Engineering Mathematics

Similar documents
S.Y. Diploma : Sem. III. Applied Mathematics. Q.1 Attempt any TEN of the following : [20] Q.1(a)

Hence a root lies between 1 and 2. Since f a is negative and f(x 0 ) is positive The root lies between a and x 0 i.e. 1 and 1.

Numerical and Statistical Methods

Vidyalanakar F.Y. Diploma : Sem. II [AE/CE/CH/CR/CS/CV/EE/EP/FE/ME/MH/MI/PG/PT/PS] Engineering Mechanics

Numerical and Statistical Methods

Engineering Mechanics

Chapter 9: Complex Numbers

= + then for all n N. n= is true, now assume the statement is. ) clearly the base case 1 ( ) ( ) ( )( ) θ θ θ θ ( θ θ θ θ)

UNIT - 2 Unit-02/Lecture-01

SOLUTIONS TO HOMEWORK ASSIGNMENT #2, Math 253

UNIT II SOLUTION OF NON-LINEAR AND SIMULTANEOUS LINEAR EQUATION

C4 mark schemes - International A level (150 minute papers). First mark scheme is June 2014, second mark scheme is Specimen paper

Chemistry 456A (10:30AM Bagley 154)

MATHEMATICS PAPER IB COORDINATE GEOMETRY(2D &3D) AND CALCULUS. Note: This question paper consists of three sections A,B and C.

1) Yes 2) No 3) The energy principle does not apply in this situation. Would this be a violation of the energy principle?

Prelim Examination 2015/2016 (Assessing all 3 Units) MATHEMATICS. CFE Advanced Higher Grade. Time allowed - 3 hours

FY B. Tech. Semester II. Complex Numbers and Calculus

M.SC. PHYSICS - II YEAR

Question Bank (I scheme )

The iteration formula for to find the root of the equation

1) +x 2) x 3) +y 4) y 5) +z 6) z 7) zero magnitude

Methods of Integration

Precalculus Notes: Unit 6 Vectors, Parametrics, Polars, & Complex Numbers

INVERSE TRIGONOMETRY: SA 4 MARKS

Calculus Problem Sheet Prof Paul Sutcliffe. 2. State the domain and range of each of the following functions

Mark Scheme Summer 2009

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS BISECTION METHOD

MATH MIDTERM 4 - SOME REVIEW PROBLEMS WITH SOLUTIONS Calculus, Fall 2017 Professor: Jared Speck. Problem 1. Approximate the integral

Mathematics 132 Calculus for Physical and Life Sciences 2 Exam 3 Review Sheet April 15, 2008

Department of Mathematical x 1 x 2 1

Advanced Higher Grade

Calculus Problem Sheet Prof Paul Sutcliffe. 2. State the domain and range of each of the following functions

Section 7.1 Exercises

MATH 101 Midterm Examination Spring 2009

Chapter 8 More About the Trigonometric Functions

CONTINUITY AND DIFFERENTIABILITY

Section 7.1 Exercises

GAUTENG DEPARTMENT OF EDUCATION SENIOR SECONDARY INTERVENTION PROGRAMME MATHEMATICS GRADE 12 SESSION 19 (LEARNER NOTES)

Solutions to the Exercises of Chapter 8

MAS153/MAS159. MAS153/MAS159 1 Turn Over SCHOOL OF MATHEMATICS AND STATISTICS hours. Mathematics (Materials) Mathematics For Chemists

Trigonometric Identities. Sum and Differences

Mathematics Extension 2 HSC Examination Topic: Polynomials

Review exercise

Lecture 44. Better and successive approximations x2, x3,, xn to the root are obtained from

FIRST SEMESTER DIPLOMA EXAMINATION IN ENGINEERING/ TECHNOLIGY- MARCH, 2013

Regent College Maths Department. Further Pure 1 Numerical Solutions of Equations

2 nd ORDER O.D.E.s SUBSTITUTIONS

Section: I. u 4 du. (9x + 1) + C, 3

) z r θ ( ) ( ) ( ) = then. Complete Solutions to Examination Questions Complete Solutions to Examination Questions 10.

Paper Reference. Core Mathematics C3 Advanced. Thursday 11 June 2009 Morning Time: 1 hour 30 minutes. Mathematical Formulae (Orange or Green)

SRI RAMAKRISHNA INSTITUTE OF TECHNOLOGY, COIMBATORE- 10 DEPARTMENT OF SCIENCE AND HUMANITIES B.E - EEE & CIVIL UNIT I

Previous Year Questions & Detailed Solutions

Tangent Line Approximations

(a) Show that there is a root α of f (x) = 0 in the interval [1.2, 1.3]. (2)

Example - Newton-Raphson Method

is the intuition: the derivative tells us the change in output y (from f(b)) in response to a change of input x at x = b.

