Sadayuki Yoshitomi. Semiconductor Company 2007/01/25

Similar documents
EKV MOS Transistor Modelling & RF Application

Analysis of Transconductances in Deep Submicron CMOS with EKV 3.0

Investigation of the Thermal Noise of MOS Transistors under Analog and RF Operating Conditions

Microelectronics Part 1: Main CMOS circuits design rules

6.012 Electronic Devices and Circuits Spring 2005

Advanced Compact Models for MOSFETs

Lecture 3: CMOS Transistor Theory

SECTION: Circle one: Alam Lundstrom. ECE 305 Exam 5 SOLUTIONS: Spring 2016 April 18, 2016 M. A. Alam and M.S. Lundstrom Purdue University

Device Models (PN Diode, MOSFET )

Lecture 23: Negative Resistance Osc, Differential Osc, and VCOs

Lecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET:

The PSP compact MOSFET model An update

Fundamentals of the Metal Oxide Semiconductor Field-Effect Transistor

EE 330 Lecture 17. MOSFET Modeling CMOS Process Flow

ECE 546 Lecture 11 MOS Amplifiers

Characterization and modeling of RF-MOSFETs in the millimeter-wave frequency domain. Sadayuki Yoshitomi, Fumie Fujii

Lecture 4: CMOS Transistor Theory

Lecture 040 Integrated Circuit Technology - II (5/11/03) Page ECE Frequency Synthesizers P.E. Allen

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

Device Models (PN Diode, MOSFET )

CMOS Devices. PN junctions and diodes NMOS and PMOS transistors Resistors Capacitors Inductors Bipolar transistors

Integrated Circuits & Systems

EECS240 Spring Today s Lecture. Lecture 2: CMOS Technology and Passive Devices. Lingkai Kong EECS. EE240 CMOS Technology

EE 330 Lecture 16. MOS Device Modeling p-channel n-channel comparisons Model consistency and relationships CMOS Process Flow

MOSFET: Introduction

6.776 High Speed Communication Circuits Lecture 10 Noise Modeling in Amplifiers

ECE 342 Electronic Circuits. Lecture 6 MOS Transistors

1. (50 points, BJT curves & equivalent) For the 2N3904 =(npn) and the 2N3906 =(pnp)

ESE570 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals

MOS Transistors. Prof. Krishna Saraswat. Department of Electrical Engineering Stanford University Stanford, CA

EE 330 Lecture 16. Devices in Semiconductor Processes. MOS Transistors

Analytical Optimization of High Performance and High Quality Factor MEMS Spiral Inductor

EKV Modelling of MOS Varactors and LC Tank Oscillator Design

Self-heat Modeling of Multi-finger n-mosfets for RF-CMOS Applications

ECE 342 Electronic Circuits. 3. MOS Transistors

EE 330 Lecture 18. Small-signal Model (very preliminary) Bulk CMOS Process Flow

Lecture 210 Physical Aspects of ICs (12/15/01) Page 210-1

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, Devices.

University of Pennsylvania Department of Electrical Engineering. ESE 570 Midterm Exam March 14, 2013 FORMULAS AND DATA

MOSFET Capacitance Model

Fig. 1 CMOS Transistor Circuits (a) Inverter Out = NOT In, (b) NOR-gate C = NOT (A or B)

Lecture 12: MOSFET Devices

Lecture 12: MOS Capacitors, transistors. Context

MOS Transistor Theory

Compact Modeling of Ultra Deep Submicron CMOS Devices

MOS Transistor Properties Review

The Devices: MOS Transistors

Topics to be Covered. capacitance inductance transmission lines

Practice 3: Semiconductors

3. Basic building blocks. Analog Design for CMOS VLSI Systems Franco Maloberti

ECE 497 JS Lecture - 12 Device Technologies

MOSFET Model with Simple Extraction Procedures, Suitable for Sensitive Analog Simulations

Workshop WMB. Noise Modeling

ECE-343 Test 2: Mar 21, :00-8:00, Closed Book. Name : SOLUTION

Operation and Modeling of. The MOS Transistor. Second Edition. Yannis Tsividis Columbia University. New York Oxford OXFORD UNIVERSITY PRESS

RFIC2017 MO2B-2. A Simplified CMOS FET Model using Surface Potential Equations For Inter-modulation Simulations of Passive-Mixer-Like Circuits

