Controlled Si-Drift Detectors

Similar documents
Review of Semiconductor Drift Detectors

Silicon Controlled Drift Detectors for Imaging Applications

Development of Silicon Drift Detectors and recent applications*

Detectors for High Resolution Gamma-ray Imaging Based on a Single CsI(Tl) Scintillator Coupled to an Array of Silicon Drift Detectors

A monolithic array of silicon drift detectors coupled to a single scintillator for γ-ray imaging with sub-millimeter position resolution

The path to Germanium Drift Detectors

Silicon Drift Detectors for gamma-ray detection: 15 years of research (and collaboration between Politecnico and INAF-Milano)

Development and characterization of 3D semiconductor X-rays detectors for medical imaging

Development of High-Z Semiconductor Detectors and Their Applications to X-ray/gamma-ray Astronomy

ISPA-Tubes with YAP:Ce Active Windows for X and Gamma Ray Imaging.

Semiconductor X-Ray Detectors. Tobias Eggert Ketek GmbH

Semiconductor Drift Detectors: Applications and New Devices

Towards Proton Computed Tomography

Performance of high pressure Xe/TMA in GEMs for neutron and X-ray detection

Development of a new MeV gamma-ray camera

Gamma-ray Spectroscopy with LaBr 3 :Ce Scintillator Readout by a Silicon Drift Detector

First Results and Realization Status of a Proton Computed Radiography Device

Analysis of Background Events in Silicon Drift Detectors

ABSOLUTE AIR-KERMA MEASUREMENT IN A SYNCHROTRON LIGHT BEAM BY IONIZATION FREE-AIR CHAMBER

Initial Studies in Proton Computed Tomography

M. De Napoli, F. Giacoppo, G. Raciti, E. Rapisarda, C. Sfienti. Laboratori Nazionali del Sud (LNS) INFN University of Catania. IPRD Oct.

SLS Symposium on X-Ray Instrumentation

TIMEPIX3 First measurements and characterization of a hybrid pixel detector working in event driven mode

Lecture 18. New gas detectors Solid state trackers

Precise Low-Energy Electron Tracking Using a Gaseous Time Projection Chamber for the Balloon-Borne Gamma Ray Compton Telescope

CHIPP Plenary Meeting University of Geneva, June 12, 2008 W. Lustermann on behalf of the AX PET Collaboration

Detectors in Nuclear and High Energy Physics. RHIG summer student meeting June 2014

Development of a High Precision Axial 3-D PET for Brain Imaging

GEM at CERN. Leszek Ropelewski CERN PH-DT2 DT2-ST & TOTEM

High-Resolution Gamma-Ray and Neutron Detectors For Nuclear Spectroscopy

Light ion recoil detector

Performance of the Gamma-ray Imaging Detector with Micro-TPC

DEPFET sensors development for the Pixel Detector of BELLE II

S. Agosteo (1,2), A. Fazzi (1,2),, M.V. Introini (1,2), A. Pola (1,2), E. Sagia (1,3), V. Varoli (1,2)

Study of the HARPO TPC for a high angular resolution g-ray polarimeter in the MeV-GeV energy range. David Attié (CEA/Irfu)

arxiv: v1 [physics.ins-det] 12 Jan 2016

AGATA preamplifier performance on large signals from a 241 Am+Be source. F. Zocca, A. Pullia, D. Bazzacco, G. Pascovici

Detecting high energy photons. Interactions of photons with matter Properties of detectors (with examples)

Outline. Introduction, motivation Readout electronics, Peltier cooling Input J-FETsJ

Neutron Structure Functions and a Radial Time Projection Chamber

Special SLS Symposium on Detectors

Development of New MicroStrip Gas Chambers for X-ray Applications

Radioactivity at the limits of nuclear existence

Peter Fischer, ziti, Universität Heidelberg. Silicon Detectors & Readout Electronics

arxiv: v2 [nucl-ex] 6 Oct 2008

Experimental Particle Physics

Introduction into Positron Annihilation

Results of a Si/CdTe Compton Telescope

A Triple-GEM Telescope for the TOTEM Experiment

SILICON DRIFT DETECTORS FOR HIGH RESOLUTION, HIGH COUNT RATE X-RAY SPECTROSCOPY AT ROOM TEMPERATURE

The simulation of the Electron Tracking Compton Camera with a gaseous time projection chamber and a scintillator

