R th is the Thevenin equivalent at the capacitor terminals.

Similar documents
3 ) = 10(1-3t)e -3t A

The Buck Resonant Converter

2/20/2013. EE 101 Midterm 2 Review

Faculty of Engineering

Energy Storage Devices

Chapter 5. Circuit Theorems

Square law expression is non linear between I D and V GS. Need to operate in appropriate region for linear behaviour. W L

2015 Sectional Physics Exam Solution Set

Experiment 6: STUDY OF A POSITION CONTROL SERVOMECHANISM

Digital Integrated CircuitDesign

Notes on Inductance and Circuit Transients Joe Wolfe, Physics UNSW. Circuits with R and C. τ = RC = time constant

A capacitor consists of two conducting plates, separated by an insulator. Conduction plates: e.g., Aluminum foil Insulator: air, mica, ceramic, etc

Example: MOSFET Amplifier Distortion

10. A.C CIRCUITS. Theoretically current grows to maximum value after infinite time. But practically it grows to maximum after 5τ. Decay of current :

First-order piecewise-linear dynamic circuits

Chapter 6: AC Circuits

Dishonest casino as an HMM

TUTORIAL SOLUTIONS. F.1 KCL, KVL, Power and Energy Q.1. i All units in VAΩ,,

ELEG 205 Fall Lecture #10. Mark Mirotznik, Ph.D. Professor The University of Delaware Tel: (302)

THE BOOST CONVERTER REVISITED

Chapter Lagrangian Interpolation

DC-DC Switch-Mode Converters

EE 221 Practice Problems for the Final Exam

Chapters 2 Kinematics. Position, Distance, Displacement

( ) () we define the interaction representation by the unitary transformation () = ()

Diode rectifier with capacitive DC link

, where. This is a highpass filter. The frequency response is the same as that for P.P.14.1 RC. Thus, the sketches of H and φ are shown below.

ZVS Boost Converter. (a) (b) Fig 6.29 (a) Quasi-resonant boost converter with M-type switch. (b) Equivalent circuit.

Module B3. VLoad = = V S V LN

2. Find i, v, and the power dissipated in the 6-Ω resistor in the following figure.

CHAPTER 6: FIRST-ORDER CIRCUITS

Design of Analog Integrated Circuits

Circuits Op-Amp. Interaction of Circuit Elements. Quick Check How does closing the switch affect V o and I o?

Bicycle Generator Dump Load Control Circuit: An Op Amp Comparator with Hysteresis

Feedback Principle :-

The ZCS Boost Converter

Energy Storage Devices

Graduate Macroeconomics 2 Problem set 5. - Solutions

Let s treat the problem of the response of a system to an applied external force. Again,

In the complete model, these slopes are ANALYSIS OF VARIANCE FOR THE COMPLETE TWO-WAY MODEL. (! i+1 -! i ) + [(!") i+1,q - [(!

Chapter 2 Linear Mo on

Prerna Tower, Road No 2, Contractors Area, Bistupur, Jamshedpur , Tel (0657) ,

Transient Response in Electric Circuits

ANALOG ELECTRONICS 1 DR NORLAILI MOHD NOH

A New Structure of Buck-Boost Z-Source Converter Based on Z-H Converter

Linear Response Theory: The connection between QFT and experiments

A Novel High Frequency Isolated Full-Bridge Three-Level AC/AC Converter

55:041 Electronic Circuits

PHYS 1443 Section 001 Lecture #4

Wp/Lmin. Wn/Lmin 2.5V

Solution in semi infinite diffusion couples (error function analysis)

Lecture 4 ( ) Some points of vertical motion: Here we assumed t 0 =0 and the y axis to be vertical.

AP Physics 1 MC Practice Kinematics 1D

Chapter 2 Problem Solutions 2.1 R v = Peak diode current i d (max) = R 1 K 0.6 I 0 I 0

Mechanics Physics 151

21.9 Magnetic Materials

Revision: June 12, E Main Suite D Pullman, WA (509) Voice and Fax

Density Matrix Description of NMR BCMB/CHEM 8190

Motion in Two Dimensions

FI 3103 Quantum Physics

8. Basic RL and RC Circuits

Rheological Models. In this section, a number of one-dimensional linear viscoelastic models are discussed.

[ ] 2. [ ]3 + (Δx i + Δx i 1 ) / 2. Δx i-1 Δx i Δx i+1. TPG4160 Reservoir Simulation 2018 Lecture note 3. page 1 of 5

CHAPTER 11. Solutions for Exercises. (b) An inverting amplifier has negative gain. Thus L

CIRCUIT ANALYSIS II Chapter 1 Sinusoidal Alternating Waveforms and Phasor Concept. Sinusoidal Alternating Waveforms and

Convection and conduction and lumped models

(b) i(t) for t 0. (c) υ 1 (t) and υ 2 (t) for t 0. Solution: υ 2 (0 ) = I 0 R 1 = = 10 V. υ 1 (0 ) = 0. (Given).

