ECE-305: Spring 2016 MOSFET IV

Similar documents
ECE 305: Fall MOSFET Energy Bands

ECE-305: Fall 2017 MOS Capacitors and Transistors

SECTION: Circle one: Alam Lundstrom. ECE 305 Exam 5 SOLUTIONS: Spring 2016 April 18, 2016 M. A. Alam and M.S. Lundstrom Purdue University

ECE 342 Electronic Circuits. Lecture 6 MOS Transistors

ECE 305 Exam 5 SOLUTIONS: Spring 2015 April 17, 2015 Mark Lundstrom Purdue University

Energy Bands & Carrier Densities

ECE-305: Spring Carrier Action: II. Pierret, Semiconductor Device Fundamentals (SDF) pp

Lecture 9 MOSFET(II) MOSFET I V CHARACTERISTICS(contd.)

Lecture 28 - The Long Metal-Oxide-Semiconductor Field-Effect Transistor (cont.) April 18, 2007

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, Devices.

Microsystems Technology Laboratories, MIT. Teledyne Scientific Company (TSC)

MOSFET: Introduction

Lecture 11: MOSFET Modeling

The Devices: MOS Transistors

MOSFET Physics: The Long Channel Approximation

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

EE105 - Fall 2006 Microelectronic Devices and Circuits

MOSFET. Id-Vd curve. I DS Transfer curve V G. Lec. 8. Vd=1V. Saturation region. V Th

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor

MOS Transistor Theory

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: MOS Capacitor with External Bias

Lecture 29 - The Long Metal-Oxide-Semiconductor Field-Effect Transistor (cont.) April 20, 2007

MOS Transistor I-V Characteristics and Parasitics

EE105 - Fall 2005 Microelectronic Devices and Circuits

MOS Transistor Properties Review

Lecture 3: CMOS Transistor Theory

Lecture 12: MOSFET Devices

MOS Transistors. Prof. Krishna Saraswat. Department of Electrical Engineering Stanford University Stanford, CA

Device Models (PN Diode, MOSFET )

Device Models (PN Diode, MOSFET )

ECE 342 Electronic Circuits. 3. MOS Transistors

Scaling Issues in Planar FET: Dual Gate FET and FinFETs

Simple Theory of the Ballistic Nanotransistor

CMOS INVERTER. Last Lecture. Metrics for qualifying digital circuits. »Cost» Reliability» Speed (delay)»performance

Towards a Scalable EKV Compact Model Including Ballistic and Quasi-Ballistic Transport

Extensive reading materials on reserve, including

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Lecture 22 - The Si surface and the Metal-Oxide-Semiconductor Structure (cont.) April 2, 2007

Section 12: Intro to Devices

ECE315 / ECE515 Lecture-2 Date:

Lecture 4: CMOS Transistor Theory

Lecture 04 Review of MOSFET

Practice 3: Semiconductors

Lecture 5: CMOS Transistor Theory

6.012 Electronic Devices and Circuits

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

Microelectronic Devices and Circuits Lecture 9 - MOS Capacitors I - Outline Announcements Problem set 5 -

ECE-305: Fall 2017 Metal Oxide Semiconductor Devices

Integrated Circuits & Systems

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

V t vs. N A at Various T ox

MOSFET Capacitance Model

ECE 546 Lecture 10 MOS Transistors

Lecture #27. The Short Channel Effect (SCE)

Physics-based compact model for ultimate FinFETs

Today s lecture. EE141- Spring 2003 Lecture 4. Design Rules CMOS Inverter MOS Transistor Model

Lecture 3: Density of States

Microelectronics Part 1: Main CMOS circuits design rules

Lecture 11: J-FET and MOSFET

ECEN474/704: (Analog) VLSI Circuit Design Spring 2018

Analysis of Transconductances in Deep Submicron CMOS with EKV 3.0

MOS Capacitor MOSFET Devices. MOSFET s. INEL Solid State Electronics. Manuel Toledo Quiñones. ECE Dept. UPRM.

Ideal Diode Equation II + Intro to Solar Cells

III-V CMOS: What have we learned from HEMTs? J. A. del Alamo, D.-H. Kim 1, T.-W. Kim, D. Jin, and D. A. Antoniadis

! MOS Capacitances. " Extrinsic. " Intrinsic. ! Lumped Capacitance Model. ! First Order Capacitor Summary. ! Capacitance Implications

! CMOS Process Enhancements. ! Semiconductor Physics. " Band gaps. " Field Effects. ! MOS Physics. " Cut-off. " Depletion.

EE5311- Digital IC Design

ELEC 3908, Physical Electronics, Lecture 23. The MOSFET Square Law Model

Lecture 35: Introduction to Quantum Transport in Devices

VLSI Design The MOS Transistor

ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems. Today. Refinement. Last Time. No Field. Body Contact

Lecture 12 Digital Circuits (II) MOS INVERTER CIRCUITS

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. EECS 130 Professor Ali Javey Fall 2006

ECE606: Solid State Devices Lecture 23 MOSFET I-V Characteristics MOSFET non-idealities

Lecture 7 PN Junction and MOS Electrostatics(IV) Metal Oxide Semiconductor Structure (contd.)

