Magnetic Spin-Torsion Coupling in Methanol

Similar documents
STUDIES ON THE CONFORMATIONAL LANDSCAPE OF TERT-BUTYL ACETATE USING MICROWAVE SPECTROSCOPY AND QUANTUM CHEMICAL CALCULATIONS

Characterization of methanol as a magnetic field tracer in star-forming regions

TERAHERTZ SPECTROSCOPY OF DEUTERATED ACETALDEHYDE: CH 2 DCHO

Observation of three-dimensional massless Kane fermions in a zinc-blende crystal

Millimeter and submillimeter wave spectra of N-methyl formamide and propionamide

Rotational Spectra of p-, m-, and o-cyanophenol and Internal Rotation of p-cyanophenol

The electric dipole moment and hyperfine interactions of KOH

Near infrared spectroscopy of NiF

Hyperfine interaction

Renner-Teller Effect in Tetra-Atomic Molecules

Redox Noninnocence of the Bridge in Copper(II) Salophen and bis-oxamato Complexes

Determination of the total nuclear spin in a rovibronic state application to the molecules SF6 and PF5

A Dense Grid of Reference Iodine Lines for Optical Frequency Calibration in the Range nm

Pseudo-Hermitian eigenvalue equations in linear-response electronic-structure theory

Influence of Calcium-induced Aggregation on the Sensitivity of. Aminobis(methylenephosphonate)-Containing Potential MRI Contrast.

Electronic Supplementary Information Structure of Clean and Hydrated α-al 2 O 3 (11 02) Surfaces: Implication on Surface Charge.

Selected Publications of Prof. Dr. Wenjian Liu

arxiv: v1 [astro-ph.ga] 6 May 2013

HuLiS, a program to teach mesomerism and more

Forbidden Electric Dipole Transitions in the Hydrogen Molecular Ion First Estimates

(Picture courtesy of Python M)

PCCP PAPER. Unraveling the internal dynamics of the benzene dimer: a combined theoretical and microwave spectroscopy study. I.

Introduction to Electron Paramagnetic Resonance Spectroscopy

The Positive Muon as a Probe in Chemistry. Dr. Iain McKenzie ISIS Neutron and Muon Source STFC Rutherford Appleton Laboratory

NMR: Formalism & Techniques

A.1 Alkaline atoms in magnetic fields

Assessment of range-separated time-dependent density-functional theory for calculating C 6 dispersion coefficients

Chem 442 Review for Exam 2. Exact separation of the Hamiltonian of a hydrogenic atom into center-of-mass (3D) and relative (3D) components.

High-Resolution Survey of the Visible Spectrum of NiF by Fourier Transform Spectroscopy

Efficient time evolution of one-dimensional quantum systems

Atomic Structure, Periodic Table, and Other Effects: Chapter 8 of Rex and T. Modern Physics

0.5 atoms improve the clock signal of 10,000 atoms

Laser-Induced Fluorescence and Fourier Transform Spectroscopy of NiCl: Identification of a Low-Lying 2 State (1768 cm 1 )

Rydberg spectroscopy of Zeeman-decelerated beams of metastable Helium molecules

CHEM3023: Spins, Atoms and Molecules

Simulation of the NMR Second Moment as a Function of Temperature in the Presence of Molecular Motion. Application to (CH 3

Host research institute: Laboratory of G. Bodenhausen, EPFL, Lausanne (Switzerland)

5.80 Small-Molecule Spectroscopy and Dynamics

Coupled-Cluster Perturbative Triples for Bond Breaking

6 NMR Interactions: Zeeman and CSA

The rotational spectra, potential function, Born-Oppenheimer breakdown, and magnetic shielding of SnSe and SnTe

!-mesons produced in, p reactions. de Physique Nucleaire et de l'instrumentation Associee. Service de Physique Nucleaire

Vibrational Averaging of the Isotropic Hyperfine Coupling Constants for the Methyl Radical

Electric Dipole Moments of Acetone and of Acetic Acid Measured in Supersonic Expansion

Computational Methods. Chem 561

Chapter 2 Approximation Methods Can be Used When Exact Solutions to the Schrödinger Equation Can Not be Found.