Preview from Notesale.co.uk Page 2 of 42

Here is a general Factoring Strategy that you should use to factor polynomials. 1. Always factor out the GCF(Greatest Common Factor) first.

h(x) lim H(x) = lim Since h is nondecreasing then h(x) 0 for all x, and if h is discontinuous at a point x then H(x) > 0. Denote

B.Tech. Theory Examination (Semester IV) Engineering Mathematics III

P vs NP: Solutions of NP Problems Abstract The simplest solution is usually the best solution---albert Einstein

GENUINE REPLACEMENT PARTS

Math 2300 Calculus II University of Colorado

Answer Key 1973 BC 1969 BC 24. A 14. A 24. C 25. A 26. C 27. C 28. D 29. C 30. D 31. C 13. C 12. D 12. E 3. A 32. B 27. E 34. C 14. D 25. B 26.

4.3. Differentiation Rules for Sinusoidal Functions. How do the differentiation rules apply to sinusoidal functions?

Mechanics of Structure

Page No.1. MTH603-Numerical Analysis_ Muhammad Ishfaq

NOTICE TO CUSTOMER: The sale of this product is intended for use of the original purchaser only and for use only on a single computer system.

Math 181, Exam 2, Fall 2014 Problem 1 Solution. sin 3 (x) cos(x) dx.

Synchronous Machine Modeling

x 2e e 3x 1. Find the equation of the line that passes through the two points 3,7 and 5, 2 slope-intercept form. . Write your final answer in

Part: Frequency and Time Domain

USHA RAMA COLLEGE OF ENGINEERING & TECHNOLOGY

Core Mathematics C3 Advanced Level

Mark Scheme (Results) Summer 2009

S.Y. B.Sc. (IT) : Sem. III. Applied Mathematics. Q.1 Attempt the following (any THREE) [15]

Precalculus Notes: Unit 6 Vectors, Parametrics, Polars, & Complex Numbers. A: Initial Point (start); B: Terminal Point (end) : ( ) ( )

Write your Name, Registration Number, Test Centre, Test Code and the Number of this booklet in the appropriate places on the answersheet.

Section 4.3 version November 3, 2011 at 23:18 Exercises 2. The equation to be solved is

PURE MATHEMATICS AM 27

Math 473: Practice Problems for Test 1, Fall 2011, SOLUTIONS

Mathematics Extension 1

SECTION A. f(x) = ln(x). Sketch the graph of y = f(x), indicating the coordinates of any points where the graph crosses the axes.

ASSIGNMENT BOOKLET. Numerical Analysis (MTE-10) (Valid from 1 st July, 2011 to 31 st March, 2012)

Chapter 9. Derivatives. Josef Leydold Mathematical Methods WS 2018/19 9 Derivatives 1 / 51. f x. (x 0, f (x 0 ))

Solutions to Homework Assignment #2

FP2 Mark Schemes from old P4, P5, P6 and FP1, FP2, FP3 papers (back to June 2002)

PRE-LEAVING CERTIFICATE EXAMINATION, 2010

PhysicsAndMathsTutor.com

GOVERNMENT OF KARNATAKA KARNATAKA STATE PRE-UNIVERSITY EDUCATION EXAMINATION BOARD SCHEME OF VALUATION. Subject : MATHEMATICS Subject Code : 35

C3 papers June 2007 to 2008

CHAPTER 3 Applications of Differentiation

Communication about climate change on the German Baltic coast: Experience and mediated experience

JEE/BITSAT LEVEL TEST

GAUTENG DEPARTMENT OF EDUCATION SENIOR SECONDARY INTERVENTION PROGRAMME MATHEMATICS GRADE 12 SESSION 20 (LEARNER NOTES)

FIRST SEMESTER DIPLOMA EXAMINATION IN ENGINEERING/ TECHNOLIGY- OCTOBER, TECHNICAL MATHEMATICS- I (Common Except DCP and CABM)

NUMERICAL METHODS. x n+1 = 2x n x 2 n. In particular: which of them gives faster convergence, and why? [Work to four decimal places.

SBAME CALCULUS OF FINITE DIFFERENCES AND NUMERICAL ANLAYSIS-I Units : I-V

11.4. Differentiating ProductsandQuotients. Introduction. Prerequisites. Learning Outcomes

Transcription:

