Measurement of Radon and Uranium Concentrations and Background Gamma Rays at the University of Baghdad -Jadiriyah Site

Similar documents
International Journal of PharmTech Research CODEN (USA): IJPRIF, ISSN: , ISSN(Online): Vol.9, No.9, pp , 2016

Measurement of indoor radon, thoron and annual effective doses in the some dwellings of Jaipur city, Rajasthan, India

Uranium Concentrations measurement for Ground Water and Soil Samples in Al-Najaf/Iraq

Radon Activity And Exhalation Rate In Building Materials From Crushing Zone Of Shivalik Foothills In India

Determination of thorium and uranium contents in soil samples using SSNTD s passive method

J. Rad. Nucl. Appl. 2, No. 1, (2017) 11 Journal of Radiation and Nuclear Applications An International Journal

RADON EQUILIBRIUM MEASUREMENT IN THE AIR *

Study of Radium and Radon Exhalation Rate in Some Sand Samples Using Solid State Nuclear Track Detectors

Radioactivity measurements and risk assessments in soil samples at south and middle of Qatar

Level of Radionuclide Contents in Surface Water from Shutt- Al-Arab River in Basrah Governorate, Iraq

INFLUENCE OF EXPOSURE GEOMETRY ON THE RESPONSE OF CR39 SSNT RADON DETECTORS *

Keywords Paints, Alpha particles shield percentage (ASP), CR-39 detector. Introduction. JMESSP

Determination of Radon Gas Concentrations and Radon Exhalation Rate in Soil Sample in Selected Regions in Anbar Governorate

WHAT IS IONIZING RADIATION

Alpha radioactivity in Indian cement samples

Research about the quantity of Radon in our everyday places

INTERNATIONAL STANDARD

Measurement of Specific Activities of Some Biological Samples for Some Iraq Governorates

ISO Measurement of radioactivity in the environment Air: radon-222 Part 5: Continuous measurement method of the activity concentration

Available online at ScienceDirect. Physics Procedia 80 (2015 )

Evaluation and analysis of 226 Ra, 232 Th, 40 K and radon exhalation rate in various grey cements

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: Vol.8, No.3, pp , 2015

Measurements of Radon Concentrations and Dose Assessments in Chemistry Department-Science College- Al- Mustansiriyah University, Baghdad, Iraq

This document is a preview generated by EVS

Multilayer Nuclear Track Detectors for Retrospective Radon Dosimetry

NORM and TENORM: Occurrence, Characterizing, Handling and Disposal

Estimating the natural and artificial radioactivity in soil samples from some oil sites in Kirkuk-Iraq using high resolution gamma rays spectrometry

Experiment Radioactive Decay of 220 Rn and 232 Th Physics 2150 Experiment No. 10 University of Colorado

Committed Effective Dose from Thoron Daughters Inhalation

Study of the Parameters Affecting Radon Gas Flux from the Stream Sediments at Seila Area, South Eastern Desert, Egypt

4.4.1 Atoms and isotopes The structure of an atom Mass number, atomic number and isotopes. Content

Ion Chamber. Radon Measurements. Theremino System Rev.1. Theremino System IonChamber_ENG Page 1

Section 3: Nuclear Radiation Today

The basic structure of an atom is a positively charged nucleus composed of both protons and neutrons surrounded by negatively charged electrons.

ATOMIC PHYSICS Practical 11 STUDY OF DECOMPOSITION OF RADIOACTIVE RADON 1. INTRODUCTION

Chapter 29. Nuclear Physics

Assessment of Natural Radioactivity Levels and Radiological Hazards of Cement in Iraq

Curriculum Vitae. Certificats & Dates:

Advances in Physics Theories and Applications ISSN X (Paper) ISSN (Online) Vol.35, 2014

Measurement of Uranium Concentration in the Soil Samples by Using Solid State Nuclear Track Detectors (SSNTDs)

What happens during nuclear decay? During nuclear decay, atoms of one element can change into atoms of a different element altogether.