ν + = e2 qq φ = 36.9,andθ = Pankratov [4] obtained ν 0 = ν + ν = e2 qq φ = 34.1, and θ = Boogaarts et al. [5]

Internet Electronic Journal of Molecular Design

Algebraic Study of Stretching and Bending Modes in Linear Tetra-atomic Molecules: HCCCl

Laboratory Measurements and Astronomical Search of the HSO Radical

Vibrational Spectra of Chloroform, Freon-11 and Selected Isotopomers in the THz Frequency Region

Edinburgh Research Explorer

Coupling of Functional Hydrogen Bonds in Pyridoxal-5 -phosphate- Enzyme Model Systems Observed by Solid State NMR

Rotations and vibrations of polyatomic molecules

Spin-Spin Coupling. H b1 H 3 C C Br. Review: 1 H- 1 H Coupling

Nuclear Spin and Stability. PHY 3101 D. Acosta

In this lecture, we will go through the hyperfine structure of atoms. The coupling of nuclear and electronic total angular momentum is explained.

A Combined Gigahertz and Terahertz (FTIR) Spectroscopic Investigation of Meta-D-phenol: Observation of Tunneling Switching

Exact phase shifts for atom interferometry

Fine Structure of the metastable a 3 Σ u + state of the helium molecule

Lecture 4. Feshbach resonances Ultracold molecules

Electronic structure theory: Fundamentals to frontiers. 2. Density functional theory

Electronic structure theory: Fundamentals to frontiers. 1. Hartree-Fock theory

Decoherence in molecular magnets: Fe 8 and Mn 12

New analysis of the 3 & 4 bands of HNO 3 by high resolution Fourier transform spectroscopy in the 7.6 µm region

7. Nuclear Magnetic Resonance

Hyperfine Structure in the Rotational Spectrum of Chloroacetonitrile

CHAPTER 6: AN APPLICATION OF PERTURBATION THEORY THE FINE AND HYPERFINE STRUCTURE OF THE HYDROGEN ATOM. (From Cohen-Tannoudji, Chapter XII)

The Quantum Heisenberg Ferromagnet

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

Modeling cold collisions Atoms Molecules

Adiabatic-connection fluctuation-dissipation density-functional theory based on range separation

LS coupling. 2 2 n + H s o + H h f + H B. (1) 2m

A trigonal prismatic mononuclear cobalt(ii) complex showing single-molecule magnet behavior

Gas Phase Vibrational Spectroscopy of the Protonated Water Pentamer: The Role of Isomers and Nuclear Quantum Effects

Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation August Introduction to Nuclear Physics - 2

Understanding the growth mechanism of graphene on Ge/Si(001) surfaces

Line Intensities in the ν 6 Fundamental Band of CH 3 Br at 10 µm

Photo-Dissociation Resonances of Jet-Cooled NO 2 by CW-CRDS

DIODE- AND DIFFERENCE-FREQUENCY LASER STUDIES OF ATMOSPHERIC MOLECULES IN THE NEAR- AND MID-INFRARED: H2O, NH3, and NO2

Cristaux dopés terres rares pour les mémoires quantiques

Solid-state NMR of spin > 1/2

ESR spectroscopy of catalytic systems - a primer

Lecture 7: Electronic Spectra of Diatomics

Physics 221A Fall 2005 Homework 11 Due Thursday, November 17, 2005

Centers for Chemical Innovation. July Arianna Seabrooks, Jasmine Mays, Jasmine Drake, Anthony Speas

Highly correlated ab initio study of the far infrared spectra of methyl acetate

The hyperfine structure of the 1 3 g state of Na 2

Electronic structure and magnetic properties of high-spin octahedral Co II

Supplementary Information for Theoretical. determination of adsorption and ionisation. energies of polycyclic aromatic hydrocarbons

Rearrangements and tunneling splittings of protonated water dimer

Magnets, 1D quantum system, and quantum Phase transitions

TDDFT as a tool in biophysics

BEC of 6 Li 2 molecules: Exploring the BEC-BCS crossover

(relativistic effects kinetic energy & spin-orbit coupling) 3. Hyperfine structure: ) (spin-spin coupling of e & p + magnetic moments) 4.

