Meson Radiative Transitions on the Lattice hybrids and charmonium. Jo Dudek, Robert Edwards, David Richards & Nilmani Mathur Jefferson Lab

Similar documents
Lattice QCD study of Radiative Transitions in Charmonium

Exotic and excited-state radiative transitions in charmonium from lattice QCD

Hadronic physics from the lattice

Popat Patel (McGill University) On behalf of the BaBar Collaboration The Lomonosov XIV Conference Moscow (2009/08/24)

Radiative transitions and the quarkonium magnetic moment

Exotic hadronic states XYZ

arxiv: v1 [hep-lat] 1 Feb 2017

Quarkonium Results from Fermilab and NRQCD

spectroscopy overview Jozef Dudek Old Dominion University & Jefferson Lab thanks for inviting a whinging pom

Charmed Bottom Mesons from Lattice QCD

Exclusive J/ψ production and gluonic structure

Charmonium Transitions

Scattering amplitudes from lattice QCD

Analyticity and crossing symmetry in the K-matrix formalism.

Lecture 9 Valence Quark Model of Hadrons

Mass of Heavy Mesons from Lattice QCD

Questions in Quarkonium Spectroscopy

Hadron Spectroscopy Lecture 1 Introduction and Motivation

Zahra Haddadi, KVI-CART (University of Groningen) for the BESIII collaboration 1 Sep EUNPC 2015, Groningen

Baryon Resonance Determination using LQCD. Robert Edwards Jefferson Lab. Baryons 2013

Spectroscopy of charmed baryons from lattice QCD

PoS(LATTICE 2013)500. Charmonium, D s and D s from overlap fermion on domain wall fermion configurations

Charmonium Radiative Transitions

Peng Guo. Physics Department & NTC Indiana University - Bloomington, U.S.A.

Latest developments in the Spectroscopy of Heavy Hadrons

Dirac and Pauli form factors from N f = 2 Clover-fermion simulations

The Lattice QCD Program at Jefferson Lab. Huey-Wen Lin. JLab 7n cluster

Heavy Quark Spectroscopy at LHCb

MESON SPECTROSCOPY RESULTS

arxiv: v1 [hep-lat] 4 Nov 2014

The heavy-light sector of N f = twisted mass lattice QCD

Studies of charmonium production in e + e - annihilation and B decays at BaBar

Light Meson Decays at BESIII

arxiv:hep-ph/ v1 5 Sep 2006

the excited spectrum of QCD

Search for New and Unusual Strangeonia States Using γp pφη with GlueX at Thomas Jefferson National Accelerator Facility

Lattice Studies of Baryon Resonances

BaBar s Contributions. Veronique Ziegler Jefferson Lab

Forefront Issues in Meson Spectroscopy

Recent Results from the BESIII Experiment. Ryan Mitchell Indiana University Miami 2011 December 17, 2011

strong coupling Antonio Vairo INFN and University of Milano

Exploring QCD in the Charmonium System

lattice QCD and the hadron spectrum Jozef Dudek ODU/JLab

NEW PERSPECTIVES FOR STUDY OF CHARMONIUM AND EXOTICS ABOVE DD THRESHOLD. Barabanov M.Yu., Vodopyanov A.S.

J/ψ-Φ interaction and Y(4140) on the lattice QCD

PoS(EPS-HEP 2009)057. Bottomonium Studies at BaBar. Veronique Ziegler. SLAC National Accelerator Laboratory

Nucleon structure near the physical pion mass

Cascades on the Lattice

Study of Transitions and Decays of Bottomonia at Belle

Weak interactions. Chapter 7

Puzzles in the Charmonium Sector of QCD

Results on Charmonium-like States at BaBar

Baryon resonance production at. LIU Beijiang (IHEP, CAS) For the BESIII collaboration ATHOS3/PWA8 2015, GWU

Recent Results from CLEO

Meson Spectroscopy Methods, Measurements & Machines

Charmonium & charmoniumlike exotics

A Comprehensive Study of the Radiative Decay of J/ψ and ψ(2s) to Pseudoscalar Meson Pairs and Search for Glueballs

arxiv: v1 [hep-lat] 30 Oct 2018

Λ(1405) and Negative-Parity Baryons in Lattice QCD. Y.Nemoto (RIKEN-BNL) N.Nakajima (Kochi U.) H.Matsufuru (KEK) H.Suganuma (Tokyo Inst.Tech.