Atomic Structure Summary

10.1 RADIOACTIVE DECAY

Radiological Preparedness & Emergency Response. Session II. Objectives. Basic Radiation Physics

College Physics B - PHY2054C

It s better to have a half-life than no life! Radioactive Decay Alpha, Beta, and Gamma Decay

Fundamentals of radiation protection

INAYA MEDICAL COLLEGE (IMC) RAD LECTURE 1 RADIATION PHYSICS DR. MOHAMMED MOSTAFA EMAM

Radon Determination by Activated Charcoal Adsorption and Liquid Scintillation Measurement. Canoba, A.C.; López, F.O. and Oliveira, A.A.

Evaluation Model of Atmospheric Natural Radiaoctivity Considering Meteorological Variables

INAYA MEDICAL COLLEGE (IMC) RAD LECTURE 1 RADIATION PHYSICS DR. MOHAMMED MOSTAFA EMAM

ZX or X-A where X is chemical symbol of element. common unit: [unified mass unit = u] also known as [atomic mass unit = amu] or [Dalton = Da]

Keywords: Cape coast, concentration, E-PERM, exposure, LR-115, radon

Occupational Exposures during the U-Exploration Activities at Seila Area, South Eastern Desert, Egypt

CALIBRATION OF INSTRUMENTS MEASURING RADON OVER A LARGE ACTIVITY RANGE. N. Michielsen, V. Voisin

sample What happens when we are exposed to radiation? 1.1 Natural radiation Cosmic radiation

Journal of American Science 2013;9(12)

BASIC OF RADIATION; ORIGIN AND UNITS

MATHEMATICAL MODEL OF RADON ACTIVITY MEASUREMENTS

Assessment of Rn and U Concentrations in the Soil of Qadafery, Kalar and Zarayan Located in Sulaimani Governorate of Kurdistan Region- Iraq

Radiation Awareness Training. Stephen Price Office of Research Safety

Activity Concentrations and Associated Gamma Doses of 238 U and 235 U in Jordan

Radon Concentration in the Work Atmosphere of Cement Plants in the Sulaymaniyah Area, Iraq

A Simple Measurement Technique of the Equilibrium. Equivalent Thoron Concentration with a CR-39 Detector

M. Rogozina, M. Zhukovsky, A. Ekidin, M. Vasyanovich. Institute of Industrial Ecology, Ural Branch Russian Academy of Sciences

Physics 219 Help Session. Date: Wed 12/07, Time: 6:00-8:00 pm. Location: Physics 331

R A D I A T I O N P R O T E C T I O N a n d t h e N R C

Measuring and Study the Uranium Concentration in Different Types of Powder Milk

PS-21 First Spring Institute say : Teaching Physical Science. Radioactivity

Uncertainty in radon measurements with CR39 detector due to unknown deposition of Po

Radioactive Decay of 220 Rn and 232 Th Physics 2150 Experiment No. 10 University of Colorado

Activity 11 Solutions: Ionizing Radiation II

INTERNAL RADIATION DOSIMETRY

4.4 Atomic structure Notes

Nuclear Radiation. Natural Radioactivity. A person working with radioisotopes wears protective clothing and gloves and stands behind a shield.

Measurement of radon gas concentration in cement samples by using nuclear track detector (CR-39)

Natural Radiation Map of the Sudan

Radioactivity: the process by which atoms emit energy in the form of electromagnetic waves, charged particles, or uncharged particles.

Sources of Radiation

Earth & Environmental Science Research & Reviews

Available Online at CODEN: IJRSFP (USA) Vol. 9, Issue, 3(C), pp , March, 2018.

COMPONENT OF BACKGROUND GAMMA RADIATION LEVELS IN BANGALORE METROPOLITAN, INDIA Sathish L. A.* and Nethravathi K.S.

Nuclear Physics and Astrophysics

Available online at ScienceDirect. Procedia Engineering 172 (2017 )

WM2018 Conference, March 18-22, 2018, Phoenix, Arizona, USA. PVT and LaBr3(Ce)-based Radon Express Analyzers 18164

Radiation Safety Talk. UC Santa Cruz Physics 133 Winter 2018

Radioactive nuclei. From Last Time. Biological effects of radiation. Radioactive decay. A random process. Radioactive tracers. e r t.

