An introduction to Solid State NMR and its Interactions

Similar documents
Chem8028(1314) - Spin Dynamics: Spin Interactions

Spin Interactions. Giuseppe Pileio 24/10/2006

6 NMR Interactions: Zeeman and CSA

Direct dipolar interaction - utilization

Solid-state NMR and proteins : basic concepts (a pictorial introduction) Barth van Rossum,

Solid-state NMR of spin > 1/2

Spin Relaxation and NOEs BCMB/CHEM 8190

NMR (CHEM8028) Solid-state NMR: Anisotropic interactions and how we use them. Dr Philip Williamson January 2015

NMR: Formalism & Techniques

Spin Dynamics Basics of Nuclear Magnetic Resonance. Malcolm H. Levitt

T 1, T 2, NOE (reminder)

Classical Description of NMR Parameters: The Bloch Equations

Classical Description of NMR Parameters: The Bloch Equations

NMR Dynamics and Relaxation

Chapter 8 Magnetic Resonance

The Physical Basis of the NMR Experiment

Modern Solid State NMR strategies for the structural characterization of amorphous solids Leo van Wüllen

The NMR Inverse Imaging Problem

Nuclear magnetic resonance in condensed matter

We have seen that the total magnetic moment or magnetization, M, of a sample of nuclear spins is the sum of the nuclear moments and is given by:

Problem Set 2 Due Tuesday, September 27, ; p : 0. (b) Construct a representation using five d orbitals that sit on the origin as a basis: 1

10.4 Continuous Wave NMR Instrumentation

1 Magnetism, Curie s Law and the Bloch Equations

Principles of Magnetic Resonance

Principles of Magnetic Resonance Imaging

CONTENTS. 2 CLASSICAL DESCRIPTION 2.1 The resonance phenomenon 2.2 The vector picture for pulse EPR experiments 2.3 Relaxation and the Bloch equations

Magnetic Resonance Spectroscopy

Introduction to Relaxation Theory James Keeler

Principles of Nuclear Magnetic Resonance in One and Two Dimensions

General NMR basics. Solid State NMR workshop 2011: An introduction to Solid State NMR spectroscopy. # nuclei

MR Fundamentals. 26 October Mitglied der Helmholtz-Gemeinschaft

8 NMR Interactions: Dipolar Coupling

NMR Shifts. I Introduction and tensor/crystal symmetry.

Chemistry 431. Lecture 23

Investigation of Local Structures in Cation- Ordered Microwave Dielectric a Solid-State Nmr and First Principle Calculation Study

3 Chemical exchange and the McConnell Equations

Chapter 7. Nuclear Magnetic Resonance Spectroscopy

Advanced Quadrupolar NMR. Sharon Ashbrook School of Chemistry, University of St Andrews

Cross Polarization 53 53

PROTEIN NMR SPECTROSCOPY

0.5. Dip. Freq. HkHzL D HppmL

Topics. The concept of spin Precession of magnetic spin Relaxation Bloch Equation. Bioengineering 280A Principles of Biomedical Imaging

Center for Sustainable Environmental Technologies, Iowa State University

TECNICHE DI ALTA E BASSA RISOLUZIONE IN NMR STATO SOLIDO

NMR, the vector model and the relaxation

Principios Básicos de RMN en sólidos destinado a usuarios. Gustavo Monti. Fa.M.A.F. Universidad Nacional de Córdoba Argentina

CHAPTER 5 DIPOLAR COHERENCE TRANSFER IN THE PRESENCE OF CHEMICAL SHIFT FOR UNORIENTED AND ORIENTED HOMONUCLEAR TWO SPIN-½ SOLID STATE SYSTEMS

Rotational Motion. Chapter 4. P. J. Grandinetti. Sep. 1, Chem P. J. Grandinetti (Chem. 4300) Rotational Motion Sep.

A Hands on Introduction to NMR Lecture #1 Nuclear Spin and Magnetic Resonance

PHYSICAL REVIEW B VOLUME 58, NUMBER 5

Second Order Effects, Overtone NMR, and their Application to Overtone Rotary Recoupling of 14 N- 13 C Spin Pairs under Magic-Angle-Spinning

THEORY OF MAGNETIC RESONANCE

Author(s) Takegoshi, K; Nakamura, S; Terao, T.