Section 12: Intro to Devices

EE 330. Lecture 35. Parasitic Capacitances in MOS Devices

Lecture 11: MOS Transistor

ELEN0037 Microelectronic IC Design. Prof. Dr. Michael Kraft

Part 4: Heterojunctions - MOS Devices. MOSFET Current Voltage Characteristics

EE 330 Lecture 16. MOSFET Modeling CMOS Process Flow

A Multi-Gate CMOS Compact Model BSIMMG

Today s lecture. EE141- Spring 2003 Lecture 4. Design Rules CMOS Inverter MOS Transistor Model

Accurate Modeling of Spiral Inductors on Silicon From Within Cadence Virtuoso using Planar EM Simulation. Agilent EEsof RFIC Seminar Spring 2004

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Studio 3 Review MOSFET as current source Small V DS : Resistor (value controlled by V GS ) Large V DS : Current source (value controlled by V GS )

Introduction. HFSS 3D EM Analysis S-parameter. Q3D R/L/C/G Extraction Model. magnitude [db] Frequency [GHz] S11 S21 -30

ECE-305: Fall 2017 MOS Capacitors and Transistors

Introduction and Background

EE5311- Digital IC Design

EEC 118 Lecture #2: MOSFET Structure and Basic Operation. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

Field effect = Induction of an electronic charge due to an electric field Example: Planar capacitor

EE 240B Spring Advanced Analog Integrated Circuits Lecture 2: MOS Transistor Models. Elad Alon Dept. of EECS

Lecture 23 - Frequency Resp onse of Amplifiers (I) Common-Source Amplifier. May 6, 2003

Lecture 10 MOSFET (III) MOSFET Equivalent Circuit Models

Lecture 11: MOSFET Modeling

Lecture 23 Frequency Response of Amplifiers (I) Common Source Amplifier. December 1, 2005

CMOS Digital Integrated Circuits Lec 13 Semiconductor Memories

Homework Assignment #5 EE 477 Spring 2017 Professor Parker

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

A Novel Tunable Dual-Band Bandstop Filter (DBBSF) Using BST Capacitors and Tuning Diode

Low Noise Amplifiers. Prepared by: Heng Zhang. ECEN 665 (ESS) : RF Communication Circuits and Systems

Circuits. L5: Fabrication and Layout -2 ( ) B. Mazhari Dept. of EE, IIT Kanpur. B. Mazhari, IITK. G-Number

Analysis and Design of Analog Integrated Circuits Lecture 14. Noise Spectral Analysis for Circuit Elements

6.012 Electronic Devices and Circuits

EKV based L-DMOS Model update including internal temperatures

EECS 105: FALL 06 FINAL

EECS130 Integrated Circuit Devices

MOS Transistor I-V Characteristics and Parasitics

Lecture 10 MOSFET (III) MOSFET Equivalent Circuit Models

Choice of V t and Gate Doping Type

CHAPTER 3: TRANSISTOR MOSFET DR. PHAM NGUYEN THANH LOAN. Hà Nội, 9/24/2012

3D Stacked Buck Converter with SrTiO 3 (STO) Capacitors on Silicon Interposer

MIXDES 2001 Zakopane, POLAND June 2001

Lecture 04 Review of MOSFET

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type SSM3K17FU

EE382M-14 CMOS Analog Integrated Circuit Design

Accurate Estimating Simultaneous Switching Noises by Using Application Specific Device Modeling

VLSI GATE LEVEL DESIGN UNIT - III P.VIDYA SAGAR ( ASSOCIATE PROFESSOR) Department of Electronics and Communication Engineering, VBIT

Transcription:

Sadayuki Yoshitomi. Semiconductor Company Sadayuki.yoshitomi@toshiba.co.jp Copyright 2006, Toshiba Corporation. ASP-DAC 2007

. Make the best of Electro-Magnetic (EM) simulation. Is EM simulator applicable for silicon technology? EM simulator enables accurate modeling of passive devices (Inductor and MIM capacitor ) on silicon. 2. Utilize very-accurate compact model. Looking at the EKV3.0 MOSFET Model. Accuracy of conductance. NS effects. 3. Use the Co-simulation Technique for final evaluation. Case:CMOS Amplifier Case2:CMOS VCO Case3:BiCMOS LNA 2