Flux and neutron spectrum measurements in fast neutron irradiation experiments

Experimental Particle Physics

Development of a Radiation Hard CMOS Monolithic Pixel Sensor

The Advanced Gamma Ray Tracking Array AGATA

Position Sensitive Germanium Detectors for the Advanced Compton Telescope

Pulse Shape Analysis

MARE-1 in Milan: an update

Compton Camera. Compton Camera

Performance of a triple-gem detector for high-rate particle triggering

A dual scintillator - dual silicon photodiode detector module for intraoperative gamma\beta probe and portable anti-compton spectrometer

TPC-like analysis for thermal neutron detection using a GEMdetector

ALICE A Large Ion Collider Experiment

Micro Pixel Chamber Operation with Gas Electron Multiplier

The LHC Experiments. TASI Lecture 2 John Conway

A novel design of the MeV gamma-ray imaging detector with Micro-TPC

Laboratory and Synchrotron Radiation total. reflection X-ray fluorescence: New Perspectives in. Detection Limits and Data Analysis

Maximum-Likelihood Deconvolution in the Spatial and Spatial-Energy Domain for Events With Any Number of Interactions

BEGe Detector studies update

Application of Nuclear Physics

High pressure xenon gas detector with segmented electroluminescence readout for 0nbb search

III. Energy Deposition in the Detector and Spectrum Formation

Stand-off Nuclear Radiation Detection

New perspectives in X-ray detection of concealed illicit materials brought by CdTe/CdZnTe spectrometric detectors

CMS Note Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

Status Report: Charge Cloud Explosion

Development of semiconductor imaging detectors for a Si/CdTe Compton camera

Gamma-Ray Polarimetry in the Pair Production Regime

Radiation Effects nm Si 3 N 4

ACTAR TPC: an active target and time projection chamber for nuclear physics

Laboratory of Radiation Detectors and

Energy calibration of the threshold of Medipix for ATLAS

DOUBLE BETA DECAY OF 106 Cd - EXPERIMENT TGV (Telescope Germanium Vertical) EXPERIMENT SPT (Silicon Pixel Telescope)

arxiv:astro-ph/ v1 26 Sep 2003

Imaging Hard X-Ray Compton Polarimeter SOI Sensor Prototype Specification

ACTAR TPC: an active target and time projection chamber for nuclear physics. 17/09/2015 T. Roger COMEX 5 1

Digital Holographic Measurement of Nanometric Optical Excitation on Soft Matter by Optical Pressure and Photothermal Interactions

Status Report: Multi-Channel TCT

Experimental Particle Physics

Positron Annihilation Spectroscopy

POSITRON AND POSITRONIUM INTERACTIONS WITH CONDENSED MATTER. Paul Coleman University of Bath

Nuclear and Particle Physics 4b Physics of the Quark Gluon Plasma

The intense, pulsed positron source EPOS at the Research Centre Dresden-Rossendorf

AIRFLY: Measurement of the Air Fluorescence induced by electrons

MONTE-CARLO SIMULATIONS OF TIME- RESOLVED, OPTICAL READOUT DETECTOR for PULSED, FAST-NEUTRON TRANSMISSION SPECTROSCOPY (PFNTS)

Compton Imaging with Coincidence Measurements for Treaty Verification Purposes

arxiv: v1 [physics.ins-det] 1 Sep 2009

NEW CORRECTION PROCEDURE FOR X-RAY SPECTROSCOPIC FLUORESCENCE DATA: SIMULATIONS AND EXPERIMENT

Compton suppression spectrometry

BEAM BEAM. cathode anode cathode

Transcription:

