zero, we follow Revuz and Yor and use the following theorems. Theorem 2.1 (Local time theorem for Semi-martingales [12, p. 225). For any continuous semimartingale X, there exists a modification of the local time process {L a t ; a R, t R + } such that the map (a, t) L a t is a.s. continuous in t and cadlag in a. Moreover, if X = M + V, then L a t La t = 2 1 {Xs=a}dX s = 2 1 {Xs=a}dV s. Let X, X t denote the quadratic variation process for semi-martingale X. Theorem 2.2 (Occupation Time Formula [12, p. 224). If X is a continuous semimartingale, there is a P-negligible set outside of which Π (X s )d X, X s = for every t and every positive Borel function Π. Π (a)l a t da We introduce the following theorem for non-negative real δ. Theorem 2.3. Let δ, x. Suppose that outside of a set of probability zero, γ t is an almost everywhere positive predictable process, locally integrable with respect to t. Then the SDE (2.1) dx t = δγ t dt + 2 γ t X t dw t, X = x, has a unique strong solution. If δ >, the process almost surely instantaneously reflects at zero and is a.e. positive. If δ =, the boundary at zero is absorbing. Proof. The existence and uniqueness follow as in the proof of Theorem 1.3 [12. Equation 2.1 may also be solved by means of a random time change of the BESQ δ process with time change rate γ t [11, p. 153. Pathwise uniqueness for solutions follows with the application of the Yamada-Watanabe Theorem (Theorem 1.2), noting that x y < x y for x > y.

4 LOCHANA SIRIWARDENA AND HARRY RANDOLPH HUGHES We modify the arguments of Revuz and Yor [12, p. 442 to analyze the boundary behavior of the process at zero. Note that d X, X t = 4γ t X t dt and use Theorem 2.1 to get L t = 2δ 1 {Xs=}γ s ds. Since γ s > a.e., then almost surely for fixed t, γ s ds = = 1 {Xs>}γ s ds 1 {Xs>}γ s (4γ s X s ) 1 d X, X s 1 (4a) 1 L a tda, where the last equality follows from the Occupation Time Formula. Since γ sds <, this implies that L t = 2δ 1 {X s=}γ s ds =. Hence s > : X s = = when δ >. When δ =, X t, t s, is the unique solution with X s = and thus zero is an absorbing boundary. 3. The Stochastic Delay Differential Equation For the rest of the results we choose γ t = X t τ where τ > is the fixed delay time. We now present the main theorem of this paper. Theorem 3.1. Let τ > be fixed and let θ t be positive, integrable, and independent of F for t [ τ,. Then the SDDE (3.1) dx t = δx t τ dt + 2 X t X t τ dw t, X t = θ t for t [ τ, has a unique strong solution and this solution is nonnegative. In addition: (1) If δ =, zero is an absorbing boundary. (2) If δ >, zero is a reflecting boundary. (3) If δ < 2, the process reaches zero with positive probability and lim inf t X t = almost surely. (4) If δ = 2, X t reaches arbitrarily small values ɛ, < ɛ < θ, in finite time almost surely. (5) If δ 2, zero is inaccessible and X t reaches any m > θ in a finite time almost surely. Proof. The global existence and uniqueness of solutions follow by successive applications of Theorem 2.3 to time intervals of length τ. Note that for t [, τ, γ t = X t τ = θ t τ. Once a continuous nonnegative solution is obtained up to time nτ, γ t = X t τ is determined for t [nτ, (n + 1) τ [1. If δ =, it follows that zero is an absorbing boundary and therefore X t is nonnegative. If δ >, we claim that X t and X t instantaneously reflects at. Arguing inductively, let Y t be the solution of the stochastic differential equation, (3.2) dy t = 2 Y t X t τ dw t, Y nτ = X nτ,