A A K~.7.2um 0.6um 0.3um 0.3um 0.3um CONTACT 2 Ohm.cm d STI DUMMY METAL M7 M6 M5 M4 M3 Si (750um) 3

Open-PAD 0.~0.0GHz 4

Z SUB Z jωc ox = jωc SUB + R SUB 5

!"#$ Low Frequency C ox - imagz [ ] R [ ] SUB realz SUB 6

!#"#$ High Frequency C SUB = ω R SUB R SUB real ( ) Z SUB 7

%&()*+, Insert the metal layer (thickness d ) that covers silicon substrate. This metal layer has the same conductivity as the silicon substrate. Total thickness of silicon substrate should keep the original value. w.o DUMMY Metal Measurement w.o DUMMY Metal Measurement D=50um D=60um D=70um D=80um D=90um D=50um D=60um D=70um D=80um D=90um 8

-. &/0 ## $%& #()$*&!" #!" +$%& %$)& 9

-.2um M7 0.6um 0.3um 0.3um 0.3um!"#$ % CONTACT STI DUMMY METAL,#!"-,.#!"- /$ 2 M6 M5 M4 M3 & & 0

3. Simulator Setup Agilent s RFDE Momentum (2005A or later) 50MHz-26.5GHz (max) RF Mode Mesh Frequency 26.5GHz 20 Cells/Wavelength 3D=ON, Thickconductor=ON, EDGE Mesh=Off Dedicated setup for DUMMY Layers 3D=OFF Thickconductor=OFF EDGE Mesh=ON

20um %& S-Parameters & -factor 66um!! #! 2

4./ ()0$(ω.()0$ +.(ω / ()$,-.((,-$,-,- ()$(*(ω(+./ (,-$(ω 3

-&- Ls (50MHz) Rs (50MHz) Cox(54MHz) Rsub(9.8GHz) Momentum.06 nh.23 Ohm 297.6 ff 36.9 Ohm Measurement.07 nh.26 Ohm 293.3 ff 28.3 Ohm 4

#%&5 &!! + 5

% 6 & 6

. Make the best of Electro-Magnetic (EM) simulation. Is EM simulator applicable for silicon technology? EM simulator enables accurate modeling of passive devices (Inductor and MIM capacitor ) on silicon. 2. Utilize very-accurate compact model. Looking at the EKV3.0 MOSFET Model. Accuracy of conductance. NS effects. 3. Use the Co-simulation Technique for final evaluation. Case:CMOS Amplifier Case2:CMOS VCO Case3:BiCMOS LNA 7

- -& W.Grabinski MOS-AK, IWCM2007 No. of Model Parameters 000 00 0 earlyekv BSIM4v4 BSIM3v3 MMv2 BSIM3v2 HiSIM.2.0 BSIM2 HSP28 BSIM3v3 BSIM BSIM3v2 BSIM4 BSIM2 PCIM HSP28 SP BSIM3v MM9 LEVEL2 BSIM EKV3 EKV2.6 LEVEL3 EKV LEVEL Including L,W,P scaling Without scaling 960 970 980 990 2000 200 Years Number of DC model parameters vs. the year of the introduction of the model Most recent versions of the EKV, HiSIM, MMand SP models are included Significant growth of the parameter number that includes geometry (W/L) scaling 8

*&73&- W.Grabinski MOS-AK, IWCM2007 No. of Model Parameters 000 00 0 earlyekv BSIM4v4 BSIM3v3 MMv2 BSIM3v2 HiSIM.2.0 BSIM2 HSP28 BSIM3v3 BSIM BSIM3v2 BSIM4 BSIM2 PCIM HSP28 SP BSIM3v MM9 LEVEL2 BSIM EKV3 EKV2.6 LEVEL3 EKV LEVEL Including L,W,P scaling Without scaling 960 970 980 990 2000 200 Years Independent mosfet model development based on the roots of the semiconductor physics and the design driven EKV modeling methodology EKV3 preserves coherent charge-based framework for static/dynamic modeling 9

&738!"#$ A.Bazigos, EKV3.0 model code & parameter extraction, EKV user meeting/workshop, Nov4-5, 2004. 20

&738!#"#$ A.Bazigos, EKV3.0 model code & parameter extraction, EKV user meeting/workshop, Nov4-5, 2004. 2

