CH.3. COMPATIBILITY EQUATIONS. Continuum Mechanics Course (MMC) - ETSECCPB - UPC

Similar documents
2.1 Constitutive Theory

How about the more general "linear" scalar functions of scalars (i.e., a 1st degree polynomial of the following form with a constant term )?

CH.3. COMPATIBILITY EQUATIONS. Multimedia Course on Continuum Mechanics

Solution in semi infinite diffusion couples (error function analysis)

HEAT CONDUCTION PROBLEM IN A TWO-LAYERED HOLLOW CYLINDER BY USING THE GREEN S FUNCTION METHOD

FI 3103 Quantum Physics

MEEN Handout 4a ELEMENTS OF ANALYTICAL MECHANICS

[ ] 2. [ ]3 + (Δx i + Δx i 1 ) / 2. Δx i-1 Δx i Δx i+1. TPG4160 Reservoir Simulation 2018 Lecture note 3. page 1 of 5

NATIONAL UNIVERSITY OF SINGAPORE PC5202 ADVANCED STATISTICAL MECHANICS. (Semester II: AY ) Time Allowed: 2 Hours

V.Abramov - FURTHER ANALYSIS OF CONFIDENCE INTERVALS FOR LARGE CLIENT/SERVER COMPUTER NETWORKS

PHYS 705: Classical Mechanics. Canonical Transformation

On One Analytic Method of. Constructing Program Controls

Existence and Uniqueness Results for Random Impulsive Integro-Differential Equation

Lecture 9: Dynamic Properties

Scattering at an Interface: Oblique Incidence

DEEP UNFOLDING FOR MULTICHANNEL SOURCE SEPARATION SUPPLEMENTARY MATERIAL

J i-1 i. J i i+1. Numerical integration of the diffusion equation (I) Finite difference method. Spatial Discretization. Internal nodes.

Let s treat the problem of the response of a system to an applied external force. Again,

Dynamic Team Decision Theory. EECS 558 Project Shrutivandana Sharma and David Shuman December 10, 2005

Including the ordinary differential of distance with time as velocity makes a system of ordinary differential equations.

Lecture 18: The Laplace Transform (See Sections and 14.7 in Boas)

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 4

e-journal Reliability: Theory& Applications No 2 (Vol.2) Vyacheslav Abramov

2/20/2013. EE 101 Midterm 2 Review

Relative controllability of nonlinear systems with delays in control

THE PREDICTION OF COMPETITIVE ENVIRONMENT IN BUSINESS

Chapter Lagrangian Interpolation

GENERATING CERTAIN QUINTIC IRREDUCIBLE POLYNOMIALS OVER FINITE FIELDS. Youngwoo Ahn and Kitae Kim

On the numerical treatment ofthenonlinear partial differentialequation of fractional order

Mechanics Physics 151

Linear Response Theory: The connection between QFT and experiments

Lecture 2 M/G/1 queues. M/G/1-queue

Mechanics Physics 151

F-Tests and Analysis of Variance (ANOVA) in the Simple Linear Regression Model. 1. Introduction

Ordinary Differential Equations in Neuroscience with Matlab examples. Aim 1- Gain understanding of how to set up and solve ODE s

5th International Conference on Advanced Design and Manufacturing Engineering (ICADME 2015)

( ) () we define the interaction representation by the unitary transformation () = ()

Mechanics Physics 151

Part II CONTINUOUS TIME STOCHASTIC PROCESSES

UNIVERSITAT AUTÒNOMA DE BARCELONA MARCH 2017 EXAMINATION

Response of MDOF systems

Notes on the stability of dynamic systems and the use of Eigen Values.

. The geometric multiplicity is dim[ker( λi. number of linearly independent eigenvectors associated with this eigenvalue.

T q (heat generation) Figure 0-1: Slab heated with constant source 2 = q k

THE GENERALIZED LAGRANGE'S EQUATIONS OF THE SECOND KIND AND THE FIELD METHOD FOR THEIR INTEGRATION UDC Ivana Kovačić

8 Finite element methods for the Kirchhoff Love plate problem

. The geometric multiplicity is dim[ker( λi. A )], i.e. the number of linearly independent eigenvectors associated with this eigenvalue.