SQUARED BESSEL PROCESS WITH DELAY 5 for t [nτ, (n + 1)τ. If X t is nonnegative in the interval [(n 1)τ, nτ, then by applying a comparison theorem to the processes defined in (3.1) and (3.2) [12, p. 394, it follows that X t Y t for t [nτ, (n + 1)τ. Furthermore, by Theorem 2.3, X t instantaneously reflects at zero and is positive a.e. on [nτ, (n + 1)τ if it is positive a.e. on [(n 1)τ, nτ. The result follows because, on the initial segment, θ t > by hypothesis. Now we consider the boundary behavior for different values of δ. Suppose < δ < 2. Define stopping time λ n = inf {t > : X t = n or X t = }. First we claim that for almost all ω, there exists an n such that λ n = or X λn =. Let X = θ and U n : [, ) R be twice continuously differentiable on (, ). Fix T >. By the Itô formula [11, p. 44, we have (3.3) λn T du n (X s ) = λn T Solving the boundary problem we obtain [δx s τ U n(x s ) + 2X s X s τ U n(x s ) ds + λn T δu n (x) + 2xU n (x) =, U n() =, U n (n) = 1, [ 2 X s X s τ U n(x s ) dw s. U n (x) = x(1 δ/2) n (1 δ/2). Substituting U n in (3.3) and applying the Optional Stopping Theorem [12, p. 69, we have E θ [U n (X λn T) = U n (θ ) = θ(1 δ/2) n (1 δ/2), where E θ is expectation conditioned on the initial segment θ. Since U n (x) for x [, n, U n (θ ) = lim T Eθ [U n (X λn T) = E θ [U n (X λn ); λ n < + lim T Eθ [U n (X λn T); λ n = 1 P θ (X λn = n) where P θ is the conditional law of X t with initial segment θ. Taking the limit n, Therefore, since we have that lim n P θ (X λn = n) = lim n U n (θ ) =. P θ (X λn = n) + P θ (λ n = or X λn = ) = 1, P θ ( n=1 {λ n = or X λn = }) = lim P θ (λ n = or X λn = ) = 1, n which proves the claim. Now we show that lim inf t X t (ω) = almost surely. Let V n (x) = (n x)/δ. Then V n satisfies (x) + 2xV (x) = 1 δv n n

6 LOCHANA SIRIWARDENA AND HARRY RANDOLPH HUGHES with V n (n) = and V n (x) on (, n). Substituting V n for U n in (3.3), we have [ λn T lim T Eθ [V n (X λn T) = V n (θ ) lim T Eθ X t τ dt. It follows then that [ λn [ E θ X t τ dt ; λ n < + E θ and thus E θ [ X t τ dt ; λ n = = V n (θ ) lim T Eθ [V n (X λn T) V n (θ ) < X t τ dt ; λ n = <. If there is an n such that P θ (λ n = ) >, then on that event, lim inf t X t =. Otherwise X t reaches zero and reflects instantaneously. Since the same is true if the process is considered for t [S, ), for arbitrarily large time S, lim inf t X t = a.s. Now consider the case δ = 2. Suppose that < ɛ < θ < n. Define λ ɛn = inf {t > : X t = ɛ or X t = n}. Again, V n (x) = (n x)/2 is a solution of 2V n(x) + 2xV n (x) = 1, with boundary condition V n (n) =. Hence, [ T E θ X t τ dt ; λ ɛn = = V n (θ ) E θ [V n (X λɛn T) E θ [ λɛn T V n (θ ) <. X t τ dt ; λ ɛn < Since X t > ɛ for all t when λ ɛn =, letting T, it follows that P θ (λ ɛn = ) =. Now let U n (x) = 1 (log x)/(log n). Then U n(x) + xu n(x) = and U n (n) =. Thus U n (θ ) = lim T Eθ [U n (X λɛn T) = ( 1 log ɛ log n ) P θ (X λɛn = ɛ). Therefore lim n P θ (X λɛn = ɛ) = 1, which proves that the process almost surely reaches every positive ɛ < θ in finite time. Arguing in a similar way, let U n (x) = 1 + (log x)/(log ɛ). Thus U n (θ ) = lim T Eθ [U n (X λɛn T) ( = 1 + log n ) P θ (X λɛn = n). log ɛ In this case, lim ɛ P θ (X λɛn = n) = 1 for every n. Since this continuous process almost surely reaches every positive integer before it hits zero, it almost surely cannot reach zero in finite time.