Form factors on the lattice

CLEO Results From Υ Decays

CLEO Charmonium Results

Exclusive Vector Meson Production and Inclusive K 0

Heavy-quark hybrid mesons and the Born-Oppenheimer approximation

Mesons beyond the quark-antiquark picture: glueballs, hybrids, tetraquarks - part 1 - Francesco Giacosa

Light-Meson Spectroscopy at Jefferson Lab

Structure of the Roper in Lattice QCD

MODERN HADRONIC RESONANCES THEORY

Heavy mesons and tetraquarks from lattice QCD

Searches for exotic mesons

Hadron Spectroscopy at COMPASS

Heavy Mesonic Spectral Functions at Finite Temperature and Finite Momentum

arxiv: v2 [hep-ph] 27 Jul 2012

Light hadrons in 2+1 flavor lattice QCD

Charmed Baryons. Flavor Physics and CP Violation John Yelton University of Florida

Coupled-channel effects in radiative. Radiative charmonium transitions

Omega baryon electromagnetic form factors from lattice QCD

Probing of XYZ meson structure with near threshold pp and pa collisions

hybrids (mesons and baryons) JLab Advanced Study Institute

Hadron Spectroscopy and Exotics Heavy Exotic Mesons Theory

Charmonium Spectroscopy and Decay at CLEO c

Search for Gluonic Excitations with GlueX at Jefferson Lab

The Lund Model. and some extensions. Department of Astronomy and Theoretical Physics Lund University Sölvegatan 14A, SE Lund, Sweden

lattice QCD and the hadron spectrum Jozef Dudek ODU/JLab

Baryon Spectroscopy at Jefferson Lab What have we learned about excited baryons?

arxiv: v1 [hep-ph] 2 Sep 2008

Mass Components of Mesons from Lattice QCD

Particle Physics WS 2012/13 ( )

2. Hadronic Form Factors

PROBING OF STRONG INTERACTIONS AND HADRONIC MATTER WITH CHARMONIUM-LIKE STUDIES

(Towards) Baryon Resonances from Lattice QCD

arxiv:hep-ph/ v1 18 Mar 2006

Recent results on spectroscopy from

Applications of QCD Sum Rules to Heavy Quark Physics

Feasibility of a cross-section measurement for J/ψ->ee with the ATLAS detector

Discovery of Pions and Kaons in Cosmic Rays in 1947

Overview of Light-Hadron Spectroscopy and Exotics

Excited meson radiative transitions from lattice QCD using variationally optimized operators

Charmonium(-like) and Bottomonium(-like) States Results from Belle and BaBar

Lattice QCD Evidence for Exotic Tetraquark Resonance. Department of Physics, Kyoto University, Kitashirakawaoiwake, Sakyo, Kyoto , Japan

Transcription:

Meson Radiative Transitions on the Lattice hybrids and charmonium Jo Dudek, Robert Edwards, David Richards & Nilmani Mathur Jefferson Lab 1

JLab, GlueX and photocouplings GlueX plans to photoproduce mesons especially exotic J PC mesons γ resonance, X exchange meson, M p p γm X 2

photoproduction of exotics? exotic quantum numbers be explicable as hybrid meson states 1 +, 0 +, 2 + may photoproduction an untested method relies upon reasonably large couplings γ e.g. π ρa2 π 1 large in some model estimations 3