Lowest vibrational states of 4 He 3 He + : Non-Born-Oppenheimer calculations

Q-Chem Workshop Examples Part 2

Magnetic resonance in Dense Atomic Hydrogen Gas

Investigation of Spectroscopic Properties and Spin-Orbit Splitting in the X 2 Π and A 2 Π Electronic States of the SO + Cation

Quantitative characterization of the water trimer torsional manifold by terahertz laser spectroscopy and theoretical analysis. II.

Transcription:

Magnetic pin-torsion Coupling in Methanol L. H. Coudert, 1 C. Gutle, 1 T. R. Huet, 2 and Jens-Uwe Grabow 3 1 Laboratoire Interuniveristaire des ystèmes Atmosphériques, UMR 7583 CNR - Universités Paris Est et Paris Diderot, Créteil, France 2 Laboratoire PhLAM, UMR 8523 CNR - Université de Lille 1, Villeneuve d Ascq, France 3 Institut für Physikalische Chemie und Elektrochemie, Gottfried-Wilhelm-Leibniz-Universität, Hannover, Germany June 24, 2015 Coudert et al. pin-torsion methanol 69 th IM 1 / 20

Overview Coudert et al. pin-torsion methanol 69 th IM 2 / 20

Overview 1 Magnetic hyperfine couplings in a non-rigid molecule Coudert et al. pin-torsion methanol 69 th IM 2 / 20

Overview 1 Magnetic hyperfine couplings in a non-rigid molecule 2 pin-torsion effects in methanol Coudert et al. pin-torsion methanol 69 th IM 2 / 20

Overview 1 Magnetic hyperfine couplings in a non-rigid molecule 2 pin-torsion effects in methanol 3 Analysis Coudert et al. pin-torsion methanol 69 th IM 2 / 20

Magnetic hyperfine coupling in 1 Σ molecules The spin-spin coupling 1 E = µ N 2 i g i j>i g j (I i I j ) 3(I i r ij )(I j r ij )/r ij 2 r ij 3 The spin-rotation coupling 1 E R = eµ N c g i I i i j i Z j r ji (v j γ i v i ) r ij 3 1 Gunther-Mohr, Townes, and van Vleck, Phys. Rev. 94 (1954) 1191 Coudert et al. pin-torsion methanol 69 th IM 3 / 20

Magnetic hyperfine coupling in 1 Σ molecules The two contributions to spin-rotation 1 v i = ω r }{{} i αλ σ }{{} i Rot. Torsion where σ i 0 if i top 1 Heuvel & Dymanus, J. Mol. pec. 45 (1973) 282 & J. Mol. pec. 47 (1973) 363 Coudert et al. pin-torsion methanol 69 th IM 4 / 20

Magnetic hyperfine coupling in 1 Σ molecules The two contributions to spin-rotation 1 v i = ω r }{{} i αλ σ }{{} i Rot. Torsion where σ i 0 if i top In methanol σ i = { rchi for i = 1 to 3 0 for i = 4 1 Heuvel & Dymanus, J. Mol. pec. 45 (1973) 282 & J. Mol. pec. 47 (1973) 363 Coudert et al. pin-torsion methanol 69 th IM 4 / 20

The 3 J = 0 magnetic coupling hyperfine operators pin-spin 1 H ss = pin-rotation 1 H sr = pin-torsion 2 H st = 4 F (I i, I j, J) ij (α) i<j 4 (I i J)E i (α) i=1 4 (I i J)G i (α) i=1 1 Thaddeus, Krisher, and Loubser, J. Chem. Phys. 40 (1964) 257 2 Heuvel & Dymanus, J. Mol. pec. 45 (1973) 282 & J. Mol. pec. 47 (1973) 363 Coudert et al. pin-torsion methanol 69 th IM 5 / 20