Power Decoupling Method for Isolated DC to Single-phase AC Converter using Matrix Converter

U(t) (t) -U T 1. (t) (t)

Mechanics Physics 151

CHAPTER 13. Exercises. E13.1 The emitter current is given by the Shockley equation:

CHAPTER 5. Solutions for Exercises

β A Constant-G m Biasing

College of Engineering Department of Electronics and Communication Engineering. Test 1 With Model Answer

Lecture 11 Inductance and Capacitance

( )a = "t = 1 E =" B E = 5016 V. E = BHv # 3. 2 %r. c.) direction of induced current in the loop for : i.) "t < 1

Mechanics Physics 151

V. Electrostatics Lecture 27a: Diffuse charge at electrodes

EE 204 Lecture 25 More Examples on Power Factor and the Reactive Power

Chapter 8 The Complete Response of RL and RC Circuits

Chapter 7 Response of First-order RL and RC Circuits

Optimal Control. Lecture. Prof. Daniela Iacoviello

Revision: August 19, E Main Suite D Pullman, WA (509) Voice and Fax

Lecture 18: The Laplace Transform (See Sections and 14.7 in Boas)

THE PREDICTION OF COMPETITIVE ENVIRONMENT IN BUSINESS

Section I5: Feedback in Operational Amplifiers

Density Matrix Description of NMR BCMB/CHEM 8190

Physics Courseware Physics I Constant Acceleration

Use 10 m/s 2 for the acceleration due to gravity.

Engineering Circuit Analysis 8th Edition Chapter Nine Exercise Solutions

Introduction to Electronic circuits.

Physics 111. Exam #1. September 28, 2018

Chapter 8 The Complete Response of RL and RC Circuits

Notes on the stability of dynamic systems and the use of Eigen Values.

Is current gain generally significant in FET amplifiers? Why or why not? Substitute each capacitor with a

HEAT CONDUCTION PROBLEM IN A TWO-LAYERED HOLLOW CYLINDER BY USING THE GREEN S FUNCTION METHOD

Unit-I (Feedback amplifiers) Features of feedback amplifiers. Presentation by: S.Karthie, Lecturer/ECE SSN College of Engineering

Version 2.1 NE05 - LRC Series Circuit

The Components of Vector B. The Components of Vector B. Vector Components. Component Method of Vector Addition. Vector Components

Homework-8(1) P8.3-1, 3, 8, 10, 17, 21, 24, 28,29 P8.4-1, 2, 5

Transcription:

Chaper 7, Slun. Applyng KV Fg. 7.. d 0 C - Takng he derae f each erm, d 0 C d d d r C Inegrang, () ln I 0 - () I 0 e - C C () () r - I 0 e - () V 0 e C C Chaper 7, Slun. h C where h s he Theenn equalen a he capacr ermnals. Chaper 7, Slun. h - 0.5 0 0 80 60 Ω 60 0 ms (a) 0 //0 5kΩ, Th Th C 5x0 xx0 6 0 ms (b) 0 //(5 5) 8 0Ω, C 0x0. 6s Th Th Chaper 7, Slun 4. eq C eq CC where C eq, C C ( eq CC )(C C )

Chaper 7, Slun 5. () where (4) 4 4) (4)e -(-, C (0)(0.) () (0) 4e -(-4) 4e -6.95 V Chaper 7, Slun 6. (0) 0 / 6 () e, C 40x0 xx0.5 () 4e V (4) 4V 5 Chaper 7, Slun 7. () (0) e -, h C where h s he Theenn ressance acrss he capacr. T deermne h, we nser a -V lage surce n place f he capacr as shwn belw. 8 Ω 0.5 V 0 Ω V 0., 0 0. 6 80 h 80 h C 0. () 0e - 8 0.5 8 80 8 V 6

Chaper 7, Slun 8. (a) C 4 - - 0.e d C d -4 C(0)(-4)e C 5-4 mf 4C 50 Ω (b) C 0.5 s 4 (c) - w C (0) CV0 (5 0 )(00) (d) - ( 0 w ) CV0 CV0 e -80 0.5 e -80 e r e 80 0 ln () 86.6 ms 8 50 mj Chaper 7, Slun 9. () (0)e -, C eq eq 8 8 6 4 8 Ω eq C (0.5)(8) () - 0e V

Chaper 7, Slun 0. 5 Ω 0 Ω 0 mf T 4 Ω (0)() 5 0 5.e. f ( 0) A, hen (0) A (0) (0) (0) T 5 A A (0) 0(0) 4 T (0) 0 0 50 V acrss he capacr ermnals. h - h C (0)(0 0 ) - -0 () (0)e 50e 4 0 5 4 6 0 Ω d C C (0 0 d -0-5e A C - )(-500e 0. -0 By applyng he curren dsn prncple, 5 () (- C ) -0.6 C e -0 A 0 5 ) Chaper 7, Slun. Applyng KC he crcu, d 0 Dfferenang bh sdes, d 0 d A e - d d 0