Lattice QCD estimation? relatively straightforward in principle; evaluate three-point function with a vector current in practice, not so easy truly light quarks unfeasible transitions involve unstable states experimental data is limited and imprecise (even for conventional meson transitions) 4

pragmatic approach try out an untested method in a region where approximations are controllable and where there is good experimental data to compare with charmonium 5

Charmonium - expt. multiple states below DD threshold have narrow widths radiative transitions are big branching fractions precision measurements 6

Charmonium - lattice states are small - small volumes OK quenched theory not sick* - just not expt. disconnected diagrams perturbatively suppressed need a fine lattice spacing a 3 GeV? η c J/ψ m c 1.5 GeV α s (O(m c )) * one heavy flavour QCD ; will only notice non-unitary up near 6 GeV 7

anisotropy charm quark mass scale requires a fine lattice but only in the temporal direction? spatial scale p 500 MeV so space direction can be more coarse introduce anisotropy param into fermion action and tune to get meson disp n rel ns right 8

our initial simulation anisotropic Wilson glue with at ξ = 3 β = 6.1 12 3 x48 gives a 1.2 fm box Domain-Wall fermions (L5 = 16) Ginsparg-Wilson ensures O(a) improvement vector current only multiplicatively renorm d spectroscopic splittings came out reasonably - usual quenched problem of hyperfine too small scale setting by Sommer parameter, but 1P-1S very similar 9

three-point functions Γ(t f, t ; p f, q) = x, y e i p f x e i q y ϕ f ( x, t f )j µ ( y, t)ϕ i ( 0, 0) we use gaussian smeared fermion bilinears as interpolating fields F ( z) ψ x+ z,t Γψ x z,t connected diagram constructed from forward propagator and sequential sink propagator with the simple point-like vector current 10 z new inversion for each change of the sink, but all possible momenta inserted at the current

three-point functions and matrix elements Γ(t f, t ; p f, q) = x, y e i p f x e i q y ϕ f ( x, t f )j µ ( y, t)ϕ i ( 0, 0) inserting two complete sets of states Γ(t f, t ; p f, q) = Z iz f 4E i E f e E f (t f t) e E it f( p f ) j µ (0) i( p i ) obtained from fits to two-point functions to be extracted 11

η c form-factor strictly speaking this does not exist due to charge conjugation invariance 0 + / 0 + 1 + 2 3 + = 0 2 3 0 0 1 + 0 12

η c form-factor η c ( p f ) j µ (0) η c ( p i ) = f(q 2 )(p i + p f ) µ Γ(t f = 24, t) Z i Z f 4E i E f e E f (t f t) E i t (p f + p i ) µ (111) (210) (100) (110) plateaux observed p f = (000) 13

η c form-factor 14

η c form-factor ( 1 + Q 2 ) 1 m 2 ψ r2 = 0.25 fm exp [ Q2 16β 2 (1 + αq2 ) ] 15

η c form-factor - not VMD? Q 2 ρ (1450) ρ Q 2 π ππ Ps. Ps. ψ (3770) ψ(3s) ψ J/ψ... D D Q 2 η c 16

J/ψ form-factors vector particle has three form-factors (c.f. deuteron) charge magnetic quadrupole V ( p f, r f ) j µ (0) V ( p i, r i ) = (p f + p i ) µ[ G 1 (Q 2 )ɛ ( p f, r f ) ɛ( p i, r i ) ] + G 3(Q 2 ) 2m 2 ɛ ( p f, r i ).p i ɛ( p i, r i ).p f [ɛ V ] + G 2 (Q 2 ) µ ( p i, r i )ɛ ( p f, r f ).p i + ɛ µ ( p f, r f )ɛ( p i, r i ).p f 17

J/ψ form-factors charge magnetic r2 0.25 fm κ c 0 quadrupole 18 a D (J/ψ) 10 3

χ c0 form-factors r2 0.3 fm larger radius due to centripetal barrier in P-wave meson 19

so much for unobservables, how about observables? 20

J/ψ η c γ transition η c ( p ) j µ (0) J/ψ( p, r) = 2V (Q2 ) m ηc + m ψ ɛ µαβγ p αp β ɛ γ ( p, r) very sensitive to hyperfine m J/ψ m ηc expt. = 117 MeV m J/ψ m ηc our lat. 80 MeV 21