Particle size distribution of the radon progeny and ambient aerosols in the Underground Tourist Route "Liczyrzepa" Mine in Kowary Adit

Number of protons. 2. What is the nuclear symbol for a radioactive isotope of copper with a mass number of 60? A) Cu

Nuclear Spectroscopy: Radioactivity and Half Life

Chemistry 201: General Chemistry II - Lecture

Alpha Radioactivity in Various Brands of Rice in Iraqi Market

ARTICLE IN PRESS. Available online at ScienceDirect. Journal of Taibah University for Science xxx (2015) xxx xxx

The Pharmaceutical and Chemical Journal, 2017, 4(6): Research Article

Optical density for CN-85 and CR-39 Plastic Detectors and α-particle Radiography

y loo Physics Essentials Workbook Stage 2 Physics Exercises

Evaluation of natural radioactivity in Selected Soil Samples from the Archaeological of Ur City by using HPGe detector

Radiation Safety Training Session 1: Radiation Protection Fundamentals and Biological Effects

Determination of effective radium content and uranium concentrations for the soap and the detergent powder samples in Iraq.

Chapter. Nuclear Chemistry

Transcription:

Measurement of Radon and Uranium Concentrations and Background Gamma Rays at the University of Baghdad -Jadiriyah Site Shafik S. Shafik 1, Aamir A. Mohammed 2 1, 2 Department of Physics, College of Science, University of Baghdad -Baghdad-Iraq ABSTRACT Radon is a radioactive gas produced by uranium decay chain. The concentration of this gas in indoor is higher than that of outdoor. An indoor radon survey of a total of 112 locations with one dosimeter per site was carried out at the university of Baghdad- Jadiriyah site. In this study, the concentrations of radon and uranium, radon exhalation rate and background of gamma rays were estimated, and the dose due to indoor radon concentrations was calculated. The minimum, maximum and average of indoor radon concentrations were 22.399±2.182, 66.447±1.98 and 45.487±1.157 respectively. Radon mass exhalation rate ranged from 2.851±0.1874 to 4.240±0.3797 with an average value of 3.31±0.13. The average concentrations of radon and uranium in soil samples were 66.73±2.62 and 18.672±0.457 respectively. The average indoor inhalation exposure (radon) effective dose in the buildings was 0.8058 and the background dose rate of gamma rays was 0.0328 Keywords: Radon, Exhalation Rate, Uranium, Gamma ray, CR-39 detector. 1. INTRODUCTION The exposure to natural radiation may be due to external or internal according to the body radiation source geometry. External exposure comes mainly from the γ- emitter in man's surrounding environment which impacts the body and can be harmful to different organs due to the high penetration property of γ- rays. There has been interest in the determination of the average gamma radiation dose to which the population is exposed. The environmental radiation is composed of natural radiation, found in the ground, plus the cosmic radiation together with the contribution to background radiation from nuclear weapons tests and accidents which, eventually, will come down to the ground level. On the other hand, internal exposure comes from swallowing or inhaling radioactive materials as in the case of inhaling radon and its daughters (Saleh, 2007). [1] Radon is radioactive noble inert gas and very mobile gaseous daughter of uranium 238 U which is found in all rocks and soil. Radon is very soluble in water (Misdaq et al., 2000). [2] There are three natural isotopes of the radioactive element radon: 222 Rn originate in the 238 U decay series and has a half-life of 3.82 days, 220 Rn (thoron) is in the 232 Th chain with a half-life of 55.6 sec and 219 Rn (actinon) is in the 235 U series with its half-life of 4 sec. The chemical element radon with atomic weight 86 is the heaviest among of the inert gases, which include neon, argon, krypton and xenon as well (Wilkening, 1990). [3] The exposure to radon gas is the most signification element of human exposure to natural sources. It is distinguished from the other three elements of basic background because exposure varies markedly in ordinary circumstances, and because high exposure may be avoided with comparative ease. The most important mechanism of exposure is the inhalation of the short-lived decay products of the principal isotope, 222 Rn, with indoor air. Concentrations of 222 Rn and its progeny are usually higher in indoor air than in outdoor air, exceptions are in tropical regions, where 222 Rn concentrations in well- ventilated dwellings are essentially the same as in outdoor air (UNSCEAR 1993). [4] Sources of radon include soil, water, outdoor air, and building materials, but transport of radon bearing gas from soil is generally the most predominant source of indoor. The concentration of radon is expressed as Becquerel per cubic meter ( ) or picocuries per liter ( ) (Nagda, 1994). [5] The exposure to high level of radon gas through breathing of air increases the risk of lung cancer (Ramadhan, 2012). [6] When radon gas is inhaled, densely ionizing alpha particles emitted by deposited short- lived decay products of radon ( 218 Po and 214 Po) can interact with biological tissue in the lungs leading to DNA damage (WHO, 2009). [7] 2. MATERIAL AND METHODS The technique used in this work is based on CR-39 nuclear track detectors (Pershore Mouldings which was made in England). The passive radon dosimeter geometry consists of a closed chamber into which radon diffuses (Al-Jarallah et al., 2003). [8] It is made from plastic cup with a hole at the top cover which is covered with a 5 thickness of soft Volume 2, Issue 5, May 2013 Page 455