-738&!"$ Started from classic current transport equation I D = µ W I dψ dx s + U T d I dx Description of Ψs by using linearized I dψs = dx n C ox d dx i 2 ID formula with linearized I I D = µ W n i C ox d dx I + U T di dx 3 22

23 L x I D x I s = = 0-738&!#"$ -738&!#"$ 4 Inversion charge densities at source and drain Integration of (3) 5 R F id T ox id is T ox is I T I ox i D I I U C n U C n L W d U d C n L W I id is id is + + = + = 2 2 2 2 µ µ 6 7 ( ) ( ) ( ) + µ = D is T ox D is R F U C n L W I 2 2 Diffusion Drift

2 * g ch = di dv ch = q i = 4 + i 2 = i G i G i = 4 + i + 2 0nm, 40nm, 0.6um CMOS Technologies included. 24

29 & Creating the segmentation of long-channel MOSFETs. General concepts can be found http://www-device.eecs.berkeley.edu/~bsim3/bsim4_get.html http://www.mos-ak.org/montreux/papers/03_smit_mos-ak06.pdf Take finite time for charge to travel throughout the channel. Distribution effect Memory effect 25

738&:;4 NMOS CGB BackGate PMOS CGB BackGate 26

;-<: 3>#$%& ()*)+#,(+-)!"##$%& ()*)+#,(+-) /( /( *// // (/ (/ (/ (/ (/ 0(/ 0(/ S 0(/ 0(/ (/ (/ /( /( 0/( 0/(!.!. /( /( /( /( /( 0/( 0/( /( /( 0/( 0/(!"##$%+& ()*)+#,(+-) (/ /( /( /( Lg=2.0um Lg=0.um (6,(7*//8 (6,(7//8 49(5 (6,(7*//8 (6,(7//8 49(5!"##$%& ()*)+#,(+-)*3 0 0 0( 0( 0 0( 0( 0 9: 9; 9< 9( 9 0 9: 9; 2!. 9< 4%5 9( 9!. 4%5!"##$%+& ()*)+#,(+-)*3 ( db(s2) 738 & 3> #$%& ()*)+#,(+-)*3 2 *// // (/ 0(/ (/ (/ 0(/ S /( 0/(!. /( /( 0/( /( 0/( (6,(7*//8 (6,(7//8 49(5 ; - = db(s2) ( 2 9: 9; 9< 9( 9!. 4%5 Vg = 0.4 Volts, Vds=0.2,0.3,0.5,0.8,. and.4volts. 27

: 0 Capacitances CGB 0 Rg EKV3.0 Scaling Ratio [A.U] CFGD,CFGS CJDB,CJDS Scaling Ratio [A.U] Measured 0. 0. Lg [um] 0 0. 0. Lg [um] 0 00 RSUB,RSUB4 0 RSUB2,RSUB3 Scaling Ratio [A.U] 0 Measured EKV3.0 Scaling Ratio [A.U] Measured EKV3.0 0. Lg [um] 0 0. Lg [um] 0 28

. Make the best of Electro-Magnetic (EM) simulation. Is EM simulator applicable for silicon technology? EM simulator enables accurate modeling of passive devices (Inductor and MIM capacitor ) on silicon. 2. Utilize very-accurate compact model. Looking at the EKV3.0 MOSFET Model. Accuracy of conductance. NS effects. 3. Use the Co-simulation Technique for final evaluation. Case:CMOS Amplifier Case2:CMOS VCO Case3:BiCMOS LNA 29

= - 2 /!! $ 30

3!>?@0>?$ Reasonable match has been observed. Further need to improve S2 accuracy!3 4 4 44 3

CMOS Power VCO #=#>? 3 5 %29:.36.48 7.048.48.36 7.048 32

; - Transistors -EKV model- 33

:!*27+$ Initial simulation with Lumped L model!! Oscillation frequency differs by 0.35 GHz EM-Cosim helps predict circuit behavior with an ultimate accuracy 34

= ;+2!6>?$ :; -< &%- <.A 35

; - B-& 36

3. &,! 0! +-%23 -+-%23 3 C: 37

Simulation Technique for RF-CMOS circuit design. Next generation of Compact Model Provides better accurate conductance and high-frequency behavior. Make the best of Electromagnetic Tools Doing more practice helps to overcome inaccuracy. Worth trying DUMMY METAL. If successful in PAD, successful in EM-Cosim, too.!+;< ; = 38