Performance Analysis of 60-nm Gate-Length III-V InGaAs HEMTs: Simulations Versus Experiments

and V DS V GS V T (the saturation region) I DS = k 2 (V GS V T )2 (1+ V DS )

Chapter 5 MOSFET Theory for Submicron Technology

Lecture 13 MOSFET as an amplifier with an introduction to MOSFET small-signal model and small-signal schematics. Lena Peterson

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Studio 3 Review MOSFET as current source Small V DS : Resistor (value controlled by V GS ) Large V DS : Current source (value controlled by V GS )

6.012 MICROELECTRONIC DEVICES AND CIRCUITS

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: MOSFET N-Type, P-Type. Semiconductor Physics.

Lecture 30 The Short Metal Oxide Semiconductor Field Effect Transistor. November 15, 2002

EE 330 Lecture 16. Devices in Semiconductor Processes. MOS Transistors

6.012 Electronic Devices and Circuits

Minority Carrier Diffusion Equation (MCDE)

FIELD-EFFECT TRANSISTORS

The Devices. Devices

Quantitative MOSFET. Step 1. Connect the MOS capacitor results for the electron charge in the inversion layer Q N to the drain current.

The Gradual Channel Approximation for the MOSFET:

Operation and Modeling of. The MOS Transistor. Second Edition. Yannis Tsividis Columbia University. New York Oxford OXFORD UNIVERSITY PRESS

DC and Transient Responses (i.e. delay) (some comments on power too!)

LECTURE 3 MOSFETS II. MOS SCALING What is Scaling?

HW 5 posted due in two weeks Lab this week Midterm graded Project to be launched in week 7

1 Name: Student number: DEPARTMENT OF PHYSICS AND PHYSICAL OCEANOGRAPHY MEMORIAL UNIVERSITY OF NEWFOUNDLAND. Fall :00-11:00

Metal-oxide-semiconductor field effect transistors (2 lectures)

MOS CAPACITOR AND MOSFET

! PN Junction. ! MOS Transistor Topology. ! Threshold. ! Operating Regions. " Resistive. " Saturation. " Subthreshold (next class)

Transcription:

ECE-305: Spring 2016 MOSFET IV Professor Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN USA lundstro@purdue.edu Lundstrom s lecture notes: Lecture 4 4/7/16

outline 1) Introduction 2) Linear region 3) Saturation region 4) Full range ( = 0 à ) 5) DIBL 6) Series resistance 7) VS model level 0 2

Long vs. short channel MOSFETs Square Law Velocity saturated SAT ( V T ) 2 SAT ( V T ) Fig. E17.2, Semiconductor Device 3 Fundamentals, R.F. Pierret

the MIT VS Model ß 32 nm technology à 4

outline 1) Introduction 2) Linear region 3) Saturation region 4) Full range ( = 0 à ) 5) DIBL 6) Series resistance 7) VS model level 0 5

MOSFET IV characteristic circuit symbol gate-voltage controlled current source D G S gate-voltage controlled resistor (Courtesy, Shuji Ikeda, ATDF, Dec. 2007) 6

MOSFET e-band (equilibrium) L E = 0 0 > V T = 0 E C ( y) n-si n-si = V DD p-si E F y = 0 y y = 0 y Q n C ox ( V T ) C cm 2 7

MOSFET e-band (high, low ) L E 0 > V T n-si n-si E C ( y) = V DD y = 0 p-si y F n E y = 1 q de C dx F n y Q n C ox ( V T ) C cm 2 8

MOSFET IV L 0 > V T current is charge per unit time n-si n-si = W Q n ( y) υ y (y) y = 0 p-si y C Q V Q n C ox MOS electrostatics Q n 0 < V T F ( V T ) C cm 2 ( ) C ox = K O ε 0 x o F cm 2 9

L MOSFET IV: low 0 > V T Q n ( y) C ox ( V T ) = W Q n Q n = C ox ( y) υ y (y) ( V T ) gate-voltage controlled resistor υ y ( y ) = µ E = W L µ C ( n V V n ox GS T )V y DS E y = L 10

outline 1) Introduction 2) Linear region 3) Saturation region 4) Full range ( = 0 à ) 5) DIBL 6) Series resistance 7) VS model level 0 11

MOSFET e-band (high, low ) L E virtual source 0 > V T VDS n-si n-si E C ( y) = V DD p-si F n F n y = 0 y y = 0 y Q n C ox ( V T ) C cm 2 12