sponge layer. The radon dosimeter containing CR-39 (with an area 1 x 1 and 500 at its bottom. The design of the chamber ensures that the aerosol particles and radon decay products are deposited on the sponge from outside and that only radon diffuses through it to the volume of the chamber (Al-Jarallah et al., 2008). [9] The radon dosimeter was used to determine the indoor radon concentrations as shown in the figure (1). The exposure time was 90 days. At the end of the exposure time, the radon dosimeters were collected and the detectors were removed, and then treated using etching solution NaOH with 6.25N in water bath at 70±1 C for 7 h. Then, the CR-39 detectors were washed with distilled water and dried. The tracks produced were counted using optical microscope with 400x magnification as shown in figure (2). Figure 1 The Radon dosimeter. Figure 2 The tracks counting system.. The radon concentrations were calculated using the following equation (Ajaj, 1999): [10] C Rn = ------- (1) where represents the track density resulting from all alpha particles which are present inside the container, represent the time exposure radon and the calibration factor is given by: where is the critical angle, R is the alpha particle range and is the radius of container. The radon and uranium dosimeters for soil are shown in figures (3) and (4) respectively. CR-39 Detector Cover Plastic Container 15 Soil 6cm Figure 3 The radon dosimeter for soil. Volume 2, Issue 5, May 2013 Page 456

Cover Soil Sample CR 3 cm 5 cm Figure 4 The uranium dosimeter for soil. The uranium concentration C U can be determined using a procedure similar to used to determine radon concentration, one can write (Ajaj, 1999, Salama et al., 2006): [10,11] C U K U T ------- (2) C Th K Th T ------- (3) + ------- (4) total=c U K U T + C Th K Th T ----- (5) = C U Ku+ C Th K Th ----- (6) C U K U [1+ (C Th / C U ) (K Th / K U )] - - - - (7) The ratio C Th / C U = 4 / T = C U K U [1+ 4 (K Th / K U )] -- (8) K U =0.25 A U cos 2 --- (9) K Th is given by a formula similar to eq. (9). where is the density, e i is the branching ratio, and A U is the radioactivity concentration of 1 ppm (one part per million ) of Uranium. The mass exhalation rate is given by the following equation (K. Kant et al., 2010): [12] E x = --------- (10) where E x is the mass exhalation rate of radon, C Rn is the integrated radon exposure (Bq m -3 h -1 ), M is the mass of the sample, V is the effective volume of radon dosimeter can (figure 1), is the decay constant of radon and T is the exposure time. The annual exposure to potential alpha energy E P (effective dose equivalent) is then related to the average radon concentration C Rn by the expression: E P [WLM.Y -1 ] = --- (11) where, C Rn is in Bq/m 3 ; n is the fraction of time spent indoors; 8760, the number of hours per year; 170, the number of hours per working month and F is the equilibrium factor for radon and was taken as 0.4 as suggested by UNSCEAR, (2000). Radon progeny equilibrium is a very important quantity, where dose calculation are to be made on the basis of the measurement of radon concentration, it may have value 0 < F < 1.Thus, the values of n=0.8 and F=0.4 were used in the present research. From radon exposure the indoor inhalation exposure (radon) effective dose was estimated using the conversion factor of 3.88 by ICRP, (1993) (Mahur, 2012). [13] In addition to the radon and uranium measurements, gamma rays were measured in 75 locations of the University of Baghdad - Jadiriyah site using digital hand-held gamma spectrometer. 3. Results and Discussion A summary of the results are shown in Table (1), it is observed that the concentration of indoor radon and the indoor inhalation exposure (radon) effective dose inside the buildings at the university of Baghdad-Jadiriyah site. The concentrations of indoor radon were varied from 22.399±2.182 to 66.447±1.98 with an average value of 45.487±1.157. From the results listed in Table (2), it is observed that the average concentrations of indoor radon in the campus of the university of Baghdad Jadiriyah site were lowest at the Institute of Genetic Engineering with value of 30.008±1.46 while the highest value was 61.168±1.48 in the College of Khwarizmi Engineering because all college buildings located has lacked of ventilation. The indoor radon concentrations are much lower than the recommended ICRP action level of 200-600 (ICRP 1993). [14] The average indoor inhalation exposure (radon) effective dose in the buildings was 0.8058±0.0205. Table (3) shows the concentration of radon in soil and mass exhalation rate of radon in Jadiriyah site. The average radon concentration in soil samples was Volume 2, Issue 5, May 2013 Page 457