If he nal curren s () (0) I0 A, - I0 e - - () d I 0 e - -I - I 0 e 0 e -, hen I 0 - Chaper 7, Slun. When < 0, he swch s clsed and he nducr acs lke a shr crcu dc. The 4 Ω ressr s shr-crcued s ha he resulng crcu s as shwn n Fg. (a). Ω V (0 - ) 4 Ω H (a) (b) (0 ) 4 A Snce he curren hrugh an nducr cann change abruply, (0) (0 ) (0 ) 4 A When > 0, he lage surce s cu ff and we hae he crcu n Fg. (b). 0.5 4 Hence, () (0) e - 4e - A

Chaper 7, Slun. where h h s he Theenn ressance a he ermnals f he nducr. h 70 0 80 0 6 7 Ω 0 7-8.08 µ s Chaper 7, Slun 4 Cnerng he wye-subnewrk dela ges 6 Ω 80mH 0 Ω 0x0 0x50 50x0 700 700 700 / 0 85Ω, 4Ω, 70Ω 0 50 0 0//70 (0x70)/00 5.5 Ω, 4//6(4x6)/50 0.88Ω Th 85x6.8 85//(5.5 0.88) 5.476Ω,.8 Th 80x0 5.476.4 ms

Chaper 7, Slun 5 (a) (b) 0 // 40 0Ω, 5/ 0 0. s Th 40 //60 8 40Ω, (0x0 ) / 40 0.5 ms Th 5 Th Th Chaper 7, Slun 6. (a) eq eq eq and ( ( eq ) ) ( ) (b) where eq and ( eq ( )( ( ) ) ) ( ) Chaper 7, Slun 7. (0) e - (), eq 4 4 6 () e -6 d d -6 () 6e () -6 - e V ( 4)(-6)e -6

Chaper 7, Slun 8. If () 0, he crcu can be redrawn as shwn belw. 0.4 H eq () () 6 5 eq, 5 5 6 - (0) e - () e d - - () - (-) e.e - V d 5 Chaper 7, Slun 9. V 0 Ω / 40 Ω T fnd h we replace he nducr by a -V lage surce as shwn abe. 0 40 0 Bu and.e. 0 0 0 h 0 Ω 6 0. s 0 () h e -5 A 0

Chaper 7, Slun 0. (a). - 50 d d 50-50 -50e (0)(-50)e 0. -50 H 50 5 Ω (b). 0 ms 50 (c). w (0) (0.)(0 ) 45 J (d). e p be he fracn - ( 0 I ) 0 p I0 e ()(0) 50-0.4 p e e 0.96.e. p % Chaper 7, Slun. The crcu can be replaced by s Theenn equalen shwn belw. h V h H V 80 (60) 40 V h 80 40 80 h 40 80 Vh 40 I (0) ( ) 80 40 w I () 80 40 40 80. Ω h

Chaper 7, Slun. - () (0)e, eq eq 5 0 5 Ω, () 0e -.5 A 5 Usng curren dsn, he curren hrugh he 0 hm ressr s 5 - -.5 (-) -e 5 0 5 () 0 -.5-40e V Chaper 7, Slun. Snce he Ω ressr, / H nducr, and he () Ω ressr are n parallel, hey always hae he same lage. -.5 (0) -.5 The Theenn ressance h a he nducr s ermnals s 4 h ( ), h 4 4 - -4 () (0)e -.5e, > 0 d -4 -.5(-4)(/) e d e -4 V, > 0-4 x 0.5e V, > 0 Chaper 7, Slun 4. (a) () - 5u() (b) () -0[ u() u( ) ] 0[ u( ) u( 5) ] - 0u() 0u( ) 0u( 5)

(c) x() ( ) [ u( ) u( ) ] [ u( ) u( ) ] ( 4 ) [ u( ) u( 4) ] ( ) u( ) ( ) u( ) ( ) u( ) ( 4) u( 4) r( ) r( ) r( ) r( 4) (d) y() u(-) 5[ u() u( ) ] u(-) 5u() 5u( ) Chaper 7, Slun 5. () [u() r( ) r( ) u( )] V Chaper 7, Slun 6. (a) () u( ) u() [ u( ) u() ] () u( ) u() u( ) (b) () (4 ) [ u( ) u( 4) ] () -( 4) u( ) ( 4) u( 4) () u( ) r( ) r( 4) (c) () [ u( ) u( 4) ] 4[ u( 4) u( 6) ] () u( ) u( 4) 4u( 6) (d) () - [ u( ) u( ) ] - u( ) u( ) 4 4 () (- ) u( ) ( ) u( ) 4 () - r( ) u( ) r( ) u( ) Chaper 7, Slun 7. () s skeched belw. () 0 4 -

Chaper 7, Slun 8. () s skeched belw. () 0 4 - Chaper 7, Slun 9 (a) x().679 0 (b) y() 7.8 0

