MATHEMATICS. 61. The differential equation representing the family of curves where c is a positive parameter, is of

Similar documents
Honors Calculus Homework 13 Solutions, due 12/8/5

Calculus 2 - D. Yuen Final Exam Review (Version 11/22/2017. Please report any possible typos.)

Complete Solutions to Supplementary Exercises on Infinite Series

Math 21B-B - Homework Set 2

Objective Mathematics


MATH Exam 1 Solutions February 24, 2016

1988 AP Calculus BC: Section I

(c) Write, but do not evaluate, an integral expression for the volume of the solid generated when R is

MAT136H1F - Calculus I (B) Long Quiz 1. T0101 (M3) Time: 20 minutes. The quiz consists of four questions. Each question is worth 2 points. Good Luck!

x x x Using a second Taylor polynomial with remainder, find the best constant C so that for x 0,

INTRODUCTORY MATHEMATICAL ANALYSIS

JEE ADVANCED 2013 PAPER 1 MATHEMATICS

TECHNIQUES OF INTEGRATION


PAPER : IIT-JAM 2010

MATH 10550, EXAM 3 SOLUTIONS

Consortium of Medical Engineering and Dental Colleges of Karnataka (COMEDK) Undergraduate Entrance Test(UGET) Maths-2012

Castiel, Supernatural, Season 6, Episode 18

MA1200 Exercise for Chapter 7 Techniques of Differentiation Solutions. First Principle 1. a) To simplify the calculation, note. Then. lim h.

Z ß cos x + si x R du We start with the substitutio u = si(x), so du = cos(x). The itegral becomes but +u we should chage the limits to go with the ew

Log1 Contest Round 1 Theta Equations & Inequalities. 4 points each. 5 points each. 7, a c d. 9, find the value of the product abcd.

IIT JAM Mathematical Statistics (MS) 2006 SECTION A

MATH 31B: MIDTERM 2 REVIEW

MATH2007* Partial Answers to Review Exercises Fall 2004

Name: Math 10550, Final Exam: December 15, 2007

Chapter 10: Power Series

WBJEE Answer Keys by Aakash Institute, Kolkata Centre

1 Approximating Integrals using Taylor Polynomials

(a) (b) All real numbers. (c) All real numbers. (d) None. to show the. (a) 3. (b) [ 7, 1) (c) ( 7, 1) (d) At x = 7. (a) (b)

JEE(Advanced) 2018 TEST PAPER WITH SOLUTION (HELD ON SUNDAY 20 th MAY, 2018)

Ma 4121: Introduction to Lebesgue Integration Solutions to Homework Assignment 5

Solutions to quizzes Math Spring 2007

Example 2. Find the upper bound for the remainder for the approximation from Example 1.

Solution of EECS 315 Final Examination F09

Integrable Functions. { f n } is called a determining sequence for f. If f is integrable with respect to, then f d does exist as a finite real number

Mathematics Extension 1

1. (25 points) Use the limit definition of the definite integral and the sum formulas 1 to compute

f(x) dx as we do. 2x dx x also diverges. Solution: We compute 2x dx lim

Most text will write ordinary derivatives using either Leibniz notation 2 3. y + 5y= e and y y. xx tt t

AIEEE 2004 (MATHEMATICS)

PRACTICE FINAL/STUDY GUIDE SOLUTIONS

Math 210A Homework 1

Fundamental Concepts: Surfaces and Curves

Sequences A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence

September 2012 C1 Note. C1 Notes (Edexcel) Copyright - For AS, A2 notes and IGCSE / GCSE worksheets 1

y = f x x 1. If f x = e 2x tan -1 x, then f 1 = e 2 2 e 2 p C e 2 D e 2 p+1 4

Chapter 4. Fourier Series

3. Z Transform. Recall that the Fourier transform (FT) of a DT signal xn [ ] is ( ) [ ] = In order for the FT to exist in the finite magnitude sense,

CALCULUS BASIC SUMMER REVIEW

For use only in Badminton School November 2011 C2 Note. C2 Notes (Edexcel)

The z-transform. 7.1 Introduction. 7.2 The z-transform Derivation of the z-transform: x[n] = z n LTI system, h[n] z = re j

Solutions to Final Exam Review Problems

Topic 5 [434 marks] (i) Find the range of values of n for which. (ii) Write down the value of x dx in terms of n, when it does exist.