66.73±2.62. The radon concentrations in the soil are lower than the allowed limit (800 ) from WHO (WHO,1993). [15] The mass exhalation rate of radon ranged from 2.851±0.1874 to 4.240±0.3797 with an overall average value of 3.31±0.13 Table (4) shows the concentrations of uranium in soil samples taken from the university of Baghdad - Jadiriyah site. Its values varied from 17.145±0.623 to 21.496±1.153 with an overall average value of 18.672±0.457. The uranium concentration in soil s samples are less than the allowed limit (40 ) from UNSCEAR (UNSCEAR1993). [16] Also the background gamma dose rate was measured in Jadiriyah site, it is equal to 0.0328. It is lower than the recommended Ministry of Environmental in Iraq action level of 0.08±0.008 (Ministry of Environment/Iraq). [17] Table 1: Radon concentrations, E P and indoor inhalation exposure (radon) effective dose in buildings. No. Symbol Radon concentration ( ) E p ( ) Indoor Inhalation exposure (radon) effective dose ( ) 1 A1 64.625±1.808 0.2951 1.1449±0.032 2 A2 29.580±1.503 0.1351 0.524±0.0266 3 A3 49.514±0.380 0.2261 0.8772±0.0067 4 A4 34.188±1.068 0.1561 0.6057±0.0189 5 A5 59.266±1.302 0.2706 1.05±0.0231 6 A6 48.335±0.269 0.2207 0.8563±0.0048 7 A7 37.617±0.744 0.1718 0.6664±0.0132 8 A8 59.481±1.322 0.2716 1.0538±0.0234 9 A9 59.159±1.292 0.2701 1.0481±0.0229 10 A10 31.401±1.331 0.1434 0.5563±0.0236 11 A11 60.660±1.434 0.277 1.0746±0.0254 12 A12 53.479±0.755 0.2442 0.9474±0.0134 13 A13 53.050±0.715 0.2422 0.9398±0.0127 14 A14 36.653±0.835 0.1673 0.6493±0.0148 15 A15 36.010±0.895 0.1644 0.6379±0.0159 16 A16 53.801±0.785 0.2456 0.9531±0.0139 17 A17 36.224±0.875 0.1654 0.6417±0.0155 18 A18 29.044±1.554 0.1326 0.5145±0.0275 19 B1 38.689±0.642 0.1766 0.6854±0.0114 20 B2 43.512±0.187 0.1987 0.7709±0.0033 21 B3 56.373±1.029 0.2574 0.9987±0.0182 22 B4 26.579±1.787 0.1213 0.4708±0.0316 23 B5 43.941±0.146 0.2006 0.7784±0.0026 24 B6 62.696±1.626 0.2863 1.1107±0.0288 25 B7 57.873±1.17 0.2642 1.0253±0.0207 26 B8 48.228±0.259 0.2202 0.8544±0.0046 27 B9 56.587±1.049 0.2584 1.0025±0.0186 28 B10 62.053±1.565 0.2833 1.0993±0.0277 29 B11 32.259±1.25 0.1473 0.5715±0.0221 30 B12 60.338±1.403 0.2755 1.0689±0.0249 31 B13 29.365±1.523 0.1341 0.5202±0.027 32 B14 54.122±0.816 0.2471 0.9588±0.0144 33 B15 58.516±1.231 0.2672 1.0367±0.0218 34 B16 59.695±1.342 0.2726 1.0576±0.0238 35 B17 38.796±0.632 0.1771 0.6873±0.0112 36 B18 46.941±0.137 0.2143 0.8316±0.0024 Volume 2, Issue 5, May 2013 Page 458