F.Y. Diploma : Sem. II [AE/CD/CE/CH/CM/CO/CR/CS/CV/CW/DE/ED/EE/EI/EJ/EN/ EP/ET/EV/EX/FE/IC/IE/IF/IS/IU/ME/MH/MI/MU/PG/PS/PT] Engineering Mathematics Time: Hrs.] Pre Question Paper Solution [Marks : 00 Q. Attempt any TEN of the following : [0] Q.(a) If ( y) + i ( + y) 7, find, y. [] (A) ( y) + i( + y) 7 ( y) + i( + y) 7 + 0i y 7 and + y 0 y 7 + y 0 7 7 y Q.(b) Epress in the form a + ib. (A) i i i i i i i i i i i i 5 or i 5 5 i i where a, b R, i. [] Q.(c) If f() 5 + 7 show that f( ) f(). [] (A) f(-) () 5() + 7 5 f() () 5() + 7 5 f() f() Q.(d) State whether the function f() (A) f() e e e e f() f() is even. e e is even or odd. [] Q.(e) Evaluate. [] 0 sin (A) 0 sin 0 sin 0 sin

Vialankar : F.Y. Diploma Engg. Mathematics Q. (f) Evaluate (A) log log 0 0 0. [] 0 0 log log Q.(g) If y e sin cos find d. [] (A) d d d d e sin cos e cos sin sin cos e d d d e sin sin e cos cos sin cos e e sin e cos e sincos e sin cos sin cos Y OR e sin cos e sin d d d e sin sin e d d e cos sin e e cos sin Q.(h) Find d if y log ( + ). [] (A) y log( + ) d d d + + Q. (i) Find if sin, y cos. [] d (A) sin, y cos d d cos and d sin d / d d / d sin cos tan

Pre Question Paper Solution Q.(j) If + y find d. [] (A) + y y 0 d y d d y Q.(k) Show that root of equation 5 0 lies between and. [] (A) f() 5 f() < 0 f() 6 > 0 Therefore the root lies between and Q. (l) Find first iteration by Jacobi s method : 0 + y + z, + 0y + z, + y + 0z 5 (A) 0 + y + z, + 0y + z, + y + 0z 5 [] y z 0 z y 0 5 y z 0 Now we start with : 0 0 y 0 z 0. 0 0 0 y 0 0 0 5 0 0 z 0...5 Q. Attempt any FOUR of the following : [6] Q.(a) If f() then show that f[f()]. [] (A) f() f f[f()] f

Vialankar : F.Y. Diploma Engg. Mathematics 6 6 5 5 Q.(b) Epress the following number in polar form i. [] (A) r / 80 tan 80 60 0 or / / or tan / z r(cos + isin) cos0 + isin0 or cos i sin Q.(c) Find all cube root of unity. [] (A) Let z + 0i a, b 0 r 0 0 tan 0 z r(cos + i sin) cos0 + isin0 cosk + isink / [cosk + isink] / k k cos isin For k 0, / cos(0) + isin(0) + 0 For k, / cos i sin i For k, / cos i sin i

Pre Question Paper Solution Q.(d) Simplify using De-Moivre s theorem : (A) θ θ cos5 isin5 5 cos θisin θ 7 7 θ θ cos isin cos θisin θ θ θ cos5 isin5 5 cos θisin θ 7 7 θ θ cos isin cos θisin θ 5 7 5 7 cos θisin θ cos θisin θ cos θisin θ cos θisin θ cos θisin θ cos θisin θ cos θisin θ cos θisin θ cos isin cos isin 7 7 7 cos isin 7 7 7 [] Q.(e) If f() +, solve the equation f() f( ). [] (A) f() + f( ) ( ) () + 9 6 9 8 + 6 But f() f() + 9 8 + 6 8 + 5 0 or 8 + 5 0 5, or.5, 0.5 Q.(f) Simplify i + i 0 + i 50 + i 00. [] (A) i + i 0 + i 50 + i 00 + (i ) 5 + (i ) 5 + (i ) 5 + () 5 + () 5 + () 5 + 0 Q. Attempt any FOUR of the following : [6] Q.(a) If f() a + b + and f(), f(), find a and b. [] (A) f() a + b + f() a() +b() + a + b + f() a() + b() + a + b + But f(), f() a + b + a + b + a + b a + b 8 a b 5

Vialankar : F.Y. Diploma Engg. Mathematics Q.(b) If f() log then prove that f (A) f log log log log log f() f(). [] Q.(c) Evaluate (A) 6 6. [] or 0.5 Q.(d) Evaluate (A) sin cos. [] tan sin cos tan sin cossin cos sin cos sincos sincos cos sin cos sin cos sin cos sin cos sin cos cos sin cos cos cos 6

Q.(e) Evaluate 5 (A) 5 5 5 5 5 5 5 5 5 5 5 5 5 0 Pre Question Paper Solution. [] 5 5 5 or.5 Q.(f) Evaluate (A) 6 0 6 0. [] 0 0 0 0 log log Q. Attempt any FOUR of the following : [6] Q.(a) If y sin ( ) find d. [] (A) Put sin y sin ( ) sin sin sin sin (sin) sin d. 7