MTH Assignment 1 : Real Numbers, Sequences

AP Calculus AB 2006 Scoring Guidelines Form B

Chapter 2 The Solution of Numerical Algebraic and Transcendental Equations

GULF MATHEMATICS OLYMPIAD 2014 CLASS : XII

CHAPTER 1 SEQUENCES AND INFINITE SERIES

In this section, we show how to use the integral test to decide whether a series

n 3 ln n n ln n is convergent by p-series for p = 2 > 1. n2 Therefore we can apply Limit Comparison Test to determine lutely convergent.

WBJEE MATHEMATICS

Calculus 2 Test File Spring Test #1

CALCULUS AB SECTION I, Part A Time 60 minutes Number of questions 30 A CALCULATOR MAY NOT BE USED ON THIS PART OF THE EXAM.

AP Calculus BC Review Applications of Derivatives (Chapter 4) and f,

SOLUTIONS TO EXAM 3. Solution: Note that this defines two convergent geometric series with respective radii r 1 = 2/5 < 1 and r 2 = 1/5 < 1.

2 f(x) dx = 1, 0. 2f(x 1) dx d) 1 4t t6 t. t 2 dt i)

The type of limit that is used to find TANGENTS and VELOCITIES gives rise to the central idea in DIFFERENTIAL CALCULUS, the DERIVATIVE.


INTEGRATION BY PARTS (TABLE METHOD)

MATH 1A FINAL (7:00 PM VERSION) SOLUTION. (Last edited December 25, 2013 at 9:14pm.)

Indian Institute of Information Technology, Allahabad. End Semester Examination - Tentative Marking Scheme

MATHEMATICS Code No. 13 INSTRUCTIONS

Maximum and Minimum Values

f t dt. Write the third-degree Taylor polynomial for G

MAT 271 Project: Partial Fractions for certain rational functions

is also known as the general term of the sequence

TR/46 OCTOBER THE ZEROS OF PARTIAL SUMS OF A MACLAURIN EXPANSION A. TALBOT

2018 MAΘ National Convention Mu Individual Solutions ( ) ( ) + + +

Linear Differential Equations of Higher Order Basic Theory: Initial-Value Problems d y d y dy

Seunghee Ye Ma 8: Week 5 Oct 28

Math 113 Exam 3 Practice

A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence

PROBLEM SET 5 SOLUTIONS 126 = , 37 = , 15 = , 7 = 7 1.

Section 13.3 Area and the Definite Integral

Math 113 Exam 3 Practice

Bertrand s Postulate. Theorem (Bertrand s Postulate): For every positive integer n, there is a prime p satisfying n < p 2n.

COMM 602: Digital Signal Processing

Regn. No. North Delhi : 33-35, Mall Road, G.T.B. Nagar (Opp. Metro Gate No. 3), Delhi-09, Ph: ,

Math 142, Final Exam. 5/2/11.

MIDTERM 3 CALCULUS 2. Monday, December 3, :15 PM to 6:45 PM. Name PRACTICE EXAM SOLUTIONS

SEQUENCE AND SERIES NCERT

Coffee Hour Problems of the Week (solutions)

MATH spring 2008 lecture 3 Answers to selected problems. 0 sin14 xdx = x dx. ; (iv) x +

Math 113, Calculus II Winter 2007 Final Exam Solutions

The picture in figure 1.1 helps us to see that the area represents the distance traveled. Figure 1: Area represents distance travelled

Calculus 2 Test File Fall 2013

CHAPTER 10 INFINITE SEQUENCES AND SERIES

HOMEWORK #10 SOLUTIONS

Transcription:

MATHEMATICS 6 The differetial equatio represetig the family of curves where c is a positive parameter, is of Order Order Degree (d) Degree (a,c) Give curve is y c ( c) Differetiate wrt, y c c y Hece differetial equatio is y y y y / Squarig ad multiplyig by y y y Hece order is ad degree is y 6 The differetial equatio of the family of curves for which the legth of the ormal is equal to a costat k, is give by ( ) ( ) (d) ( ) The legth of ormal is give by, y y k y k y y k y k y 6 The solutio of the differetial equatio ( ) is y ay y( ay) a y ay ( a) O itegratig both sides, we get logy log( ay) log( a) logc y c( a) ( ay) or c( a)( ay) y (d) Noe of these