37 B19 57.659±1.150 0.2633 1.0215±0.0204 38 B20 60.767±1.444 0.2775 1.0765±0.0256 39 B21 33.438±1.138 0.1527 0.5929±0.0202 40 B22 51.443±0.563 0.2349 0.9114±0.00997 41 B23 57.980±1.180 0.2647 1.0272±0.0209 42 B24 56.158±1.008 0.2564 0.9949±0.0179 43 B25 28.722±1.584 0.1311 0.5088±0.0281 44 B26 42.547±0.278 0.1943 0.7538±0.0049 45 B27 60.767±1.444 0.2775 1.0765±0.0256 46 B28 58.730±1.251 0.2682 1.0404±0.0222 47 B29 24.971±1.938 0.114 0.4424±0.0343 48 B30 60.231±1.393 0.275 1.067±0.0249 49 C1 52.407±0.654 0.2393 0.9284±0.0116 50 C2 33.545±1.128 0.1532 0.5943±0.01999 51 C3 65.161±1.859 0.2975 1.1544±0.0329 52 C4 30.330±1.432 0.1385 0.5373±0.0254 53 C5 29.687±1.493 0.1355 0.5259±0.0264 54 C6 48.763±0.309 0.2226 0.8639±0.0055 55 C7 50.478±0.472 0.2305 0.8943±0.0083 56 C8 23.578±2.070 0.1076 0.4177±0.0367 57 C9 27.329±1.716 0.1248 0.4842±0.0304 58 C10 29.472±1.513 0.1346 0.5221±0.0268 59 C11 50.049±0.431 0.2285 0.8867±0.0076 60 D1 29.258±1.533 0.1336 0.5183±0.0272 61 D2 23.364±2.090 0.1067 0.4139±0.037 62 D3 35.796±0.916 0.1634 0.6341±0.0162 63 D4 23.256±2.101 0.1062 0.412±0.0372 64 D5 35.796±0.916 0.1634 0.6341±0.0162 65 D6 22.613±2.161 0.1032 0.4006±0.0383 66 D7 66.447±1.980 0.3034 1.1772±0.0351 67 D8 38.475±0.662 0.1757 0.6816±0.0117 68 D9 22.613±2.161 0.1032 0.4006±0.0383 69 D10 48.871±0.32 0.2231 0.8658±0.0057 70 D11 33.223±1.159 0.1517 0.5886±0.0205 71 D12 31.830±1.290 0.1453 0.5639±0.0229 72 E1 60.231±1.393 0.275 1.067±0.0247 73 E2 58.838±1.261 0.2686 1.0424±0.0223 74 E3 53.372±0.745 0.2437 0.9455±0.0132 75 E4 61.731±1.535 0.2819 1.0936±0.0272 76 E5 56.158±1.008 0.2564 0.9949±0.0179 77 E6 58.409±1.221 0.2667 1.03478±0.0216 78 E7 32.473±123 0.1483 0.5753±0.0218 79 E8 43.405±0.197 0.1982 0.769±0.0035 80 E9 25.721±1.868 0.1174 0.4557±0.0331 81 E10 43.726±0.166 0.1996 0.7747±0.0029 82 F1 61.731±1.535 0.2819 1.0936±0.0272 83 F2 34.188±1.068 0.1561 0.6057±0.0189 84 F3 30.115±1.452 0.1375 0.5335±0.0257 Volume 2, Issue 5, May 2013 Page 459