M. Y. Adamu Mathematical Sciences Programme, AbubakarTafawaBalewa University, Bauchi, Nigeria

Dynamic Model of the Axially Moving Viscoelastic Belt System with Tensioner Pulley Yanqi Liu1, a, Hongyu Wang2, b, Dongxing Cao3, c, Xiaoling Gai1, d

On computing differential transform of nonlinear non-autonomous functions and its applications

In the complete model, these slopes are ANALYSIS OF VARIANCE FOR THE COMPLETE TWO-WAY MODEL. (! i+1 -! i ) + [(!") i+1,q - [(!

PHYS 1443 Section 001 Lecture #4

Cubic Bezier Homotopy Function for Solving Exponential Equations

Density Matrix Description of NMR BCMB/CHEM 8190

Density Matrix Description of NMR BCMB/CHEM 8190

Motion in Two Dimensions

Volatility Interpolation

Online Supplement for Dynamic Multi-Technology. Production-Inventory Problem with Emissions Trading

The Finite Element Method for the Analysis of Non-Linear and Dynamic Systems

THERMODYNAMICS 1. The First Law and Other Basic Concepts (part 2)

Generalized double sinh-gordon equation: Symmetry reductions, exact solutions and conservation laws

3. OVERVIEW OF NUMERICAL METHODS

Chapters 2 Kinematics. Position, Distance, Displacement

New M-Estimator Objective Function. in Simultaneous Equations Model. (A Comparative Study)

P R = P 0. The system is shown on the next figure:

Handout # 6 (MEEN 617) Numerical Integration to Find Time Response of SDOF mechanical system Y X (2) and write EOM (1) as two first-order Eqs.

Normal Random Variable and its discriminant functions

CHAPTER 5: MULTIVARIATE METHODS

Existence of Time Periodic Solutions for the Ginzburg-Landau Equations. model of superconductivity

Variants of Pegasos. December 11, 2009

COMPUTER SCIENCE 349A SAMPLE EXAM QUESTIONS WITH SOLUTIONS PARTS 1, 2

Supplementary Material to: IMU Preintegration on Manifold for E cient Visual-Inertial Maximum-a-Posteriori Estimation

Multi-Fuel and Mixed-Mode IC Engine Combustion Simulation with a Detailed Chemistry Based Progress Variable Library Approach

A Simulation Based Optimal Control System For Water Resources

Should Exact Index Numbers have Standard Errors? Theory and Application to Asian Growth

Online Appendix for. Strategic safety stocks in supply chains with evolving forecasts

VEHICLE DYNAMIC MODELING & SIMULATION: COMPARING A FINITE- ELEMENT SOLUTION TO A MULTI-BODY DYNAMIC SOLUTION

10. A.C CIRCUITS. Theoretically current grows to maximum value after infinite time. But practically it grows to maximum after 5τ. Decay of current :

FTCS Solution to the Heat Equation

Approximate Analytic Solution of (2+1) - Dimensional Zakharov-Kuznetsov(Zk) Equations Using Homotopy

Anisotropic Behaviors and Its Application on Sheet Metal Stamping Processes

Control Systems. Mathematical Modeling of Control Systems.

Decentralised Sliding Mode Load Frequency Control for an Interconnected Power System with Uncertainties and Nonlinearities

Wronskian Determinant Solutions for the (3 + 1)-Dimensional Boiti-Leon-Manna-Pempinelli Equation

Graduate Macroeconomics 2 Problem set 5. - Solutions

The Maxwell equations as a Bäcklund transformation

2 Aggregate demand in partial equilibrium static framework

John Geweke a and Gianni Amisano b a Departments of Economics and Statistics, University of Iowa, USA b European Central Bank, Frankfurt, Germany

CS286.2 Lecture 14: Quantum de Finetti Theorems II

CS 536: Machine Learning. Nonparametric Density Estimation Unsupervised Learning - Clustering

Track Properities of Normal Chain

[Link to MIT-Lab 6P.1 goes here.] After completing the lab, fill in the following blanks: Numerical. Simulation s Calculations

Comb Filters. Comb Filters

SOME NOISELESS CODING THEOREMS OF INACCURACY MEASURE OF ORDER α AND TYPE β

Lecture VI Regression

A NEW TECHNIQUE FOR SOLVING THE 1-D BURGERS EQUATION

The Single Particle Path Integral and Its Calculations. Lai Zhong Yuan

5-1. We apply Newton s second law (specifically, Eq. 5-2). F = ma = ma sin 20.0 = 1.0 kg 2.00 m/s sin 20.0 = 0.684N. ( ) ( )