6 The solutio of the differetial equatio is (d) Noe of these Here y y log It is homogeeous equatio So ow put y v ad v dv (i) O itegratig, we get log(logv ) log logc y c log c y e, the the equatio (i) reduces to 65 The geeral solutio of is ( ) ( ) ( ) (d) ( ) y y y y Put v / y y vy v y dv dv dv v y v v v y v dv y ta ( / y) logy c ta ( v ) logy C dv v logv 66 The solutio of the equatio is (d) Noe of these y y y It is liear equatio, therefore IF Hece the solutio of the equatio is e y e y ( y ) e c ce y y e y

67 The solutio of the give differetial equatio is (d) ( ) y ; IF e ( ) e Required solutio is ye c or y ce 68 A solutio of the differetial equatio ( ) is (d) Give equatio ca be writte as y If p, the y p p Differetiatig wrt, we get dp dp dp dp p p p ( p) Itegratig wrt, we get p c c ; y c c If c, the y 69 A cotiuously differetiable fuctio satisfyig is ta y (d) y Itegratig both sides, y ta y c (d) Not possible At, y, the c At,, y the ta c c ta y y ta ( ) Therefore, solutio is y ta But ta is ot cotiuous fuctio i (, ) Hece, () is ot possible i (, )

7 The rate of icrease of bacteria i a certai culture is proportioal to the umber preset If it double i 5 hours the i 5 hours, its umber would be 8 times the origial 6 times the origial times the origial (d) 6 times the origial Let P be the iitial populatio ad let the populatio after t years be P The dp dp kp k dt dt P O itegratig, we have log P kt c At, t P P P logp c ; logp kt logp log kt P Whe t 5 hrs, P P P log 5k P Whe t 5 hours, we have log P P log 5 log P log K ; log t 5 P 5 5 5 log log ; P P 7 The solutio of the differetial equatio is equal to y cosec( y) y cosec ( y) (d) ( y ) cosec ( y) d( y) cosec ( y) d( y) cosec ( y) Itegratig both sides, si( y ) d( y) d ( y) cosec ( ) y cos( y) c ; cos( y) c d y 7 The solutio of the equatio l, whe, y ad is

(d) (l ) l (l) l (l) l (d) (l) l d y log At,, y, (log ) c c log log y (log ) 7 If y cos cos y, the y () is (d) y cos cos y Differetiate both sides with respect to, we get y si cos y ( siy) y cos y Agai differetiate with respect to ysi y cos cos y si y siy y [cos y( y) siy y] siy y Puttig, we get y y siy y y y y siy Sice at, y ; (y ) 7 If is the greatest of the defiite itegrals e I I e cos,, I I e cos e /, the I I I I I I (d) I I (d) For, we have, so that e e Hece Also cos e, cos e cos Therefore e / e e Hece I is the greatest itegral cos I

75 Let f () be a fuctio satisfyig f ( ) f( ) with f ( ) ad g () be the fuctio satisfyig f( ) g( ) The value of itegral f ( ) g( ) is equal to ( e 7) ( e ) ( e ) (d) Noe of these f'( ) f( ) (d) We have f '( ) f( ) log f( ) logc f( ) ce Sice f ( ), therefore ce c Thus ( ) e f Hece g( ) e f ) g( ) e ( ( e ) e e 76 Let f be a positive fuctio Let k ) k I k ) k f (, I f ( whe k The I / I is / (d) k k I f{ ( )} k k ( k k ) f[( k k ){ ( k k )}] ( f ( ) f( a b ) ) k k k k ( ) f{ ( )} k f{ ( )} f{ ( )} I I I k I I I 77 If is ay iteger, the e cos ( ) cos (d) Noe of these Sice cos( )( ) cos[( ) ( ) ] = cos( ) ad cos ( ) cos So that f( a ) f( ), ad hece by the property of defiite itegral e cos cos ( ) b a b a