NMR-spectroscopy. I: basics. Peter Schmieder

Classical behavior of magnetic dipole vector. P. J. Grandinetti

Chem 325 NMR Intro. The Electromagnetic Spectrum. Physical properties, chemical properties, formulas Shedding real light on molecular structure:

NMR-spectroscopy of proteins in solution. Peter Schmieder

Sideband Patterns from Rotor-Encoded Longitudinal Magnetization in MAS Recoupling Experiments

Problem Set 2 Due Thursday, October 1, & & & & # % (b) Construct a representation using five d orbitals that sit on the origin as a basis:

Natural abundance solid-state 95 Mo MAS NMR of MoS 2 reveals precise 95 Mo anisotropic parameters from its central and satellite transitions

Polarized solid deuteron targets EU-SpinMap Dubrovnik

Relaxation. Ravinder Reddy

Magnetic Resonance Imaging. Pål Erik Goa Associate Professor in Medical Imaging Dept. of Physics

NMR-CASTEP. Jonathan Yates. Cavendish Laboratory, Cambridge University. J-coupling cons. NMR-CASTEP York 2007 Jonathan Yates.

4 Spin-echo, Spin-echo Double Resonance (SEDOR) and Rotational-echo Double Resonance (REDOR) applied on polymer blends

Experiment and Modelling in Structural NMR

Nuclear Quadrupole Resonance Spectroscopy. Some examples of nuclear quadrupole moments

NMR spectroscopy. Matti Hotokka Physical Chemistry Åbo Akademi University

III.4 Nuclear Magnetic Resonance

Limites et Potentiel de la RMN pour la caractérisation structurale de l environnement des éléments «traces»

Hyperfine interaction

Symmetry-Based Double Quantum Recoupling in Solid State NMR. Marina Carravetta

Nuclear Magnetic Resonance Imaging

Introduction of Key Concepts of Nuclear Magnetic Resonance

Biomedical Imaging Magnetic Resonance Imaging

The Basics of Magnetic Resonance Imaging

Spectral Broadening Mechanisms

Experiment and Modelling in Structural NMR

NMR Spectroscopy: A Quantum Phenomena

If the symmetry axes of a uniform symmetric body coincide with the coordinate axes, the products of inertia (Ixy etc.

NMR-spectroscopy in solution - an introduction. Peter Schmieder

Magic-Angle Spinning (MAS) drive bearing

Demonstration of the Coupled Evolution Rules 163 APPENDIX F: DEMONSTRATION OF THE COUPLED EVOLUTION RULES

2.1. NMR Spectroscopy, Anisotropic Nuclear Spin Interaction.

Parameters, Calculation of Nuclear Magnetic Resonance

ELECTRON PARAMAGNETIC RESONANCE

Tutorial Session - Exercises. Problem 1: Dipolar Interaction in Water Moleclues

PRACTICAL ASPECTS OF NMR RELAXATION STUDIES OF BIOMOLECULAR DYNAMICS

ν + = e2 qq φ = 36.9,andθ = Pankratov [4] obtained ν 0 = ν + ν = e2 qq φ = 34.1, and θ = Boogaarts et al. [5]

Dipolar Recoupling in Magic-Angle-Spinning Nuclear Magnetic Resonance. Andreas Brinkmann

Polarised Nucleon Targets for Europe, 2nd meeting, Bochum 2005

* Universite des Sciences et Techniques de Lille

Rotational Raman Spectroscopy

A Primer for Nuclear Magnetic Relaxation in Liquids

NMR STUDY OF EXCHANGE AND HYDRATION SITE IDENTIFICATION IN MCM-41

Part II: Magnetic Resonance Imaging (MRI)

NUCLEAR MAGNETIC RESONANCE. Introduction. Vol. 10 NUCLEAR MAGNETIC RESONANCE 637

Hamiltonians with focus on Anisotropic interac4ons (Chemical Shi8 Anisotropy and Dipolar Interac4ons) The (solid- state NMR) world is anisotropic

NMR at Very Low Temperatures: Population Difference Thermometry 1

GIPAW: A solid-state theory for NMR

Transcription:

An introduction to Solid State NMR and its Interactions From tensor to NMR spectra CECAM Tutorial September 9 Calculation of Solid-State NMR Parameters Using the GIPAW Method Thibault Charpentier - CEA Saclay thibault.charpentier@cea.fr

Nuclear Magnetic Resonance Spin Magnetic Field The Rabi oscillation N = N ℏ I Rabi oscillations in quantum dots Source: http://iramis.cea.fr/drecam/spec/ Pres/Quantro/Qsite/projects/qip.htm

The Zeeman effect 3 I= B E= N. B m= 3/ = N ℏ I. B =ℏ I Z ℏ H B = m= 1/ The Larmor frequency m= 1/ = N B N = B m= 3/ NMR spectrum of an isolated nucleus m= 1

The spin operators 3/ 1/ I Z= 1/ 3/ 1 I Y = I i I 3 I Z m =m m I m = I I 1 mm 1 m 1 I m = I I 1 mm 1 m 1 IX I = I Y IZ 1 I X = I I I= I = 3/ 3/ I = 3/ 3/