(c) z( ) cs 4δ ( ) cs 4δ ( ) 0.656δ ( ), whch s skeched belw. z() 0-0.65 δ ( ) Chaper 7, Slun 0. 0 δ 0 π ) δ( 0.5) d cs(π) 0. - (a) 4 ( ) d 4 4 (b) cs( 5 cs π - Chaper 7, Slun. 6-9 δ - 0 - - 5δ () e δ() cs π δ() d 5 e cs(π) 5-0 7-4 -4 - (a) [ e ( ) ] d e e (b) [ ] ( ) Chaper 7, Slun. (a) u( λ ) dλ dλ λ 4 4 (b) r( ) d 0d ( ) d 4. 5 0 0 5 ( (c ) 6) δ ( ) d ( 6) 6 4

Chaper 7, Slun. () 0 () d (0) - 0 () - 0δ( ) d 0 0 0 0 () u( ) A Chaper 7, Slun 4. (a) (b) (c) d [ u( ) u( ) ] δ( )u( ) d u( ) δ( ) δ( ) 0 δ( ) δ( ) d [ r( 6) u( ) ] u( 6)u( ) d r( 6) δ( ) u( 6) 0 δ( ) u( 6) d [ sn 4 u( ) ] 4cs 4 u( ) sn 4δ( ) d 4cs 4 u( ) sn 4xδ( ) 4cs 4 u( ) 0.566δ( ) Chaper 7, Slun 5. (a) () A e -5, (0) A - - 5 () - e V (b) () A e, (0) A 5 () 5e V

Chaper 7, Slun 6. - (a) () A Be, > 0 A, (0) 0 B r B - - () e V, > 0 (b) () A Be, > 0 A -, (0) -6 - B r B - () - ( e ) V, > 0 Chaper 7, Slun 7. e h p, p 0. (a) 4s (b) ( ) 0 V / 4 0 h h Ae h 4 0 Ae 0.5 ( 0) 0 A A 8 0 8e 0.5 (c ) 0 8 e 0. 5 Chaper 7, Slun 8 e p h h h 0 h Ae u( ) e p ku( ), p 0, ku( ) u( ) k

p u( ) ( Ae ) u( ) If (0) 0, hen A / 0,.e. A-/. Thus ( e ) u( ) Chaper 7, Slun 9. (a) Befre 0, () (0 4 ) 4 V Afer 0, () ( ) [ (0) ( ) ] e - C (4)() 8, (0) 4, ( ) 0 () () 0 (8 0) e - - 8 0 e V 8 (b) Befre 0,, where s due he -V surce and s due he -A surce. V T ge, ransfrm he curren surce as shwn n Fg. (a). -8 V Thus, 8 4 V Afer 0, he crcu becmes ha shwn n Fg. (b). F F 4 Ω 8 V V Ω Ω (a) (b)

[ (0) ( ) ] e - () ( ) ( ), (0) 4, C ()() 6 () () Chaper 7, Slun 40. (4 ) e - - 6 8e V (a) Befre 0, 6 V. Afer 0, [ ] () ( ) (0) ( ) e - ( ) 4, (0), C ()() 6 () (b) Befre 0, 4 ( 4)e - - 6 () 4 8e V V. 6 Afer 0, () ( ) [ (0) ( ) ] e - Afer ransfrmng he curren surce, he crcu s shwn belw. Ω 0 4 Ω V 5 F Chaper 7, Slun 4. (0), ( ), C ()(5) 0 V 0 (0) 0, ( ) () 0 6 (6)(0) eq C (6 0)() 5 6 () [ (0) ( ) ] e - ( ) () 0 (0 0) e - 5 () -0. 0( e ) V

Chaper 7, Slun 4. () ( ) (0) ( ) e 4 (0) 0, ( ) () 8 4 4 eq C eq, eq 4 4 () 4-4 () 8 8e - (a) [ ] () -0.5 8( e ) V (b) Fr hs case, ( ) 0 s ha Chaper 7, Slun 4. - () (0) e 4 (0) () 8, C (4)() 4 - () 8e V Befre 0, he crcu has reached seady sae s ha he capacr acs lke an pen crcu. The crcu s equalen ha shwn n Fg. (a) afer ransfrmng he lage surce. 0.5, 40 80 0 Hence, 64 80 40 5 80 0.8 A Afer 0, he crcu s as shwn n Fg. (b). (), C C - C (0) e h T fnd h, we replace he capacr wh a -V lage surce as shwn n Fg. (c). 0.5 C V 0.5 80 Ω (c)

0.5 C, 0.5 80 80 80 80 h 60 Ω, C 480 0.5 h C (0) 64 V () 64e - 480 C d C 0.5 - C -C - () d - 480 0.8e Chaper 7, Slun 44. A 480 64e - 480 eq 6 Ω, C 4 () [ (0) ( ) ] e - ( ) Usng lage dsn, (0) (0) 0 V, ( ) () 4 V 6 6 Thus, - 4 e - 4 () 4 (0 4) e 4 6 d - 4 e - -0.5 () C ()(6) - e A d 4 Chaper 7, Slun 45. Fr < 0, s 5u() 0 (0) 0 Fr > 0, s 5, 4 ( ) (5) 4 5 4 eq 7 4 0, eq C (0)( ) 5 () [ (0) ( ) ] e - ( ) () - 5.5( e ) V () d C d - 5-4 5 5 e - () - 5 0.5e A