SQUARED BESSEL PROCESS WITH DELAY 7 Now suppose δ > 2. We redefine λ n = inf {t > : X t = 1/n} and solve δu n(x)+2xu n(x) =, with boundary condition U n (1/n) = 1, to get 1 U n (x) = x (δ/2 1) n (δ/2 1). With an argument similar to the δ < 2 case, we get, (3.4) P θ ( n=1 {λ n = }) = 1. Now we prove that X t reaches any m > θ a.s. when δ > 2. Define µ m = inf {t > : X t = m}. Then V m = (m x)/δ is a solution of δv m (x) + 2xV m (x) = 1, with boundary condition V m (m) =. Therefore, by an argument similar to before, [ µm E θ X t τ dt <, and thus, [ µm [ µm E θ X t τ dt ; µ m < + E θ X t τ dt ; µ m = <. Arguing by contradiction, suppose that P (µ m = ) >. Then using (3.4), there exists a positive integer n such that P (λ n =, µ m = ) > and thus [ E θ X t τ dt ; µ m = =, which leads to a contradiction. Therefore, P (µ m = ) =. Remark 3.2. Because the coefficient functions in the stochastic delay differential equations depend on the history of the process, these processes are not in general Markov [1. Nevertheless, we identify properties analogous to the properties of recurrence and transience as defined for Markov processes. When δ 2, lim inf t X t = almost surely and thus it satisfies a recurrence property at zero. On the other hand, the preceding proof shows that when δ > 2, lim inf t X t > almost surely, and when δ 2, lim sup t X t = almost surely. Acknowledgment. The authors would like to thank the referee for many useful suggestions for improving this paper. References [1 J. C. Cox, J. E. Ingersoll, and S. A. Ross, A theory of the term structure of interest rates, Econometrica 53 (March 1985), no. 2, 385 48. [2 W. Feller, Diffusion processes in genetics, Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, 1951, pp. 227 246. [3 P. Graczyk and J. Ma lecki, Multidimensional Yamada-Watanabe theorem and its applications to particle systems, J. Math. Phys. 54 (213), no. 2153. [4 N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, 2nd ed., North Holland, Amsterdam, 1989. [5 A. Göing-Jaeschke and M. Yor, A survey and some generalizations of Bessel processes, Bernoulli 9 (23), no. 2, 313 349. [6 A. Göing-Jaeschke, Parameter Estimation and Bessel Processes in Financial Models and Numerical Analysis in Hamiltonian Dynamics, Ph.D. Dissertation, ETH Zürich, 1998. [7 A. Göing-Jaeschke, Some generalizations of Bessel processes, RiskLab, ETH Zürich, 1997. [8 M. Katori and H. Tanemura, Noncolliding squared Bessel processes, J. Stat. Phys. 142 (211), 592 615.

8 LOCHANA SIRIWARDENA AND HARRY RANDOLPH HUGHES [9 W. König and N. O Connell, Eigenvalues of the Laguerre process as non-colliding squared Bessel processes, Electronic Journal of Probability 6 (21), no. 11, 17 114. [1 Salah-Eldin A. Mohammed, Stochastic differential systems with memory: theory, examples and applications, Proceedings of the Sixth Oslo-Silivri Workshop Geilo 1996, 1997, pp. 412 489. [11 B. Øksendal, Stochastic Differential Equations: An Introduction with Applications, 6th ed., Springer, Berlin, 23. [12 D. Revuz and M. Yor, Continuous martingales and Brownian motion, 3rd ed., Comprehensive Studies in Mathematics, vol. 293, Springer, New York, 1999. Department of Mathematics and Computer Science, University of Indianapolis, IN 46227, USA E-mail address: siriwardenal@uindy.edu Department of Mathematics, Southern Illinois University Carbondale, IL 6291, USA E-mail address: hrhughes@siu.edu