APPROXIMATE ANALYTIC SOLUTIONS OF A NONLINEAR ELASTIC WAVE EQUATIONS WITH THE ANHARMONIC CORRECTION

SELFSIMILAR PROCESSES WITH STATIONARY INCREMENTS IN THE SECOND WIENER CHAOS

Transcription:

CH.3. COMPATIBILITY EQUATIONS Connuum Mechancs Course (MMC) - ETSECCPB - UPC

Overvew Compably Condons Compably Equaons of a Poenal Vecor Feld Compably Condons for Infnesmal Srans Inegraon of he Infnesmal Sran Tensor Inegraon of he Deformaon Rae Tensor 4/0/04

3. Compably Condons Ch.3. Compably Equaons 3 4/0/04

Inroducon Gven a dsplacemen feld, he correspondng sran feld s found: U X, u, E j j U U j Uk U k, j{,, 3} X j X X X j u u j, j{,,3} j Is he nverse possble?, u, 4 4/0/04

Compably Condons Gven an (arbrary) symmerc second order ensor feld,,, s a dsplacemen feld, u,, fulfllng u (, ), canno always be obaned: u u j j, j{,,3} 6 PDEs j 3 unknowns For o mach a symmercal sran ensor:, I mus be negrable. There mus es a dsplacemen feld from whch comes from. OVERDETERMINED SYSTEM COMPATIBILITY CONDITIONS mus be sasfed REMARK Gven u,, here wll always es an assocaed sran ensor,,, obanable hrough dfferenaon, whch wll auomacally sasfy he compably condons. 5 4/0/04

Compably Condons The compably condons are he condons a symmercal nd order ensor mus sasfy n order o be a sran ensor and, hus, es a dsplacemen feld whch sasfes: j u u j, j{,, 3} j They guaranee he connuy of he connuous medum durng he deformaon process. E X, Incompable sran feld 6 4/0/04

3. Compably Equaons of a Poenal Vecor Feld Ch.3. Compably Equaons 7 4/0/04

Prelmnary eample: Poenal Vecor Feld A vecor feld v, wll be a poenal vecor feld f here ess a scalar funcon, (named poenal funcon) such ha:,,, v Gven a connuous scalar funcon, here wll always es a poenal vecor feld v,. Is he nverse rue? v,,,3 v,, such ha, v, 8 4/0/04

Poenal Feld v,, such ha, v, In componen form,,, v, v, 0,,3 3 eqns. unknown OVERDETERMINED Dfferenang once hese epressons wh respec o : SYSTEM v, j j, j,,3 9 eqns. 9 4/0/04

Schwarz Theorem The Schwarz Theorem or equaly of med paral dervaves guaranees ha, gven a connuous funcon wh,,..., n connuous dervaves, he followng holds rue: j j, j 0 4/0/04

Compably Equaons Consderng he Schwarz Theorem, v v v y y z z vy vy vy y y y z yz vz vz vz z y zy z z In hs sysem of 9 equaons, only 6 dfferen nd dervaves of he unknown, appear:,,,, and y z y z yz They can be elmnaed and he followng denes are obaned: v vy v v vy v y z z y z z 4/0/04

Compably Equaons, he vecor feld verfes: A scalar funcon whch sasfes, v, wll es f v, v def y v 0 Sz y eˆ eˆ eˆ3 S def v vz 0 S where y SS y v z y z S v v def z z y v vy vz 0 S y z INTEGRABILITY (COMPATIBILITY) EQUATIONS of a poenal vecor feld v0 v v j 0, j,,3 j REMARK A funconal relaon can be esablshed beween hese hree equaons. v 0 4/0/04

3.3 Compably Condons for Infnesmal Srans Ch.3. Compably Equaons 3 4/0/04

Infnesmal Srans The nfnesmal sran feld can be wren as: u u u y u u z y z y z uy uy u z y yy yz y z y z yz zz u z symmercal z 6 PDEs 3 unknowns 4 4/0/04

Infnesmal Srans The nfnesmal sran feld can be wren as: yy zz u u u y 0 y 0 y u y u u z 0 z 0 y z u u z y u z 0 yz 0 z z y 6 PDEs 3 unknowns The sysem wll have a soluon only f ceran compably condons are sasfed. 5 4/0/04

Compably Condons The compably condons for he nfnesmal sran feld are obaned hrough double dfferenaon (sngle dfferenaon s no enough). u,,,,, y z y z yz u y u z yz z y,,,,, y z y z yz 6 equaons 6 equaons 66=36 equaons 6 4/0/04