Γ(J/ψ η c γ) = α J/ψ η c γ q 3 64 ˆV (0) 2. (m ηc + m ψ ) 2 27 transition phase space physical lattice beware - nobody gets this number right Crystal Ball expt. V (Q 2 ) = V (0)e Q 2 16β 2 new CLEO-c number soon! 22

P-wave to S-wave transitions many good measurements 23

χ c0 J/ψγ transition our poster boy covariant multipole decomposition of matrix element S( p S ) j µ (0) V ( p V, r) = ( [ Ω 1 (Q 2 ) E 1 (Q 2 ) Ω(Q 2 )ɛ µ ( ( p V, r) ɛ( p V, r).p S p µ V p V.p S m 2 V p µ ) ] S + C 1(Q 2 ) q 2 m V ɛ( p V, r).p S [p V.p S (p V + p S ) µ m 2 Sp µ V m2 V p µ S] ). E1 - electric dipole, expt ally measured at Q 2 =0 C1 - longitudinal, only non-zero at non-zero Q 2 24

χ c0 J/ψγ E1 transition our poster boy not used in the fit PDG CLEO lat. E 1 (Q 2 ) = E 1 (0) (1 + Q2 ρ 2 ) e Q2 16β 2 25

χ c0 J/ψγ C1 transition 26

χ c1 J/ψγ transition covariant multipole decomposition of matrix element A( p A, r A ) j µ (0) V ( p V, r V ) = [ i 4 2Ω(Q 2 ) ɛµνρσ (p A p V ) σ E 1 (Q 2 )(p A + p V ) ρ (2m A [ɛ ( p A, r A ).p V ]ɛ ν ( p V, r V ) + 2m V [ɛ( p V, r V ).p A ]ɛ ν( p A, r A ) ) + M 2 (Q 2 )(p A + p V ) ρ (2m A [ɛ ( p A, r A ).p V ]ɛ ν ( p V, r V ) 2m V [ɛ( p V, r V ).p A ]ɛ ν( p A, r A ) + C1(Q2 ) ( 4Ω(Q 2 )ɛ q 2 ν( p A, r A )ɛ ρ ( p V, r V ) ) + (p A + p V ) ρ [(m 2 A m 2 V + q 2 )[ɛ ( p A, r A ).p V ] ɛ ν ( p V, r V ) + (m 2 A m 2 V q 2 )[ɛ( p V, r V ).p A ] ɛ ν( p A, r A )]) ]. E1 - electric dipole, expt ally measured at Q 2 =0 M2 - magnetic quadrupole, expt ally measured at Q 2 =0 C1 - longitudinal, only at non-zero Q 2 27

χ c1 J/ψγ transition E1 M2 28

h c η c γ transition 29

quark potential model? our fitting form inspired by NR potential model with rel. corrections: E 1 (Q 2 ) = E 1 (0) (1 + Q2 ρ 2 ) e Q2 16β 2 χ c0 J/ψγ E1 β = 542(35) MeV ρ = 1.08(13) GeV χ c1 J/ψγ E1 β = 555(113) MeV ρ = 1.65(59) GeV h c η c γ E1 β = 689(133) MeV ρ 30

what about χ c2 J/ψγ? can t get at spin 2 with point-like fermion bilinears we have to extend our interpolating field set 31