The Larmor precession z B The classical approach to Larmor precession N y d N dt = N N t B x The quantum approach to Larmor precession iℏ d I dt =i ℏ d dt, I ] t =i ℏ I B t I t = t [ H N

The nuclear magnetization In NMR, the only direct observable is the macroscopic magnetization i M= i But NMR spectroscopist know how to play with more complex objects... At equilibrium, N up z B y x N down exp E y kbt the magnetization is along the magnetic field x M z Boltzman populations M x =M y=

Sensitivity of NMR The Curie Law (high temperature limit) M = B =N I ℏ I I 1 3kT B The quantum approach = N I N =N I N ℏ Tr I eq M =ℏ I Z H H eq exp kb T In the high temperature limit eq IZ M =N ℏ Tr I eq I N Z kb T kt Description of NMR experiments in term of I operators

The Resonance Phenomenum B Nutation z M t = I H t H Z RF y T x T Pulse Angle = 1 w w Application of a tranverse RF magnetic field at the Larmor frequency produces the precession of the nuclear magnetization around the RF field (nutation) in the socalled rotating frame t = B I cos t = I cos t H 1 x 1 x RF N RF RF d I dt LAB = I z N B1 cos RF t x Time Dependent Rotating frame at RF around B : x, y, z LAB x, y, z T d I dt T = I { RF } z 1 x T Time Independent

Pulsed Fourier Transform NMR Typical Timing of a Solid State NMR experiment RF Pulse Thermal Equilibrium & Relaxation p ms-hours s Free Precession Decay s-ms Macroscopic Magnetization Motion p =M x M = M z t p =M x cos t y sin t M M The complex NMR signal s t M exp i t Fourier Transform

Pulsed Fourier Transform NMR z Bloch equations dm x dt dm y dt dm z dt Mx B = i M y T = = My T i M x y M z M eq x T1 Density operator (quantum state) t =a x t I x a y t I y a z t I z M t Tr I. t y Coherent state M x M y x I z : magnetization ; I, I single quantum coherence The only directly observable entity

Pulsed Fourier Transform NMR Free Precession Decay Fourier Transform (phase correction) Signal Processing (Apodization) NMR Spectrum

The NMR signal in theory t I exp i H t s t=tr I exp i H x Initial state: I x System evolves under: H One quantum transitions are observed: I s t m m 1 I m exp i m, m 1 t The NMR frequencies m, m 1= m 1 H m 1 m H m The contribution of each transition to the signal amplitude is (isotropic!!) m 1 I m Hamiltonian of NMR interactions are needed H DFT calculations provide H!

NMR Interactions B B t, RF = ℏ I B H H B = H N ext local Z inter. External fields to manipulate the system: EPR Electrons NMR A complex situation... Nuclear Spins I B loc Nuclear Spins S B B t, RF Internal fields: B loc NMR inter. Phonons MicroWaves,... =H H H H H... H Z CS J D Q Chemistry: inter.

NMR Interactions are tensors A xx =AX = A B loc yx A zx A xy A xz Xx A yy A yz. X y A zy A zz Xz = ℏ I. A. X H N Second-rank Tensor = A=1, X B, B RF Zeeman Interaction =B A=, X Magnetic shielding = A=D, X S Dipolar Magnetic couplings (through space) = A= J, X S Indirect Magnetic couplings (through bond) = I A=Q, X Quadrupolar Interaction (electric couplings)

NMR Interactions: PAS Diagonalization of A yields the Principal Axis System (PAS) A xx A= A yx A zx A xy A xz A XX A yy 1 = X. A yz A AYY A zy A zz A ZZ. X A =X 1. APAS. X A A Principal Axes labeling: 1 Aiso= Tr A 3 AZZ A ZZ Aiso A XX Aiso AYY Aiso AYY Aiso A XX

NMR Interactions: PAS Introducing a convenient representation for encoding this orientational dependence 1/ 1 APAS = Aiso 1 A 1/ 1 1 Isotropic shift: Aiso=1/3Tr A Strength of the anisotropy: A= A ZZ Aiso Symmetry of the anisotropy A = A XX AYY / A (asymmetry parameter):

NMR Interactions: PAS Relative orientation of the PAS with respect to a reference frame (crystallographic axes, laboratory frame,...) Factorization of XA provides the three Euler angles A, A, A X A=R A, A, A =exp i A I z exp i A I y exp i A I z (x,y,z) is the PAS of the reference frame B A ZZ In NMR the position of a line (single crystal) is dependent upon the six parameters: Aiso, A, A, A, A, A A XX AYY

The secular approximation High Field NMR: B B loc Perturbation Expansion of the NMR interactions 1 1 1 1 H Z H inter. H inter. H CS H Q H Q H D H J... Keeping terms invariant under rotation around B B A zz A XX A ZZ AYY