85 F4 46.727±0.117 0.2133 0.8278±0.0021 86 F5 45.763±0.026 0.2089 0.8107±0.0005 87 F6 45.763±0.026 0.2089 0.8107±0.0005 88 F7 38.904±0.622 0.1776 0.6892±0.011 89 F8 33.974±1.088 0.1551 0.6019±0.0193 90 F9 64.839±1.829 0.296 1.1487±0.0324 91 F10 22.828±2.141 0.1042 0.4044±0.0379 92 F11 56.801±1.069 0.2593 1.0063±0.0189 93 G1 63.875±1.737 0.2916 1.1316±0.031 94 G2 63.017±1.656 0.2877 1.1164±0.0293 95 G3 62.160±1.575 0.2838 1.1012±0.0279 96 G4 59.266±1.302 0.2706 1.05±0.0231 97 G5 66.125±1.950 0.3019 1.1715±0.0345 98 G6 55.408±0937 0.253 0.9816±0.0166 99 G7 61.410±1.504 0.2804 1.0879±0.0266 100 G8 58.087±1.191 0.2652 1.0291±0.0211 101 H1 35.367±0.956 0.1615 0.6266±0.0169 102 H2 22.399±2.182 0.1023 0.3968±0.0386 103 H3 57.123±1.099 0.2608 1.012±0.0195 104 K1 31.830±1.290 0.1453 0.5639±0.0229 105 K2 33.866±1.098 0.1546 0.6±0.0194 106 K3 36.760±0.825 0.1678 0.6512±0.0146 107 K4 62.589±1.616 0.2858 1.1088±0.0286 108 M1 25.507±1.888 0.1165 0.4519±0.0334 109 M2 34.509±1.037 0.1576 0.6114±0.0184 110 N1 59.159±1.292 0.2701 1.0481±0.0229 111 N2 37.510±0.754 0.1713 0.6645±0.0133 112 N3 38.475±0.662 0.1757 0.6816±0.0117 where the symbols A s for College of Science, B s for College of Engineering, C s for College of Science for Women, D s for College of Education for Women, E s for College of Media, F s for College of Political Science, G s for College of Khwarizmi Engineering, H s for Institute of Laser, K s for Institute of Accounting and Financial studies, M s for Institute of Genetic Engineering, and N s for Institute of Urban and Regional planning. Table 2: The average radon concentrations in the colleges and institutes in Jadiriyah site No. Name of College or Institute Average Radon concentrations( ) 1 College of Science 46.227±1.048 2 College of Engineering 48.999±1.072 3 College of Science for Women 40.073±1.189 4 College of Education for Women 34.295±1.440 5 College of Media 49.406±1.060 6 College of Political Science 43.785±0.997 7 College of Khwarizmi Engineering 61.168±1.480 8 Institute of Laser 38.296±1.412 9 Institute of Accounting and Financial studies 41.261±1.207 10 Institute of Genetic Engineering 30.008±1.460 11 Institute of Urban and Regional planning 45.048±0.903 Volume 2, Issue 5, May 2013 Page 460