The 3 rovibrational coupling operators Operator Expression Method ij (α) 1 E i (α) 1 G i (α) 2 2 βγ Rij βγ (α)j βj γ J(2J 1)(J + 1)(2J + 3) βγ Ci βγ (α)j βj γ J(J + 1) {ρj z + p α, β J βd i β (α)} 2J(J + 1) tructure Ab initio First order nuclear contribution only 1 Thaddeus, Krisher, and Loubser, J. Chem. Phys. 40 (1964) 257 2 Heuvel & Dymanus, J. Mol. pec. 45 (1973) 282 & J. Mol. pec. 47 (1973) 363 Coudert et al. pin-torsion methanol 69 th IM 6 / 20

pin-rotation coupling tensor calculation Cβγ i (α), with 1 i 4, β, γ = x, y, z, and 0 α 360 with ACE2 2 at the CCD(T) 3 level with pvtz 4 basis set. 2 ACE2, tanton, Gauss, et al., 1992 3 Raghavachari, Trucks, Pople, & Head-Goreon, Chem. Phys. Lett. 157 (1989) 479 4 Dunning, J. Chem. Phys. 90 (1989) 1007 Coudert et al. pin-torsion methanol 69 th IM 7 / 20

ymmetry considerations Using the G 6 symmetry group 1 Hyperfine operators H sr = H sr (A 1 ) O sr (A 1 ) + H h sr(a 1 ) O h sr(a 1 ) + H sr (E a ) O sr (E a ) + H sr (E b ) O sr (E b ) H sr (A 1 ) = (I 1 + I 2 + I 3 ) J, Hsr(A h 1 ) = I 4 J H sr (E a ) = 1 2 (2I 1 I 2 I 3 ) J, 3 H sr (E b ) = 2 (I 2 I 3 ) J Rovibrational operators O sr (A 1 ) = 1 3 (E1 + E 2 + E 3 ), O h sr(a 1 ) = E 4 O sr (E a ) = 1 3 (2E1 E 2 E 3 ), O sr (E b ) = 1 3 (E 2 E 3 ) 1 Hougen, Kleiner, & Godefroid, J. Mol. pec. 163 (1994) 559 Coudert et al. pin-torsion methanol 69 th IM 8 / 20

Accounting for the torsion For an n non-degenerate A 1 or A 2 level 1 3 O sr (A 1 ) and O h sr(a 1 ) This leads to the hyperfine spin-rotation coupling Hamiltonian H Hfs = C sr H sr (A 1 ) + C sr,h H h sr(a 1 ) where C sr = n O sr (A 1 ) n and C sr,h = n O h sr(a 1 ) n 1 Wolf, Williams, & Weatherly, J. Chem. Phys. 47 (1967) 5101 2 Coudert & López, J. Mol. pec. 239 (2006) 135 3 Tudorie, Coudert, Huet, Jegouso, & edes, J. Chem. Phys. 134 (2011) 074314 Coudert et al. pin-torsion methanol 69 th IM 9 / 20

Accounting for the torsion For an n non-degenerate A 1 or A 2 level 1 3 imilar O sr (A results 1 ) and for Othe sr(a h 1 ) spin-torsion and spin-spin couplings. This leads to the hyperfine spin-rotation coupling Hamiltonian Doubly degenerate E-type H Hfs levels = Cshould sr H sr (Abe 1 ) treated + C sr,h Hinsr(A h 1 ) the same way. where C sr = n O sr (A 1 ) n and C sr,h = n Osr(A h 1 ) n 1 Wolf, Williams, & Weatherly, J. Chem. Phys. 47 (1967) 5101 2 Coudert & López, J. Mol. pec. 239 (2006) 135 3 Tudorie, Coudert, Huet, Jegouso, & edes, J. Chem. Phys. 134 (2011) 074314 Coudert et al. pin-torsion methanol 69 th IM 9 / 20

ummary Level ymmetry pin-rotation pin-torsion pin-spin N A 1 /A 2 E C sr & C sr,h ame + C sr A Coupling constants C st & Cst,h ame + C st A C ss Hyperfine coupling operators & C ss,h ame + C ss A 6 & Css,h A 10 A 1 /A 2 H sr (A 1 ) & H h sr(a 1 ) H ss (A 1 ) & H h ss(a 1 ) 4 E ame + H sr (E a ) & H sr (E b ) ame + H ss (E a ), 10 H h ss(e a ), H ss (E b ), & H h ss(e b ) Coudert et al. pin-torsion methanol 69 th IM 10 / 20