Chaper 7, Slun 46. C ( 6) x0.5 s, (0) 0, ( ) 6 6x5 0 Th s ( ) ( ) [ (0) ( )] e 0( e / / ) V Chaper 7, Slun 47. Fr < 0, u () 0, u ( ) 0, (0) 0 Fr 0 < <, C ( 8)(0.) (0) 0, ( ) (8)() 4 () () ) [ (0) ( ) ] e - ( e - ) ( 4 - Fr >, () 4( e ) 5. 7-6 ( ) - 4 0 ( ) 0 () () 0 (5.7 0 4.8e -(-) 0)e -(-) Thus, () 4 - ( e ) 0 4.8e V, -(-) V, 0 < < > Chaper 7, Slun 48. Fr < 0, u (-), (0) 0 V Fr > 0, u (-) 0, ( ) 0 h 0 0 0, h C (0)(0.) () () [ (0) ( ) ] e - ( ) - 0e V () () d C d - - e - (0.) 0e - A

Chaper 7, Slun 49. Fr 0 < <, (0) 0, ( ) ()(4) 8 eq 4 6 0, eq C (0)(0.5) 5 () ) [ (0) ( ) ] e - - ( e ) V ( 5 () 8-0. Fr >, () 8( e ). 45 ) () ( ) [ () ( ) ] e -( -() 5 ().45e, ( ) 0 V Thus, - 5 ( ) 8 e () -(.45e ) 5 V, V, 0 < < > Chaper 7, Slun 50. Fr he capacr lage, () ( ) (0) ( ) (0) 0 [ ] e - Fr < 0, we ransfrm he curren surce a lage surce as shwn n Fg. (a). kω kω 0 V kω (a) ( ) (0) 5 V ( ) kω h - C 0 0 4-4 () 5 e, > h ( ) 0 4

We nw ban frm (). Cnsder Fg. (b). x x T kω 0 ma kω /4 mf kω Bu Thus, x 0 ma T d T C d T () 7.5-4 () 7.5 T (b) -4 - -4 ( e ) ma 0 (-5)(-4)e A 4 ( e ) ma -4 () 0 7.5 7.5e x ma -4 x () 7.5( e ) ma, > 0 Chaper 7, Slun 5. Cnsder he crcu belw. 0 V S Afer he swch s clsed, applyng KV ges d V S d d V S r - d d - d V Inegrang bh sdes, S

r - ln I 0 V S () V S - ln I0 VS VS - e I V 0 () S V V S S - I 0 e whch s he same as Eq. (7.60). Chaper 7, Slun 5. 0 (0) A, ( ) A 0 () ( ) (0) ( ) e - [ ] ( ) A Chaper 7, Slun 5. (a) Befre 0, 5 5 A Afer 0, () (0)e - 4, (0) 5 - () 5e A (b) Befre 0, he nducr acs as a shr crcu s ha he Ω and 4 Ω ressrs are shr-crcued. () 6 A Afer 0, we hae an crcu. () (0) e, () - 6e - A

Chaper 7, Slun 54. (a) Befre 0, s baned by curren dsn r 4 () ( 4 4 ) A Afer 0, () ( ) [ (0) ( ) ] e -, 4 4 7 Ω eq.5 7 (0), () 6 7 eq 4 ( ) () () 4 4 4 6 e - 7 6 7 - () ( 6 e 7 )A (b) Befre 0, 0 () A Afer 0, eq 6 4. 5 4 eq 4.5 9 (0) T fnd ( ), cnsder he crcu belw, a when he nducr becmes a shr crcu, 0 V 4 V H Ω 6 Ω Ω 0 4 6 ( ) A () ( ) e -9 () -9 4 e A 4 9

Chaper 7, Slun 55. Fr < 0, cnsder he crcu shwn n Fg. (a). 0.5 H 0.5 H Ω 8 Ω 4 Ω Ω 4 V 0 V (a) (b) 4 4 0 4 () 4 96 V 48 A Fr > 0, cnsder he crcu n Fg. (b). () ( ) [ (0) ( ) ] e - 0 (0) 48, ( ) A 8 0.5 h 8 0 Ω, 0 () (48 )e 46 () () h -0 e -0-0 4 9e V 0 Chaper 7, Slun 56. eq 6 0 5 0 Ω, 0. 05 () ( ) (0) ( ) e - [ ] (0) s fund by applyng ndal analyss he fllwng crcu.