Controlled Si-Drift Detectors A.Castoldi Politecnico di Milano and INFN sez. Milano E-mail: andrea.castoldi@polimi.it Brookhaven National Laboratory, NY MPI Halbleiterlabor, Munich -potential [V] 65 60 55 Collaborations: SincrotroneTrieste ELETTRA University College London 50 1100 1000 900 drift coordinate[ µ m] 800 700 600 1200 900 1000 1100 800 lateral coordinate [ µ m] 700 Int l Symposium on Detector Development, April 3-6, 2006, Stanford Linear Accelerator Center, USA

Position-sensing with classical Silicon Drift Detectors ALICE NA45/WA48 256 anodes drift 360 anodes drift Dr=44 µm Df=2.6 mrad Dx, Dy» 30 µm 256 anodes Wafer: 4 silicon, 300 µm thickness Active area: 55 cm 2 (4.2cm radius) Wafer: 5, (NTD) silicon, 3 kω cm resistivity, 300 µm thickness Active area: 7.02 7.53 cm 2 ~5 Mpixel with ~500 output channels! but START TRIGGER NEEDED! no imaging of random sources (x/g/ )! FREE LATERAL BROADENING! doping inhomogeneities limited spectroscopic performance reduction of the event rate

Andrea.Castoldi, PoliMI & INFN The Controlled Drift Detector* (CDD) A.Castoldi, C.Guazzoni, IEEE TED, 46, 2 (1999) A.Castoldi, E.Gatti, C.Guazzoni, A.Longoni, P.Rehak, L.Strüder, NIM A439 (2000) (*) INFN-MPI Patents: US 6,249,033 EP0862226 anodes N-side P-side Novel features - potential minimum near top surface - suppressed lateral broadening - control of drift field: integrate-readout mode - integrated front-end JFET: high energy/position resol. Q T d P-side channels - fast timing signal from back electrodes y x z electron packets are drifted at high speed (0.5-1.5 cm/µs) towards point-like anodes (<100 ff) - deposited energy is obtained from the electron charge (Q) - interaction position along the drift is obtained from the drift time (T d ) - interaction position along 2nd coordinate is obtained by anode segmentation fast readout, position sensing/reduced no. of channels and spectroscopy of radiation

Andrea.Castoldi, PoliMI & INFN CDD working principle: simulation @ z=12 µm Integration phase: Signal electrons are collected in suitably engineered potential wells 65 -potential [V] 60 55 50 Readout phase: A uniform drift field transports the electrons to the readout anodes in few µs. 1100 1000 900 800 drift coordinate[ µ m] 700 600 1200 1100 700 800 900 1000 lateral coordinate [ µ m] -potential [V] 65 60 55 T drift =1-2 ms/cm Operating modes: integrate-readout mode free-running mode (self-trig,xfel) 50 1100 1000 900 800 drift coordinate [ µ m] 700 600 1200 1100 1000 900 800 lateral coordinate [ µ m] 700

Andrea.Castoldi, PoliMI & INFN Controlled-Drift Detector - Layout and photo A.Castoldi, A.Galimberti, C.Guazzoni, P.Rehak, L.Strüder, NIM A512, October 2003 0.3 cm 2 active area - pixel 120µm/180µm Detail of anode region with integrated front-end JFETs Back side 8 strips (900µm) 180 mm 180 mm pixel Active area 30 34 pixels (180µm side) 6.1 mm drift length Read-out 30 channels on-chip JFET Mounted 6x6 mm 2 prototype High energy implantation (20 MeV) instead of grown epitaxy drift channel is located at about 7 µm from the implanted surface Designed, layouted and tested at Politecnico di Milano-INFN, Italy Produced at the Halbleiterlabor of the Max Planck Institut, Munich (D)

1-D imaging and spectroscopy of a Fe-55 source @ 100 khz 4000 t = 55 ns ns A.Castoldi, C.Guazzoni, P.Rehak, L.Strüder, et al, Trans. Nucl. Sci. 49 (3) June 2002 FWHM = 11 ns FWHM = 11 ns integration readout counts 2000 9 µs 1µs Frame frequency=100 khz 0 9000 Pixel 180µm x 180µm ENERGY Energy [ev] [ev] 8000 7000 6000 5000 4000 270 ev FWHM @ 300K @ 0.25 µs (28.6 el. r.m.s.) 277.5 ev FHWM (29.6 el. rms) 198 ev FWHM @ 223K @ 0.5 µs (18.7 el. r.m.s.) 3000 0.0 0.1 0.2 0.3 0.4 0.5 0.6 time [µs] DRIFT TIME [µs] X Andrea.Castoldi, PoliMI & INFN 0E+0 5E+3 1E+4 counts