Vialankar : F.Y. Diploma Engg. Mathematics Q.(b) Using first principle find derivative of f() a. [] (A) f() a f( + h) a + h d f h f h0 h h a a h0 h h a a h0 h h a a h0 h a log a Q.(c) If u and v are differentiable functions of and y u.v then prove that [] d dv du u v d d (A) Let y uv. Let be infinitesimal increment in and y, u, v be corresponding infinitesimal increments in y, u, v. y + y (u + u) (v + v) uv + uv + vu + uv y uv + uv + vu + uv y uv + uv + vu + uv uv uv + vu + uv As u and v are very very small. uv is negligible. y uv + vu y uv vu v u u v y v u u v 0 0 y v u u v 0 0 0 d dv du u v d d Q.(d) Differentiate w.r.t, tan 5 6. [] 5 (A) Let y tan 6 tan Put tan A and tan B tana tanb y tan tanatanb tan tan A B A + B tan () + tan () d 9 8

Pre Question Paper Solution Q.(e) Find d if + y + y. [] (A) + y + y 6 y y 0 d d 6 y y d d 0 6 y y 0 d d 6 y y t Q. (f) If y tan t and t sin t t (A) y tan t Put t tan tan y tan tan tan tan y tan t t And sin t Put t tan tan sin sin (sin) tan tan t y d find d. [] Q.5 Attempt any FOUR of the following : [6] sin Q.5(a) Evaluate. [] (A) Put t as, t 0 sin sin t t0 t sin t t0 t sint t0 t sin t t0 t log log Q.5(b) Evaluate. [] log log (A) 5 9

Vialankar : F.Y. Diploma Engg. Mathematics Let + h or h as, h 0 log h log h0 h h log h0h h log h0 h log h0 log e log e /h /h/ Q.5c) Using Bisection method find the approimate root of + 0 ( iterations). (A) + 0 f() + f() f() the root is in (, )..5 f(.5) 0.75 the root is in (,.5)..5.5 f(.5) 0.88 the root is in (.5,.5).5.5.75 [] Q.5(d) Using False Position method find the root of 0 ( iterations only). [] (A) f() f() f() the root is in (, ) af b bf a.667 f(b) f a f(.667).05 the root is in (.667, )..78 f(.78) 0. the root is in (.78, )..795 0

Pre Question Paper Solution Q.5(e) Using Newton Raphson method find the root of 9 0 (carry out iterations). (A) 9 0 f() 9 f () f() 9 f() 5 f 9 f' 9 OR f f f 9 Start with 0,.89.8.8 9 [] Q.5(f) Using Newton Raphson method find approimate value of 0 ( iterations). [] (A) Let 0 0 0 f() 0 f() f() f() 6 f 0 (i) f 0 (ii) OR f f 0 f Start with 0,.67.6.6 0 (i) (ii) Q.6 Attempt any FOUR of the following : [6] Q.6(a) If y sin 5 cos 5 show that + 5y 0. d [] (A) y sin 5 cos5 cos5 5 + sin 5 5 d

Vialankar : F.Y. Diploma Engg. Mathematics 5 cos5 + 5 sin 5 5 sin 5 + 75 cos 5 d 5(sin 5 cos5) 5y 5y d 0 Q.6(b) If a ( sin ), y a ( cos ) find d and d (A) a( sin) d a(cos ) d y a( cos) d a(sin) d / d d / d at, a sin a cos sin cos sin d cos at. [] or.79 Q.6(c) Solve by Jacobi s method performing iterations : 0 + y z 7, + 0y z 8, y + 0z 5 (A) 0 + y z 7 + 0y z 8 y + 0z 5 [] 0 8 z 0 5 y 0 7 y z y z Starting with 0 0 y 0 z 0 0.85 y 0.9 z.5.0 y 0.965 z.0.00 y.00 z.00

Pre Question Paper Solution Q.6(d) Solve by Gauss-Seidal method ( iterations) 5 + y + z 8, + 0y z 9, 6y + 5z 5 8 y z 0 9 z 5 6y (A) y z [] Starting with 0 0 y 0 z 0. y 0.8 z 0.95.07 y 0.988 z 0.99.00 y 0.999 z 0.999 Q.6(e) Solve by Gauss Eination method : + y + z, + y + z, + y + z (A) + y + z + y + z + y + z [] + 6y + 9z + y + z 5y + 7z and 6 + y + z 6 + 9y + z 7y + z 5y + 7z 9y + 7z 77 + y z 5y 08 Q.6(f) Solve by Gauss Seidal method ( iterations) 5 y 9, 5y + z, y 5z 6, Taking 0.5, y 0 0.5, z 0 0.5 (A) 5 y 9 5 y + 0z 9 5y + z OR 5y + z y 5z 6 0 + y 5z 6 [] 9 y 5 z 5 6 y 5 y z

Vialankar : F.Y. Diploma Engg. Mathematics Starting with 0.5, y 0 0.5, z 0 0.5.9 y.08 z 0.98.06 y.006 z 0.999