5 Ω x 6 Ω A Ω 0 Ω 0.5 H 0 V 0 5 (0) 6 x x x 0 6 x x x A Snce 0 5 4, 4 ( ) (4).6 4 6-0.05 ().6 (.6)e.6 0.4e d () (0.4)(-0)e -0 d -0 () - 4e V -0 Chaper 7, Slun 57. A 0, he crcu has reached seady sae s ha he nducrs ac lke shr crcus. 6 Ω 0 V 5 Ω 0 Ω 0 0 0, (). 4 6 5 0 0, 0. 6 5 (0).4 A, (0) 0.6 A

Fr > 0, he swch s clsed s ha he energes n and flw hrugh he clsed swch and becme dsspaed n he 5 Ω and 0 Ω ressrs. -.5 () (0) e, 5 () -.4e () e () A - (0), -5 0.6e A 4 0 5 Chaper 7, Slun 58. Fr < 0, () 0 0 Fr > 0, (0) 0, ( ) 5 4 h 4 Ω, 4 () [ (0) ( ) ] e - ( ) -6 () 5( e ) A d () 5 d 4-6 () 5 5e V h 6-6 -6 ( e ) (-6)(5) e Chaper 7, Slun 59. e I be he curren hrugh he nducr. Fr < 0, s 0, (0) 0.5 Fr > 0, eq 4 6 6, 0. 5 6 ( ) () 4 () ( ) (0) ( ) () [ ] e - e -4 d () d () e 6-4 V (.5)(-4)(-e -4 ) eq

Chaper 7, Slun 60. e I be he nducr curren. Fr < 0, u () 0 (0) 0 8 Fr > 0, eq 5 0 4 Ω, 4 ( ) 4 () () ( ) [ (0) ( ) ] e - ( e - ) 4 eq () () d d 6e -0.5 - (8)(-4) V e - Chaper 7, Slun 6. The curren surce s ransfrmed as shwn belw. 4 Ω 0u(-) 40u() 0.5 H, (0) 5, ( ) 0 4 8 () ( ) (0) ( ) e - () () () -8 0 5e d d 0e -8 [ ] A (-5)(-8)e -8 V Chaper 7, Slun 6. eq 6 Fr 0 < <, u ( ) 0 s ha

(0) 0, () 6 ( e - ) ( ) () 6 ( ) 6 () 0.5 (0.054 6 - Fr >, ( e ) 0. 054 Thus, () Chaper 7, Slun 6. 0.5 0.946e -(-) - ( e ) A () 6 0.5 0.946e 0.5)e -(-) -(-) A 0 < < > 0 Fr < 0, u (-), (0) 5 Fr > 0, u (-) 0, ( ) 0 0.5 h 5 0 4 Ω, 4 () () () () [ (0) ( ) ] e - ( ) e -8 A d (-8)()e -8 d Chaper 7, Slun 64. -8-8e V h e be he nducr curren. Fr < 0, he nducr acs lke a shr crcu and he Ω ressr s shrcrcued s ha he equalen crcu s shwn n Fg. (a). 8 6 Ω 6 Ω 0 Ω Ω 0 Ω Ω Ω (a) (b)

0 (0).667 A 6 4 Fr > 0, h 6 4 Ω, 4 T fnd ( ), cnsder he crcu n Fg. (b). 0 0 6 6 5 ( ) 6 () ( ) [ (0) ( ) ] e - 5 0 5 5 - - () e ( e ) A 6 6 6 6 s he lage acrss he 4 H nducr and he Ω ressr 0 5 () d d 0 6 - ().667( e )V 6 e - h (4) (-)e 6-0 6 0 e 6 - Chaper 7, Slun 65. Snce 0[ u() u( ) ] s, hs s he same as sayng ha a 0 V surce s urned n a 0 and a -0 V surce s urned n laer a. Ths s shwn n he fgure belw. s 0-0 0 Fr 0 < <, (0) 0, ( ) 5 h 5 0 4, h 4 () [ (0) ( ) ] e - ( )

( e ) A ( e ). 79 - () - () Fr >, ( ) 0 snce s 0 () ) ()e -( -() ().79e A Thus, - ( ) e ().79 e A 0 < < > -() A Chaper 7, Slun 66. Fllwng Pracce Prblem 7.4, - () V T e V T (0) -4, () -4e -50-50 () -() 4e, > 0 - f C (0 0 )( 0 ) 6 () 4-50 () e 0.4e -50 ma, > 0 0 0 50 Chaper 7, Slun 67. The p amp s a lage fllwer s ha as shwn belw. C

A nde, 0 A he nnnerng ermnal, d C 0 d d C d d d C - C () V e V T (0) 5 V, T () 5e - 00 V 6 - C ()(0 0 )( 0 ) 00 Chaper 7, Slun 68. Ths s a ery neresng prblem and has bh an mpran deal slun as well as an mpran praccal slun. e us lk a he deal slun frs. Jus befre he swch clses, he alue f he lage acrss he capacr s zer whch means ha he lage a bh ermnals npu f he p amp are each zer. As sn as he swch clses, he upu res g a lage such ha he npu he p amp bh g 4 ls. The deal p amp pus u whaeer curren s necessary reach hs cndn. An nfne (mpulse) curren s necessary f he lage acrss he capacr s g 8 ls n zer me (8 ls acrss he capacr wll resul n 4 ls appearng a he negae ermnal f he p amp). S wll be equal 8 ls fr all > 0. Wha happens n a real crcu? Essenally, he upu f he amplfer prn f he p amp ges whaeer s maxmum alue can be. Then hs maxmum lage appears acrss he upu ressance f he p amp and he capacr ha s n seres wh. Ths resuls n an expnenal rse n he capacr lage he seady-sae alue f 8 ls. C() V p amp max ( e -/(uc) ) ls, fr all alues f C less han 8 V, 8 V when s large enugh s ha he 8 V s reached. Chaper 7, Slun 69. e x be he capacr lage. Fr < 0, x (0) 0