Hyperfine coupling constants numerical evaluation ymmetry adapted operators for spin-torsion with O st (Γ) = {ρj z + p α, β J β Γ β (α)} 2J(J + 1) A1 β (α) = { s 0 β + s 3 β cos 3α for β = x, z sin 3α for β = y s 3 β Coudert et al. pin-torsion methanol 69 th IM 11 / 20

Hyperfine coupling constants numerical evaluation ymmetry adapted operators for spin-torsion with O st (Γ) = {ρj z + p α, β J β Γ β (α)} 2J(J + 1) A1 β (α) = { s 0 β + s 3 β cos 3α for β = x, z sin 3α for β = y s 3 β O st (A 1 ) O st (E a ) O h st(a 1 ) s 0 x 7.74826 s 1 x 12.01180 s 0,h x 53.46121 s 3 x 0.14834 s 2 x 0.69876 s 3,h x 0.43484 s 3 y 0.06417 s 1 y 8.61518 s 3,h y 0.22573 s 2 y 0.15320 s 0 z 27.51335 s 1 z 2.09658 s 0,h z 59.98014 s 3 z 0.08271 s 2 z 0.51433 s 3,h z 0.18517 Coudert et al. pin-torsion methanol 69 th IM 11 / 20

Hyperfine coupling constants numerical evaluation ymmetry adapted operators for spin-torsion with O st (Γ) = {ρj z + p α, β J β Γ β (α)} 2J(J + 1) A1 β (α) = { s 0 β + s 3 β cos 3α for β = x, z sin 3α for β = y s 3 β O st (A 1 ) O st (E a ) O h st(a 1 ) 92 constants arise s 0 x 7.74826 s 1 x 12.01180 s 0,h x 53.46121 s 3 x 0.14834 s 2 x 0.69876 s 3,h x 0.43484 s 3 y 0.06417 s 1 y 8.61518 s 3,h y 0.22573 s 2 y 0.15320 s 0 z 27.51335 s 1 z 2.09658 s 0,h z 59.98014 s 3 z 0.08271 s 2 z 0.51433 s 3,h z 0.18517 Coudert et al. pin-torsion methanol 69 th IM 11 / 20

Hyperfine coupling constants values Rotation-torsion energies and eigenvectors obtained from a fit of the high-resolution data 1 Level 1 01 A 2 0.71 1.80 4.22 2.17 0.0 0.0 1 11 A 2 6.68 7.94 2.11 1.04 3.31 7.22 1 10 A 1 6.64 6.95 2.11 1.13 3.31 7.22 C sr C sr,h C ss C ss,h C st C st,h 2 02 A 1 0.71 1.80 1.01 0.52 0.0 0.0 2 12 A 1 2.71 4.18 0.50 0.27 1.11 2.40 2 11 A 2 2.68 3.19 0.50 0.25 1.10 2.40 3 03 A 2 0.71 1.81 0.47 0.24 0.0 0.0 3 13 A 2 1.72 3.24 0.35 0.19 0.55 1.20 3 12 A 1 1.69 2.25 0.35 0.18 0.55 1.20 1 Xu, Fisher, Lees, hi, Hougen, Pearson, Drouin, Blake, & Braakman, J. Mol. pec. 251 (2008) 305 Coudert et al. pin-torsion methanol 69 th IM 12 / 20

Hyperfine coupling constants values-continued C st for a J k E-type levels with J = 6 and 6 k 6. Coudert et al. pin-torsion methanol 69 th IM 13 / 20

Hyperfine coupling constants values-continued Calculated hyperfine pattern for the 1 01 A 2 0 00 A 1 transition at 48 372 MHz and the 1 0 E 0 0 E transition at 48 376 MHz 1 1 Tudorie, Coudert, Huet, Jegouso, & edes, J. Chem. Phys. 134 (2011) 074314 Coudert et al. pin-torsion methanol 69 th IM 14 / 20