extended interpolators Operator O h rep. lowest J P C name remark 1 A 1 0 ++ a 0 3 P 0 (χ c0 ) γ 5 A 1 0 + π 1 S 0 (η c ) γ i T 1 1 ρ 3 S 1 (J/ψ) γ 5 γ i T 1 1 ++ a 1 3 P 1 (χ c1 ) γ i γ j T 1 1 + b 1 1 P 1 (h c ) γ 5 i T 1 1 + π i T 1 1 a 0 γ 4 i T 1 1 + a 0 γ i i A 1 0 ++ ρ A 1 3 P 0 (χ c0 ) ɛ ijk γ j k E 1 ++ ρ T 1 3 P 1 (χ c1 ) s ijk γ j k T 2 2 ++ ρ T 2 3 P 2 (χ c2 ) γ 5 γ i i A 1 0 a 1 A 1 exotic γ 5 s ijk γ j k T 2 2 a 1 T 2 γ 5 S αjk γ j k T 2 2 a 1 E γ 4 γ 5 ɛ ijk γ j k T 1 1 + b 1 T 1 exotic γ 4 s ijk j k T 2 2 + a 0 D exotic γ 5 γ i D i A 2 3 ++ a 1 D A 2 γ 5 S αjk γ j D k E 2 ++ a 1 D E γ 5 s ijk γ j D k T 1 1 ++ a 1 D T 1 γ 5 ɛ ijk γ j D k T 2 2 ++ a 1 D T 2 γ 4 γ 5 s ijk γ i j k A 2 3 + b 1 D A 2 γ 4 γ 5 S αjk γ j D k E 2 + b 1 D E γ 4 γ 5 s ijk γ j D k T 1 1 + b 1 D T 1 γ 4 γ 5 ɛ ijk γ j D k T 2 3 + b 1 D T 2 γ i D i A 2 3 ρ D A 2 s ijk γ j D k T 1 1 ρ D T 1 ɛ ijk γ j D k T 2 2 ρ D T 2 γ 4 γ 5 s ijk j k T 2 2 + π D T 2 γ 5 B i T 1 1 π B T 1 ɛ ijk γ j B k T 1 1 + ρ B T 1 exotic s ijk γ j B k T 2 2 + ρ B T 2 γ 5 γ i B i A 1 0 + a 1 B A 1 exotic γ 5 ɛ ijk γ j B k T 1 1 + a 1 B T 1 γ 5 s ijk γ j B k T 2 2 + a 1 B T 2 exotic higher spins and the J PC exotics Table 1: Meson operators, names and quantum numbers. s ijk = ɛ ijk and S αjk = 0(j k), S 111 = 1, S 122 = 1, S 222 = 1, S 233 = 1.D i = s ijk j k, B i = ɛ ikj j k 32

extended interpolators exotics non-exotics Effective mass (2 + + ) Effective mass (0 + - ) 0.7 0.68 0.66 0.64 0.62 0.6 0.58 0.56 0.54 0.52 0.5 1.2 1.1 1 0.9 0.8 0.7 0.6! "_T 2 (SS) :! "_T 2 (SP) : 5 10 15 20 25 0.95 2 ++ 0.9! D_T 2 (SS) : 0.74 2 +! D_T 2 (SP) : 0.72 3 0.85 0.7 Effective mass (2 -+ ) t t 1.2 1.2 1.1 1.1 0 + 1 + 2 + Effective mass (1 - + ) 0.8 0.75 0.7 0.65 0.6 0.55 1 0.9 0.8 0.7 0.6 5 10 15 20 25 Effective mass (3 - - ) Effective mass (2 + - ) 0.68 0.66 0.64 0.62 0.6 0.58 0.56 1 0.9 0.8 0.7 0.6! D_A 2 (SS) :! D_A 2 (SP) : 5 10 15 20 25 t 0.5 0.5 0.5 0.4 0.3 a 1 B_ A 1 (SS) : a 1 B_ A 1 (SP) : 5 10 15 20 25 t 0.4 0.3 b 1!_ T 1 (SS) : b 1!_ T 1 (SP) : 5 10 15 20 25 t 0.4 0.3 a 1 B_T 2 (SS) : a 1 B_T 2 (SP) : 5 10 15 20 25 t 33