Andrea.Castoldi, PoliMI & INFN Energy resolution vs. frame frequency A.Castoldi, C.Guazzoni, P.Rehak, L.Strüder, IEEE TNS 48 (4), August 2001 frame frequency = 10kHz 55 Fe radioactive source E drift = 300V/cm V = 2V T = 300K 837 ev FWHM frame frequency = 30kHz frame frequency = 80kHz 339 ev FWHM Mn-Kβ Mn-Kα 290 ev FWHM

Electronic collimation A.Castoldi, G.Cattaneo, A.Galimberti, C.Guazzoni, P.Rehak, L.Strüder, IEEE TNS 49 (3), June 2002 good event 10000 1000 55 Fe radioactive source T = 300 K τ sh = 250 ns Mn Kα Mn Kβ f frame = 100kHz E drift = 300V/cm V = 2V T = 300K all data charge sharing events rejected (charge sharing events) + (first and last pixel) rejected n-1 n n+1 counts 100 Si escape Mn Kα + Mn Kα Mn Kα + Mn Kβ 10 1 0 4 8 12 16 energy [kev] Andrea.Castoldi, PoliMI & INFN

Andrea.Castoldi, PoliMI & INFN 2-D spectroscopic imaging of X-rays with CDDs Exp. CODERA (2003) - INFN - Sezione di Milano - Gruppo V A.Castoldi, G. Cattaneo, A.Galimberti, C.Guazzoni, P.Rehak, L.Strüder, IEEE TNS 49, 3 (2002) A.Castoldi, A.Galimberti, C.Guazzoni, P.Rehak, L.Strüder, NIM A512 (2003) Radiographic image of a lizard*... pixel 120mm, 10 5 frame/s, 15 kev x-rays, T=300K Sincrotrone Trieste SYRMEP beam line * no animal was killed or suffered for this measurement 270 ev FWHM @ 300K and spectroscopic analysis of each pixel 10 20 30 Energy [kev]

2D/3D tomographic imaging at 100 khz frame rate A. Castoldi, A. Galimberti, C. Guazzoni, L.Strüder, "New Silicon Drift Detectors for Synchrotron Radiation Applications", Nuclear Science Symposium Conference Record, 2004 IEEE, 16-22 Ottobre 2004, Roma, Italia. pixel 120mm, 28 kev x-rays (0.44 Å), 10 5 frame/s, T=300K Sincrotrone Trieste SYRMEP beam line 2D projections of a tooth section of 1.7 mm 3D reconstruction Digital radiography of a wisdom tooth Andrea.Castoldi, PoliMI & INFN Exp. CODERA INFN/V- Sez. Milano

2D Elemental mapping by K-edge subtraction imaging K-edge subtraction imaging (dual energy technique) 24 kev 26.7 kev Multi-element sample (Ag, In, etc.) 5 mm T Ag In 29.1keV 22 Energy [kev] 30 DE (Ag) = (26.7 kev-24 kev) DE (In)=(29.1 kev-26.7 kev) The distribution of a known element (i.e. silver) in the sample is obtained by imaging the sample in two X- ray windows, one below and the other above the K- edge of silver, and looking at the image difference. The spectroscopic capability of the CDD allows mapping of principal elements in the sample with ~100µm position resolution from a single image acquisition (i.e. multiple-energy technique) Ag distribution In distribution 2D elemental mapping (Ag, In) Exp. CODERA - Gr. V - INFN Sez. Milano A.Castoldi, A.Galimberti, C.Guazzoni, P.Rehak, L.Strüder, R.Menk, NIM. A510 (2003) 57-62. pixel 120x120µm