A general representation of the NMR interactions Powerful Tensorial approach to derive all formula! m m =C H 1 R, m T m m= Euler angles =,, Spatial dependence R = D, m n,m n, n,± NMR parameters = Spin Operator dependence T, m [ I z,t, m ]=m T, m,,±1 II, =, = T =, 1 3I 6 (first order ) secular approximation easy : m=! 1 H =C R, T Z 3 I I 1

The Chemical Shift Tensor Absolute chemical shielding (GIPAW output) Isotropic chemical shift = REF 1 iso = iso REF exp iso ppm=1 6 Chemical Shift Anisotropy (CSA), exp iso REF Hz REF Hz z PAS H CSA= CS, I Z = R, I Z 3 CS, = XX sin cos YY sin sin ZZ cos CS, = iso {3 cos 1 B sin cos } x PAS y PAS

NMR powder spectrum S powder t = sin d d exp i, t TF S powder

The quadrupole Interaction I 1/ Electric coupling between the nuclear quadrupole moment Q and local electric field gradient V(rnuc) at the nucleus Quadrupolar Coupling Constant ( ~ MHz ) C Q= Quadrupolar asymmetry parameter First order H = 1 Q CQ 6I I 1 Q= Second order (complex...) h V XX V YY Q R T eq T,= V ZZ 1 6 V ZZ V iso= 3 I Z I I 1 CQ 1 l l k H = l=,,4 A k= l, l B k Dl, 6I I 1 Q l 3 Z A = f I, I Z Second Order Quadrupolar Induced Shift! = A B Q Isotropic shift

Quadrupolar nuclei Powder Quadrupolar Static spectra

z LAB B The Dipolar Interaction = H D r S r IS I ℏ I S y LAB 3 IS { = D PAS ℏ I S = 3 r IS Homonuclear H = Heteronuclear H = 1 D ℏ I S 3 IS r ℏ I S 1 r 3 IS D R T D 1 x LAB 1 D } 3 I. S I r IS S r IS = I D S r IS R IS 3 I Z SZ 1

Indirect J coupling Small interaction (~Hz), anisotropic effects (so far) neglected H J = I J iso 1 J ani S J iso I S I iso J iso Unlike spins J iso I iso S iso H J =J iso I S H J =J iso I Z S Z IS 3 IS IS I S iso Like spins I I

Multiple interactions Lineshape is also dependant upon the relative orientation of CSA PAS with respect to quadrupolar PAS (or vice-versa) In the crystallographic axes frame (GIPAW calculation) X, c =R, c,, c,, c X Q, c =R Q, c, Q, c, Q, c X,c X 1 Q,c =R, Q,, Q,, Q B V ZZ ZZ XX V V YY XX YY

High Resolution NMR Brownian Motion in Liquids t = H H t H iso ani t = H ani Only isotropic contributions! iso, J iso In rigid lattices, broad lines iso, J iso + CSA, CSA, C Q, Q, CSA,Q, CSA, Q, CSA, Q

Magic Angle Spinning Sample B D M R 3cos 1 3 cos M 1= Second Rank A ZZ A ZZ A XX AYY B AYY Aiso M A XX A ZZ M = t = A ZZ A ZZ t A ZZ A ZZ t

MAS at work I =1/ +1/ <-> -1/ Static spectrum Low speed MAS spectrum High speed MAS spectrum CSA + Dipolar ( 13C-13C ) Spinning sidebands ROT ROT Proton decoupling is necessary (sample rotation + spin rotation! )

MAS at work Na I =3/ 3 NaAlH4 +1/ <-> -1/ +3/ <-> +1/ -3/ <-> -1/ B = 7.5 T vrot=1 khz

NaAlH4 MAS at work Al I =5/ 7 +1/ <-> -1/ Central transition Satellite transitions B = 7.5 T vrot=1 khz

The MAS NMR signal in theory t s t m m 1 I m exp i m, m 1 udu Time-dependent transitions frequencies: t m 1 m H t m m, m 1= m 1 H Euler angles of the PAS in the rotor fixed frame m, m 1,, =, m m, exp { i m ROT t } d exp { i m,m 1 u du }=e t i t,, : MAS lineshape I k, : spinning sidebands pattern i k ROT t k I k, e

The NMR Laboratory torturing probe... MAS probe MAS Rotor Superconducting magnet

NMR parameters: DFT vs Experiment Quadrupolar parameters (I>1/) (MHz) C Q, Q Isotropic Chemical shift (ppm) iso Chemical shift anisotropy (ppm) CSA, CSA Relative orientation of CSA PAS in Quad. PAS (Three Euler angles) CSA, Q Isotropic J couplings (1-3 bonds) 1, CSA, Q, CSA,Q J Si O J Si O Si NMR provides methods for measurements of Dipolar interactions (only the structure is needed)