next up? radiative transitions with this extended set think we can do two-photon decays charmonium for now dynamical lattices for precision & maybe multi-particle (DD) states start turning down the quark mass if it all works to get at JLab physics 34

extra slides for the inquisitive 35

χ c0 J/ψγ E1 transition a t ^E1 (Q 2 ) -0.1-0.15 spat. p f = (000) J/ψ snk. spat. p f = (100) J/ψ snk. spat. p f = (000) χ c0 snk. spat. p f = (100) χ c0 snk. PDG phys. mass PDG lat. mass CLEO phys. mass CLEO lat. mass -0.2 0 0.5 1 36 Q 2 (GeV 2 )

some two-point functions J/ψ χ c0 37

multiple form-factors? pick out the three-point functions with the same Q 2 - various momentum and Lorentz index combinations Γ(a; t) P (a; t)k 1 (a) P (a; t)k 2 (a)... Γ(b; t) Γ(c; t) = P (b; t)k 1 (b) P (b; t)k 2 (b) P (c; t)k 1 (c) P (c; t)k 2 (c)..... invert this system with SVD f 1 (Q 2 )[t] f 2 (Q 2 )[t],. P K are known quantities 38

ZV set using meson form-factors at zero Q 2 1.22 1.34 1.2 1.18 1.32 1.3 1.28 1.26 spat. curr. ZV(clover) Z V 1.16 1.14 Z V 1.24 1.22 1.2 1.18 temp. p f =(000) temp. p f =(100) spat. p f =(100) 1.12 1.1 ZV(dwf) temp. p f =(000) temp. p f =(100) spat. p f =(100) 1.16 1.14 1.12 1.1 temp. curr. temp. curr. 1.08 1.08 η c J/ψ χ c0 χ c1 h c η c J/ψ χ c0 χ c1 h c 39

quenched? scale setting ambiguity - running coupling non-unitarity a negligible issue above threshold states rendered stable - they were narrow anyway 40

anisotropy - disp n rel n 1.15 ~6% deviation, could easily be 1.1 1.05 reduced c 2 1 0.95 0.9 η c J/ψ χ c0 0.85 c 2 ( p 2 ) E2 ( p 2 ) m 2 1 2 3 4 5 6 p 2 p 2 41

spectrum PDG lat η c ψ h c χ c0 χ c1

wrap-around pollution ti=0 t 0 ϕ f (t f = 24) f f j µ (t) i i ϕ i (t i = 0) 0 Z i Z f f j µ (0) i e E f (24 t) E i t tf=24 0 t 0 j µ (t) V V ϕ i (0) f f ϕ f (t i = 24) 0 Z V Z f V ϕ i (0) f e E V t E f 24-24 43

wrap-around pollution wrap Z V V ϕ i (0) f Z i f j µ (0) i e (E V δe if )t E V m J/ψ 3 GeV good δe if m χ m ψ 600 MeV so wrap around should fall off relatively sharply. if amplitude is large this will be a nasty pollution (prevents excited state extraction) 44

wrap-around pollution -0.8-0.9-1 -1.1-1.2 Q 2 = 0.99 GeV 2 rapid fall-off near t=0 indicative of the wrap-around pollution ^V(Q 2 )[t] -1.3-1.4-1.5-1.6-1.7-1.8 0 2 4 6 8 10 12 14 16 18 20 22 t we resorted to fitting the pollution with a single exponential f n (Q 2 )[t] = f n (Q 2 ) + f i e m it + f f e m f (24 t) ˆV (Q 2 ) = 1.55(1), f i = 1.45(3), 45f f = 0.42(14), m i = 0.41(1), m f = 0.27(7)

finite-size effects? previous charmonium spectrum studies saw no significant finite volume effects with QCD-TARO collabn. L s 1.1 fm we extracted from the form-factors that radius of charmonium states is 0.2 0.3 fm finite-size should be no problem for us @ Ls = 1.2 fm 46