Diffraction Enhanced Breast Imaging (DEBI) Scattered intensity vs. momentum transfer -> LAXS signature for tissue/material analysis biological tissue (pork) x-ray beam (laminar) sample voxel transmitted photons fat scattered photons meat (carcinoma) collimator E χ=sin(θ/2)/λ Exp. set-up at fixed angle (9 ) mechanical collimator Ø0.5mm CDD E=18 kev 1.1 nm -1 E=26 kev 1.7 nm -1 q=9 CDD sample x-rays.royle, Speller (1999) Sincrotrone Trieste (SYRMEP) c = sin(q/2)/l

Experimental results on tissue: contrast and specificity transmission images: (pixel 120um) diffraction images: (pixel 500um) 2 4 6 8 contrast=27% 1 0.95 0.9 0.85 1 2 3 contrast=48% 0.17 0.16 0.15 0.14 E=18 kev 10 12 14 16 18 0.8 0.75 0.7 4 5 6 7 0.13 0.12 0.11 0.1 20 5 10 15 20 25 30 0.65 8 2 4 6 8 10 12 0.09 c E 6 mm 0.6 6 mm 0.08 x 10-4 contrast=12% 1.6 contrast=32% 0.026 E=26 kev 2 4 1.55 1 2 0.024 6 8 10 1.5 3 4 0.022 12 14 16 18 1.45 1.4 5 6 7 0.02 0.018 c E 20 5 10 15 20 25 30 1.35 8 2 4 6 8 10 12 0.016 1.3

Time-resolved X-ray imaging of repetitive processes Experimental setup: CDD operated at 100 khz drift field 400 V/cm, T=300 K loudspeaker Controlled Drift Detector Input signal: 219 Hz sine wave Mask displacement: 2.3 mm p-p X-ray source (Mo anode) X-rays pinholes Ø 50 µm Acquired time-sliced X-ray images (integrate-readout, 100kHz) 20 µs time slice 1 µs resolution in free-running mode pump-and-probe techniques

Andrea.Castoldi, PoliMI & INFN Compton electron tracking A. Castoldi, A. Galimberti, C. Guazzoni, P.Rehak, R-Hartmann, L.Strüder, A. H. Walenta, Multi-linear Drift Detectors for X-ray and Comtpon Imaging", 10 European Symposium on Semiconductor Detectors, Wildbad-Kreuth, June 12-16 2005 (NIM) t 0 E 0 Electron tracking of the first Compton scatter can significantly increase sensitivity of Compton telescopes: Approximate determination of de/dx from experimental data: T e =E 0 -E 1 - direction of recoil electron E 1 Q1 Q2 Q3 Q4 Q5 Q6 Q8 Q7 - data fitting: recoil electron energy, deposited energy, escape energy - analysis of back signals may provide Depth-Of-Interaction information Silicon CDD scatter detector

Andrea.Castoldi, PoliMI & INFN T electron =405.1 kev s=0.118 kev/µm rms Electron tracks Na-22 source, T=300K Z-exit internal absorption T electron =959.8 kev s=0.028 kev/µm rms E out = 758 kev

Andrea.Castoldi, PoliMI & INFN HV region 2D imager based on 3 1 cm 2 CDDs (project#1: x-ray imaging, project#2: Compton scatter detector) COMPTON (2004-2006) - INFN - Sezione di Milano - Gruppo V Pixel size (120µm) and readout section 240 x 84 pixels P-side: 15 strips (pitch 780µm) width 28.8 mm drift length 10.2 mm Scientific collaboration with MPI Munich for technology develop./detector production (2005)

Preliminary tests with Am-241 (march 06) FWHM = 7.5 ns T=300K Edrift =400 V/cm Tdrift =2.3 µs 67 kframes/s tsh=0.1 µs t = 29 ns 30 Energy [kev] cts 26.2 20.7 Energy [kev] 17.7 26.2 kev 13.9 20.7 kev 20 20 17.7 kev 30 Pixel 530 ev fwhm (59 el.rms) 13.9 kev 10 0 10 20 30 40 50 60 Pixel Andrea.Castoldi, PoliMI & INFN 70 80 0 1E+3 cts