78 The value of the defiite itegral 6 such iterval is lies i the iterval [ a, b] The smallest, [, ] 7, (d) Noe of these 7 f ( ) f() The fuctio 7 f( ) is a icreasig fuctio, so Mi f( ) f() ad Ma 6 b Therefore by the property ( b a) f( ) M( b m a) (where m ad M are the smallest ad greatest values of fuctio) 6 7 a m 79 If l( m, ) t ( t) dt, the the epressio for l ( m, ) i terms of l ( m, ) is l( m, ) m m l( m, ) m m l( m, ) ( t) t m m t m ( t) dt ( t) l( m, ) m m m t dt m l( m, ) m m (d) l( m, ) 8 For which of the followig values of m, the area of the regio bouded by the curve y ad the lie y m equals (d) The equatio of curve is y y y This is a parabola whose verte is Y, y = m O m X

Hece poit of itersectio of the curve ad the lie m ( m) ie, or m 9 m ( ( m) ( m) m) ( m) ( m) 6 m m 6 9 / ( m ) 7 m 7 m Also, ( m ) ( m )[( m) 9 ( m)] ( m ) ( m) 9 m m m 9 m 5m 5 5 5 m ie, m is imagiary Hece, m 8 If for a real umber y, [ y] is the greatest iteger less tha or equal to y, the the / value of the itegral [ si ] is / (d) We kow si si 6 I [ si] [ si] 5 [ si] 6 [ si ] 5 6 7 7 [ si] 6 / 5/6 7/6 / 5 6 6 () 5 () ( ) ( 6 7 7 ) 6 5 7 7 6 6 6 6 6 6

8 The area bouded by the curves y l, y l, y l ad y l is sq uit 6 sq uit sq uit (d) Noe of these We kow that log is defied for ad log is defied for all R {} Also log ad log Y X X Required area is symmetrical i all the four quadrats ad is equal to log log,(i (,),log ) = [ log ] ( ) squit, si 8 si Y, ( N) equals lim log (d) si cos cos cos si si cos si cos si cos 5 si si si si si si si si cos cos si cos si si cos cos si si si

8 If I, I, I, I, the I I I I I I (d) I I (d) For, we have ad for, we have for ad for ad I I ad I I 85 ( si cos ) si cos si cos si cos si cos Differetiatio of si cos is cos, the I ( si cos ) Itegrate by parts I ( si cos ) cos ( cos ( si cos ) dt t t cos cos ( si) si cos ) cos si cos cos sec si si cos cos cos si si cos ( si cos )cos si cos ( si ) si cos ( si cos )cos si cos si cos si cos (d) Noe of these

86 e / si e / cos c e / cos c e / si c (d) e / si c (d) Let I e si / si e cos e / / c si e / e / cos si e / Therefore, I e si cos / I e si cos / e / si Trick : By ispectio, d e e si c e / e si c cos e si / / / 87 (si si) cos si e / / si log( cos ) log( cos ) log( cos ) 6 6 log( cos ) log( cos ) log( cos ) 6 log( cos ) log( cos ) log( cos ) (d) Noe of these I si si( cos ) si ( cos ) si ( cos )( cos )( cos ) Now differetial coefficiet of cos is si which is give i umerator ad hece we make the substitutio cos t si dt I dt ( t)( t)( t) We split the itegrad ito partial fractios I dt t t t etc 6( ) ( ) ( )

e 6e 88 If A B log( 9e ) C, the A, B ad C are 9e e (d) 6 A, B, C log costat 5 5 A, B, C log costat 6 5 A, B, C log costat 6 (d) Noe of these e 6e I 9e e 9 9e 9e 8 log( 9e 6 9 e 9e ) log cost 5 log( 9 I e ) log cost 6 Comparig with the give itegral, we get 5 A, B, C log cost 6 89 The fuctio f( ) l( ) l( e ) is Icreasig o [ Decreasig o [ Decreasig o, e ad icreasig o, e (d) Icreasig o Let l( ) f( ) l( e ) l( e ) l( ) f' ( ) e l ( e ), e ad decreasig o, e ( e )l( e ) ( )l( ) l ( e ) ( e )( ) f' ( ) for all, { e} Hece f() is decreasig i [, )

9 If is taget to the curve at (, ), the (d) Give curve y p q (i) Differetiate with respect to, y p p y, p p For give lie, slope of taget p p From equatio (i), 9 8 q q 7