Hyperfine coupling constants values-continued Calculated hyperfine pattern for the 1 01 A 2 0 00 A 1 transition at 48 372 MHz and the 1 0 E 0 0 E transition at 48 376 MHz 1 ymmetry adapted hyperfine functions are used so that the total nuclear spin-rotation-torsion function obeys the Pauli exclusion principle. 1 Tudorie, Coudert, Huet, Jegouso, & edes, J. Chem. Phys. 134 (2011) 074314 Coudert et al. pin-torsion methanol 69 th IM 14 / 20

Analysis: experimental data set Transition F pectrometer Hyp 2 11 A 2 2 12 A 1 2502.8 Ref. 1 & Lille 3 12 A 1 3 13 A 2 5005.3 Ref. 1 & Lille D 5 15 A 2 6 06 A 1 6668.5 Hannover & Lille D 9 1 E 8 2 E 9936.2 Hannover & Lille 4 32 A 1 5 23 A 2 9978.7 Lille 2 0 E 3 1 E 12178.6 Hannover & Lille D 6 15 A 2 6 16 A 1 17513.3 Ref. 1 D 2 1 E 3 0 E 19967.4 Hannover 3 2 E 3 1 E 24928.7 Hannover D 4 2 E 4 1 E 24933.5 Hannover D 2 2 E 2 1 E 24934.4 Hannover 5 2 E 5 1 E 24959.1 Hannover D 6 2 E 6 1 E 25018.1 Hannover D 1 01 A 2 0 00 A 1 48372.4 Ref. 1 M 1 Heuvel & Dymanus, J. Mol. pec. 45 (1973) 282 Coudert et al. pin-torsion methanol 69 th IM 15 / 20

Analysis results: observed & calculated hfs. patterns Coudert et al. pin-torsion methanol 69 th IM 16 / 20

Analysis results: observed & calculated hfs. patterns C sr Dominated by spin-spin coupling = 0.71 Csr,h = 1.80 C ss = 4.22 Css,h = 2.17 Coudert et al. pin-torsion methanol 69 th IM 16 / 20

Analysis results: observed & calculated hfs. patterns Coudert et al. pin-torsion methanol 69 th IM 17 / 20

Analysis results: observed & calculated hfs. patterns C sr Dominated by spin-rotation from the hydroxyl group = 1.69 Csr,h = 2.25 C ss = 0.35 Css,h = 0.18 C sr = 1.72 C sr,h = 3.24 C ss = 0.35 C ss,h = 0.19 Coudert et al. pin-torsion methanol 69 th IM 17 / 20

Analysis results: observed & calculated hfs. patterns Coudert et al. pin-torsion methanol 69 th IM 18 / 20

Analysis results: observed & calculated hfs. patterns Predicted spin-rotation splitting from the methyl group was too large Coudert et al. pin-torsion methanol 69 th IM 18 / 20

Analysis results: observed & calculated hfs. patterns Predicted spin-rotation splitting from the methyl group was too large Also dominated by spin-rotation from the hydroxyl group Coudert et al. pin-torsion methanol 69 th IM 18 / 20

Analysis results: observed & calculated hfs. patterns For lines displaying a doublet structure, it was assumed that spin-rotation from the hydroxyl group is dominant. Predicted spin-rotation splitting from the methyl group was too large Also dominated by spin-rotation from the hydroxyl group Coudert et al. pin-torsion methanol 69 th IM 18 / 20

Analysis results: parameters (khz) Parameter No fitting Fit I Fit II c 0 zz 12.626 2.094(974) 1.766(910) c 0,h zz 12.877 25.802(1060) 28.535(1055) s 0,h zz 59.980 0.0 1 69.290(12625) 12 center frequencies TD (unitless) 1.2 1.1 1 Constrained value. Coudert et al. pin-torsion methanol 69 th IM 19 / 20

Thank you for your attention Coudert et al. pin-torsion methanol 69 th IM 20 / 20