MOSFET IV: pinch-off at high 0 > V T V D Q n ( y) = C ox ( V T V(y) ) V ( y ) pinch = ( V T ) Note: thickness of channel illustrates the areal density of electrons not the actual thickness. Q n ( y ) pinch 0 Electric field is very large in the pinch-off region. 13

pinch off in the channel pinch-off point 0 > V T V D E C y ( nm) 14

MOSFET IV: high 0 > V T V D V ( y pinch ) = ( V T ) Q n ( y) = C ox ( V T V ( y) ) = W Q n ( y) υ y (y) = W Q n ( 0) υ y (0) Q n ( 0) = C ox ( V T ) υ( 0) = µ n E y ( 0) E y (0) V ( y ) pinch L = ( V T ) L = W L µ C n ox 2 ( V V ) 2 GS T 15

short channel MOSFETs SAT ( V T ) 16

High : velocity saturation L 1.0V 20nm 5 105 V/cm velocity cm/s ---> 10 7 υ = µ n E υ = υ sat 10 4 10 5 electric field V/cm ---> 17

MOSFET IV: velocity saturation 0 > V T E y >> 10 4 = W Q n ( y) υ y (y) (Courtesy, Shuji Ikeda, ATDF, Dec. 2007) Q n = C ox ( V T ) ( ) υ y = υ sat = W C ox υ sat V T 18

outline 1) Introduction 2) Linear region 3) Saturation region 4) Full range ( = 0 à ) 5) DIBL 6) Series resistance 7) VS model level 0 19

MOSFET: IV (re-cap) LIN = W L µ nc ox ( V T ) SAT = W C ox υ sat AT = υ satl µ n ( V T ) AT We have developed a 2-piece approximation to the MOSFET IV characteristic. 20

piecewise model for (, ) W = Q n ( ) υ( ) V T : Q n ( ) = C ox ( V T ) < V T : Q n ( ) = 0 AT : υ ( ) = µ n > AT : υ( ) = υ sat L If we can make the average velocity go smoothly from the low to high limits, then we will have a smooth model for (, ) above threshold. 21

From low to high 1 υ( ) = 1 µ n L + 1 υ sat υ( ) = AT 1+ AT υ sat υ( ) = F SAT ( )υ sat F SAT ( ) = AT ( ) β 1+ V DSAT 1/β The extra parameter, β, is empirically adjusted to fit the IV characteristic. Typically, β 1.4 1.8 for both N- MOSFETs and for P-MOSFETs. 22

empirical saturation function υ( ) = F SAT ( )υ sat F SAT ( ) AT ( ) β 1+ V DSAT 1/β << AT : F SAT ( ) V >> AT : F SAT ( ) 1 DSAT υ( ) υ sat AT υ( ) υ sat υ sat L µ n υ( ) υ sat V υ( ) µ DS n L 23

saturation function: F SAT (V D ) υ( ) = F SAT ( )υ sat F SAT ( ) = AT ( ) β 1+ V DSAT 1/β Although this is just an empirical method to produce smooth curve that properly goes between the small and large V D limits, it works very well in practice, which suggests that it captures something important about MOSFETs. 24

outline 1) Introduction 2) Linear region 3) Saturation region 4) Full range ( = 0 à ) 5) DIBL 6) Series resistance 7) VS model level 0 25

output resistance need to treat the finite output resistance = W Q n υ sat Q n = C ox ( V T ) V T = V T 0 δ AT δ = DIBL mv V 26

outline 1) Introduction 2) Linear region 3) Saturation region 4) Full range ( = 0 à ) 5) DIBL 6) Series resistance 7) VS model level 0 27

intrinsic vs. extrinsic voltages V D R D D V G = V G V G = V G V D = V D ( V G, V S, V D )R D G V S = V S + ( V G, V S, V D )R S silicon S R S V S 28

effect of series resistances = W C ox υ sat ( V T ) = R ch = R S = ( R ch + R S + R ) D 29

outline 1) Introduction 2) Linear region 3) Saturation region 4) Full range ( = 0 à ) 5) DIBL 6) Series resistance 7) Simple VS model 30

Simple VS model 1) W = Q n ( ) υ ( ) 2) ( ) = C ox ( ) Q n V T = V T 0 δ V T ( > V T ) There are only 8 devicespecific parameters in this model: 3) ( ) = F SAT υ ( )υ sat C ox,v T,δ,υ sat,µ n, L 4) F SAT ( ) = 1+ AT ( ) β AT 1/β R SD = R S + R D + β 5) AT = υ sat L µ n 31

outline 1) Introduction 2) Linear region 3) Saturation region 4) Full range ( = 0 à ) 5) DIBL 6) Series resistance 7) Simple VS model 8) Summary 32

MOSFET IV: low = W C ox υ sat ( V T ) gate-voltage controlled resistor = W L µ n C ox ( V T ) 33

sub-micron MOSFETs square law theory (pinch-off) = W L µ C n ox 2 ( V V ) 2 GS T velocity saturation theory = W C ox υ sat ( V T ) 34

the MIT VS Model ß 32 nm technology à 35

the MIT VS Model 1 1 µ n µ app υ sat υ inj apparent mobility injection velocity https://nanohub.org/resources/21703 36