Compably Condons The compably condons for he nfnesmal sran feld are 3 obaned hrough: 3 3 u yz u y u z 3 z y 8 equaons for y, z, yz 8 equaons for, yy, zz 3 3 3 u yz u y u z 3 y y y z y y 3 3 3 u yz uy u z... 3 z z z z y z 3 3 u yz 3 uy u z y y y zy y 3 3 3 u yz uy u z z z z z y z 3 3 3 u yz uy u z yz yz yz zy yz 7 4/0/04

Compably Condons All he hrd dervaves of u, uy and uz appear n he equaons: 3 u 3 3 3, y, z, y, y, y z, z, z, z y, yz 0 dervaves u 3 y 3, y, z, 3 y, y, y z, 3 z, z, z y, yz 3 uz 3 3 3, y, z, y, y, y z, z, z, z y, yz 0 dervaves 0 dervaves whch consue 30 of he unknowns n he sysem of 36 equaons: f n 3 u j, n,,...,36 jkl k l 30 8 4/0/04

Compably Equaons 3 u Elmnang he 30 unknowns,, 6 equaons are obaned: j k l 9 def yy zz yz S 0 z y yz def zz z S yy 0 z z def yy y Szz 0 y y def zz yz z y Sy 0 y z y z def yy yz z y Sz 0 z y y z def yz z y S yz 0 yz y z COMPATIBILITY EQUATIONS for he nfnesmal sran ensor S ε 0 4/0/04

Compably Equaons The s equaons are no funconally ndependen. They sasfy he equaon, In ndcal noaon: S ε 0 S S y Sz 0 y z Sy Syy Syz 0 y z S S z yz Szz 0 y z 0 4/0/04

Compably Equaons The compably equaons can be epressed n erms of he permuaon operaor, e. e jk jk S e e ml mjq lr j, qr 0 ejk Or, alernavely: j, kl kl, j k, jl jl, k 0, j, k, l,,3 REMARK Any lnear sran ensor ( s order polynomal) wh respec o he spaal varables wll be compable and, hus, negrable. 4/0/04

3.4 Inegraon of he Infnesmal Sran Tensor Ch.3. Compably Equaons 4/0/04

Prelmnary Equaons Roaon ensor Ω, : Roaon vecor θ, : Ω skew( u) ( uu) u u j j, j{,, 3} j 3 yz 0 3 u ( ) 0 3 z 3 3 y 0 3 4/0/04

Prelmnary Equaons Dfferenang, wh respec o : u u j j u u j j j k k j k 4 Addng and subracng he erm k : u j u u j uk uk k k j j j u u k u j u k k j k k j j k j jk jk 4/0/04

Prelmnary Equaons Usng he prevous resuls, he dervave of θ, s obaned: yz z y z y z y z y y z y y y z yz zz zy z z z z z y z 3 y y y 3 y yy y 3 y y y 3 y yz z z z y yz yz yy z z yz z z zz 5 4/0/04

Prelmnary Equaons 3 6 Consderng he dsplacemen graden ensor J,, u, J j u u u j u u j Jj j j, j,,3 j j j j θ J, Inroducng he defnon of,, he componens of are rewren: 3 3 yz z y : : 3: j j j 3 u u u y 3 z y z uy uy uy y 3 yy yz y z uz uz uz z yz zz y z 4/0/04

Inegraon of he Sran Feld The negraon of he sran feld ε, s performed n wo seps:. Inegraon of dervave of θ, usng he s order PDE sysem derved for, and. The soluon wll be of he ype: 3 The negraon consans c can be obaned knowng he value of he roaon vecor n some pons of he medum (boundary condons).. Known, and θ,, u s negraed usng he s order PDE sysem derved for u REMARK. The soluon wll be: If he compably equaons u u, y, z, c,,3 The negraon consans c can be obaned knowng he value of are sasfed, he dsplacemens n some pon of space (boundary condons) hese equaons wll be negrable. 7 yz,,, c,,3 ε 4/0/04

Inegraon of he Sran Feld The negraon consans ha appear mply ha an negrable sran ensor ε, wll deermne he movemen n any nsan of no no me ecep for a roaon c() ˆ () and a ranslaon c() uˆ () : ˆ,,, u, u, uˆ A dsplacemen feld can be consruced from hs unform roaon and ranslaon: u (, ) ˆ ( ˆ ( )) uˆ ( ) u ˆ S T ˆ ˆ T ( u*) ( u ( u ) ) ( ) 0 Ths corresponds o a rgd sold movemen. 8 4/0/04