Table 3: Radon concentrations and mass exhalation rate in soil samples. No. Symbol Radon concentration Radon mass exhalation rate ( ) ( ) 1 S1 67.231±0.204 3.335±0.0102 2 S2 65.156±0.643 3.232±0.0318 3 S3 85.491±7.659 4.240±0.3797 4 S4 57.478±3.777 2.851±0.1874 5 S5 58.827±3.226 2.918±0.160 6 S6 66.194±0.219 3.283±0.011 Table 4: Uranium concentrations in Jadiriyah site. No. Symbol Uranium concentration ( ) Uranium concentration ( ) 1 S1 19.206±0.218 1.549±0.0176 2 S2 18.126±0.223 1.462±0.0179 3 S3 21.496±1.153 1.733±0.093 4 S4 17.145±0.623 1.383±0.0503 5 S5 17.766±0.369 1.433±0.0298 6 S6 18.290±0.156 1.475±0.0126 4. Conclusions The concentrations of radon gas in soil samples and inside buildings were measured using Cr 39 detectors, and they were found lower than the recommended WHO and ICRP action levels respectively. The concentrations of uranium in soil samples were found lower than the recommended UNSCEAR. The background gamma rays and mass exhalation rates of radon were 0.0328 and 58.922±2.315, respectively. All results of indoor radon showed that no action is required to reduce radon levels inside the buildings. References [1.] F. S. Al- Saleh, "Measurements of indoor gamma radiation and radon concentrations in dwellings of Riyadh city, Saudi Arabia", App. Rad. Isot. 65(2007) 843-848. [2.] M. A. Misdaq, A. Merzouki, D. Elabboubi, F. Aitnouh, and S. Berrazzouk, "Determination of radon equivalent alpha- dose in different human organs from water ingestion using SSNTD and dosimetric compartmental models", J. Radioanal. Nucl. Chem., Vol.245, No.3 (2000) 513-520. [3.] M. Wilkening, "Radon in the Environment", Elsevier Science Publishing Company INC., New York, U.S.A.1990. [4.] UNSCEAR 1993, "Sources and Effects of Ionizing Radiation", United Nations Scientific Committee on the Effects of Atomic Radiation 1993, Report to the General Assembly. [5.] N. L. Nagda, " Radon: Prevalence, Measurements, Health Risks and Control", American Society for testing and materials, Philadelphia, PA, 1994. [6.] R. M. Ramadhan, " Measurement of radon concentration in Iraqi and imported cement", J. Thi- Qar Sci., Vol.3 (2), 2012. [7.] WHO, "Handbook on Indoor Radon, A public health perspective" World Health Organization, 2009. [8.] M. I. Al-Jarallah and F. Rehman, "Indoor radon measurements in dwellings of four Saudi Arabian cities", Radiat. Meas. 36(2003) 445-448. [9.] M. I. Al-Jaralla, F. Rehman, and Abdalla K. "Comparative study of short and long term indoor radon measurements", Radiat. Meas. 43(2008) S471-S474. [10.] F. Abdul-Kader, " A study of the nuclear track detectors and the use of them in Natural Radioactivity Measurements in Mekkah ", M.sc thesis, Umm Al- Qura University, 1999. [11.] T. A. Salama, U. Seddik, T. M. Dsoky, A. M. Morsy, and R. El-Asser, "Determination of thorium and uranium contents in soil samples using SSNTDs passive method", Pramana J. Phys., Vol. 67, No. 2, 2006, pp 269-276. [12.] K. Kant, R. Rashmi, S. Kuriakose, R. G. Sonkawade, R. P. Chauhan, S.K. Chakarvarti and G. S. Sharma, " Radon activity and exhalation rates in Indian fly ash samples ", Indian Journal of Pure & Applied Physics, Vol. 48, July 2010, pp.457-462. Volume 2, Issue 5, May 2013 Page 461

[13.] A. K. Mahur, "Comparative study of indoor radon, thoron with radon exhalation rate in soil samples in some historical places at Jaipur, Rajasthan, India", Pelagia Research Library: Advances in Applied Science Research, 2012, 3(2): 1085 1091. [14.] International Commission on Radiological Protection (ICRP 65), 1993, "Protection against Rn-222 at home and at work", Pergamon Press, Oxford, 1993. [15.] World Health Organization, WHO, " Guidelines for Drinking Water Quality", 2nd. Geneva, 1993. [16.] UNSCEAR 1993, "sources and effects of ionizing radiation ", united nations scientific committee effects of atomic radiation, Report to the General Assembly, United Nations, New York,1993. [17.] Ministry of Environment in Iraq, "Indeed Environment Radioactivity for 2007". http://www.moen.gov.iq. AUTHOR Shafik S. Shafik received the B.S., M.S. and Ph. D. degrees in Nuclear Physics, from Physics Department, Collage of Science, Baghdad University in 1995, 1999, and 2006 respectively. During 1995-1999, he stayed in Iraqi Radiation Protection Center (ICRC), Ministry of Environment of Iraq. During 1999- till now he worked as a lecturer in the Physics Department, Collage of Science, Baghdad University. In addition, he now occupies a deputy Dean of the Collage of Science, Baghdad University Volume 2, Issue 5, May 2013 Page 462