Fr > 0, he 0 kω and 00 kω ressrs are n seres snce n curren eners he p amp ermnals. As, he capacr acs lke an pen crcu s ha 0 00 48 x ( ) (4) 0 00 0 - h 0 00 0 kω, C (0 0 )(5 0 ) 000 x () 48 x () - ) [ ] x (0) x ( ) e - 000 ( e ) x ( 40 000 00 - () x () ( e )V 0 h Chaper 7, Slun 70. e capacr lage. Fr < 0, he swch s pen and (0) 0. Fr > 0, he swch s clsed and he crcu becmes as shwn belw. S C () s 0 s d C () d where () s s Frm (), d s 0 d C - s d (0) C Snce s cnsan, - C s

-6 C (0 0 )(5 0 ) 0. - 0 mv -00 mv 0. Frm (), s 0 00 0 ( 0 ) mv Chaper 7, Slun 7. e lage acrss he capacr. e lage acrss he 8 kω ressr. Fr <, 0 s ha () 0. Fr >, we hae he crcu shwn belw. 0 kω 0 kω 0 kω 4 V 00 mf 8 kω Snce n curren eners he p amp, he npu crcu frms an C crcu. - C (0 0 )(00 0 ) 000 () () ) [ () ( ) ] e -( 000 ( e -( ) ) ) ( 4 As an nerer, -0k -( ) 000 ( e ) 0k -( ) 000 0.5( e )A 8

Chaper 7, Slun 7. The p amp acs as an emer fllwer s ha he Theenn equalen crcu s shwn belw. C u() Hence, () ( ) - [ (0) ( ) ] e -6 (0) - V, ( ) V, C (0 0 )(0 0 ) 0. () (- - )e 5-0 e -0 d -6 C (0 0 )(-5)(-0) e d 0.5e -0 ma, > 0-0 Chaper 7, Slun 7. Cnsder he crcu belw. f C A nde, A nde, d C d ()

d C d () f Bu 0 and. Hence, () becmes d C d d C d C d r d C whch s smlar Eq. (7.4). Hence, T < 0 () - ( ) e > 0 T where T (0) and 4 () - C (0 0 )(0 0 ) 0. < 0-5 4 e > 0 6 Frm (), d - f C (0 0 )(0 0 d -5-6e, 0 > -5-6e u() V -6 )(5e -5 ) Chaper 7, Slun 74. e capacr lage. f C

Fr < 0, (0) 0 Fr > 0, s 0 µ A. Cnsder he crcu belw. d s C () d () ( ) (0) ( ) e - () [ ] I s eden frm he crcu ha C ( 0 )(50 0 ) 6 0. C f s s A seady sae, he capacr acs lke an pen crcu s ha s passes hrugh. Hence, 6 ( ) (0 0 )(50 0 ) 0.5 V s Then, Bu ( e ) V -0 () 0.5 () 0 s - s f (4) f Cmbnng (), (), and (4), we ban - f d f C d - d -6 (0 0 )( 0 ) 5 d -0 - -0. 0.e ( 0 )(0.5) -0 0.e 0. -0 0.( e )V -0 ( -0e )

Chaper 7, Slun 75. e lage a he nnnerng ermnal. e lage a he nerng ermnal. Fr > 0, 4 0 s s, 0 kω - () Als,.e. d C, 0 kω d, C µ F - s d C () d Ths s a sep respnse. () ( ) [ (0) ( ) ] e -, (0) -6 where C (0 0 )( 0 ) 50 A seady sae, he capacr acs lke an pen crcu s ha passes hrugh. Hence, as - s ( ) - -0.e. ( ) s (4) - 0 () - ( ) e -50 () - e -50 Bu r s 4 e s -50 6 e V -50 - s - 4-0. ma 0k d r C - 0. ma d

Chaper 7, Slun 76. The schemac s shwn belw. Fr he pulse, we use IPW and ener he crrespndng alues as arbues as shwn. By selecng Analyss/Seup/Transen, we le Prn Sep 5 ms and Fnal Sep s snce he wdh f he npu pulse s s. Afer sang and smulang he crcu, we selec Trace/Add and dsplay V(C:). The pl f V() s shwn belw. Chaper 7, Slun 77. The schemac s shwn belw. We clck Marker and nser Mark Vlage Dfferenal a he ermnals f he capacr dsplay V afer smulan. The pl f V s shwn belw. Ne frm he pl ha V(0) V and V( ) -4 V whch are crrec.