3.5 Inegraon of he Deformaon Rae Tensor Ch.3. Compably Equaons 9 4/0/04

Compably Equaons n a Deformaon Rae Feld 4/0/04 There s a correspondence beween The concep of compably condons can be eended o deformaon rae ensor. ( ) j j j j j j u u u u u u u ( ) v v v v w j j j j j j d v dv v d v 30

Eample Deduce he velocy feld correspondng o he deformaon rae ensor: y 0 e 0 y d, e 0 0 z 0 0 e In pon,, he followng holds rue: v, e ω,, e e 0, v 0,, e 3 4/0/04

Eample - Soluon y 0 e 0 y d, e 0 0 z 0 0 e Consder he correspondence: u ( u) u v dv ( ) v Take he epressons derved for, 3 subsue, wh and, wh d, : d d z y 0 0 y z d d 0 0 y y z d d zz zy 00 z y z yz yy and θ ω, C 3 4/0/04

Eample - Soluon y 0 e 0 y d, e 0 0 z 0 0 e d dz 00 z d d 0 0 y z d z d zz 00 z z y yz d 3 y d 00 y d d y y d 3 yz d z 00 z y 3 yy y y 3 0 e C y y y, e dy e C 3 3 33 4/0/04

Eample - Soluon C C y 3 3 e C So, For pon,, : 0 ω, v 0 e 0 C 0 C y 3 e e C3,, Therefore, for any pon, 0 ω, 0 e y C C C 3 0 0 0 34 4/0/04

Eample - Soluon 0 ω, 0 ; y e y 0 e 0 y d, e 0 0 z 0 0 e Takng he epressons : : The componens of he veloces can be obaned: v v y v z d 0 d e e e y d 00 z 3 j j j 3 v v v d d d y z y 3 z v v v d d d y z y y y y 3 yy yz v v v 3: d d d y z y y y z z z z yz zz y y v y, e dy e C 35 4/0/04

Eample - Soluon 0 ω, 0 ; y e y 0 e 0 y d, e 0 0 z 0 0 e The componens of he veloces can be obaned: v v v d e e 0 y y y y 3 y y y z d yy 0 d 00 yz v y C v v y z z v z z d 00 z d 00 d yz zz e z z z v, z z e dz e C3 36 4/0/04

Eample - Soluon v z z e C3 v y e C v y C For pon,, : v, e e e So, v v y e C v Therefore, for any pon, y e e C z z e e C3,,,, v, e e e z y C 3 0 C e C 0 37 4/0/04

Summary Ch.3. Compably Equaons 38 4/0/04

Summary ε Gven u always ess: ε u u j j, j{,, 3} j Gven u wll es only f he compably condons are sasfed. Compably condons: Condons ha a symmercal nd order ensor mus sasfy n order o be an nfnesmal sran ensor and, hus, o es a dsplacemen feld whch sasfes: u u j j, j{,, 3} j They guaranee he connuy of he connuous medum durng he deformaon process. 39 4/0/04

Summary Compably equaons for he nfnesmal sran ensor: def yy zz yz S 0 z y yz def zz z S yy 0 z z def yy y Szz 0 y y def zz yz z y Sy 0 y z y z def yy yz z y Sz 0 z y y z def yz z y S yz 0 yz y z S ε 0 S e e ml mjq lr j, qr 0 j, kl kl, j k, jl jl, k 0, j, k, l,,3 ejk ejk 40 4/0/04

Summary Roaon ensor: Roaon vecor: Ω ( uu ) 3 θ u 3 z 3 y yz Dervave of θ, : yz z y z y y y z z z y z yz yz yy yz zz zy z y y z y y z z z z z zz z z z 3 yz y y y y y y 3 y yy y 3 3 y yz z z z y 4 4/0/04

Summary The negraon of he sran feld ε, : θ,, and.. Inegraon of dervave of usng he epressons derved for 3 ε. Known, and θ,, u s negraed usng: : : 3: The soluon wll be: yz,,, c,,3 j j j 3 u u u y 3 z y z uy uy uy y 3 yy yz y z u u u y z z z z z yz zz,,,,,3 u u y z c 4 4/0/04

There s a correspondence beween: The concep of compably condons can be eended o deformaon rae ensor. Summary 4/0/04 ( ) j j j j j j u u u u u u u ( ) v v v v w j j j j j j d v dv v d v 43