Chaper 7, Slun 78. (a) When he swch s n psn (a), he schemac s shwn belw. We nser IPOBE dsplay. Afer smulan, we ban, (0) 7.74 A frm he dsplay f IPOBE.

(b) When he swch s n psn (b), he schemac s as shwn belw. Fr nducr I, we le IC 7.74. By clckng Analyss/Seup/Transen, we le Prn Sep 5 ms and Fnal Sep s. Afer Smulan, we clck Trace/Add n he prbe menu and dsplay I() as shwn belw. Ne ha ( ) A, whch s crrec.

Chaper 7, Slun 79. When he swch s n psn, (0) / 4A. When he swch s n psn, 4 Th ( ) 0.5 A, Th ( 5) // 4 8 /, 80 / 5 ( ) ( ) [ (0) ( )] e 0.5 4.5e / / 80 A Chaper 7, Slun 80. (a) When he swch s n psn A, he 5-hm and 6-hm ressrs are shrcrcued s ha ( 0) (0) (0) 0 bu he curren hrugh he 4-H nducr s (0) 0/0 A. (b) When he swch s n psn B, Th // 6 Ω, / 4 0.5 Th ( ) ( ) [ (0) ( )] e 0 e e / / 0.5 A (c) 0 ( ) A, ( ) ( ) 0 5 9 0 A d ( ) ( ) 0 V d Chaper 7, Slun 8. The schemac s shwn belw. We use VPW fr he pulse and specfy he arbues as shwn. In he Analyss/Seup/Transen menu, we selec Prn Sep 5 ms and fnal Sep S. By nserng a curren marker a ne ermal f I, we aumacally ban he pl f afer smulan as shwn belw.

Chaper 7, Slun 8. - 0 C -6 C 00 0 0 Ω

Chaper 7, Slun 8. 6 6 ( ) 0, (0) 0, C 4x0 x5x0 50s ( ) ( ) [ (0) ( )] e Slng fr ges 50 ln.488 67. 6s 85.6 0( e / speed 4000m/67.6s 6.78m/s / 50 ) Chaper 7, Slun 84. e I be he fnal alue f he curren. Then ( ) I ( e / ), / 0.6 / 8 / 50 0.6I I ( e 50 ) ln 50 0.4 8. ms. Chaper 7, Slun 85. (a) C -6 6 (4 0 )(6 0 ) 4 s Snce () ( ) [ (0) ( ) ] e - - [ ] () ( ) (0) ( ) e - [ ] ( ) ( ) (0) ( ) () () e Ddng () by (), ( ) ( ) e ( ) ( ) 0 ( ) ( ) ( ) ln ( ) ( ) 75 0 0 4ln 4ln () 6.6 0 0 (b) Snce 0 <, he lgh flashes repeaedly eery C 4 s s

Chaper 7, Slun 86. () [ (0) ( ) ] e - ( ) ( ), (0) 0 () ( 8 0 ( e - ) - ( ) 0) e 0 8 e - ln() e 0 0 - Fr 00 kω, -6 C (00 0 )( 0 ) 0 0. ln() 0.97 s Fr MΩ, -6 C ( 0 )( 0 ) 0 ln().97 s 6 s 0. s Thus, 0.97 s < 0 <.97 s Chaper 7, Slun 87. e be he nducr curren. Fr < 0, 0 (0 ). A 00 Fr > 0, we hae an crcu 50 0., ( ) 0 00 400 () ( ) (0) ( ) e - (). e -0 A 00 ms 0. s, - (0.).e [ ] 0.44 whch s he same as he curren hrugh he ressr. A

Chaper 7, Slun 88. (a) (b) - C (00 0 )(00 0 ) 60 µ s As a dfferenar, T > 0 600 µ s 0.6 ms.e. Tmn 0.6 ms C 60 µ s As an negrar, T < 0. 6 µ s.e. Tmax 6 µ s Chaper 7, Slun 89. Snce < 0.T µ s < µ s -6 < 0-6 (00 0 )( 0 ) < 00 mh Chaper 7, Slun 90. We deermne he Theenn equalen crcu fr he capacr C s. s h, h s p s p h V h C s The Theenn equalen s an C crcu. Snce s h 0 0 Als, s 9 p 6 9 MΩ s p

where h Cs 5 µ s 6( ) h p s 0.6 MΩ 6 C 5 0 0.6 0-6 s 6 h 5 pf Chaper 7, Slun 9. (0) 40 ma, ( ) 0 50 () ( ) (0) ( ) e - () 40e - ( ) 0 40 [ ] -0 0 e e 0 4 0 ln (4) 5 0.57 ln (4) ln (4). 57.7 Ω Chaper 7, Slun 9. 0 d - 0 < < -9 C 4 0 0 d -0 < < -6 5 0 0 µ A 0 < < ms () - 8 ma ms < < ms 5 µ s whch s skeched belw. D () 0 µa 5 µs ms -8 ma (n scale)