Design of the Triple and Quadruple Fixed-Bed Catalytic Reactor for Phthalic Anhydride Production

Similar documents
An Example file... log.txt

LA PRISE DE CALAIS. çoys, çoys, har - dis. çoys, dis. tons, mantz, tons, Gas. c est. à ce. C est à ce. coup, c est à ce


Examination paper for TFY4240 Electromagnetic theory

$%! & (, -3 / 0 4, 5 6/ 6 +7, 6 8 9/ 5 :/ 5 A BDC EF G H I EJ KL N G H I. ] ^ _ ` _ ^ a b=c o e f p a q i h f i a j k e i l _ ^ m=c n ^

Framework for functional tree simulation applied to 'golden delicious' apple trees

The Effect of Deposition Parameter on Electrical Resistivity of TiAlN Thin Film

Vectors. Teaching Learning Point. Ç, where OP. l m n

Optimal Control of PDEs

An Introduction to Optimal Control Applied to Disease Models

A Study on the Analysis of Measurement Errors of Specific Gravity Meter

Planning for Reactive Behaviors in Hide and Seek

Oxygen Transfer Characterization in Aeration Tank for Oxidation Treatment of Water Pollutants

General Neoclassical Closure Theory: Diagonalizing the Drift Kinetic Operator

Relation Between the Growth Twin and the Morphology of a Czochralski Silicon Single Crystal

Vector analysis. 1 Scalars and vectors. Fields. Coordinate systems 1. 2 The operator The gradient, divergence, curl, and Laplacian...

" #$ P UTS W U X [ZY \ Z _ `a \ dfe ih j mlk n p q sr t u s q e ps s t x q s y i_z { U U z W } y ~ y x t i e l US T { d ƒ ƒ ƒ j s q e uˆ ps i ˆ p q y

ALTER TABLE Employee ADD ( Mname VARCHAR2(20), Birthday DATE );

Dimethyl Ether Production using a Reactive Distillation Process

The Effect of Temperature and Space Velocity on the Performance of Plate Reformer for Molten Carbonate Fuel Cell

Effect of the Reaction Bath Temperature in a Fixed-bed Reactor for Oxidation of o-xylene over V 2 O 5 /TiO 2 Catalysts

ETIKA V PROFESII PSYCHOLÓGA

OC330C. Wiring Diagram. Recommended PKH- P35 / P50 GALH PKA- RP35 / RP50. Remarks (Drawing No.) No. Parts No. Parts Name Specifications

Estimation of Retention Factors of Nucleotides by Buffer Concentrations in RP-HPLC

The University of Bath School of Management is one of the oldest established management schools in Britain. It enjoys an international reputation for

UNIQUE FJORDS AND THE ROYAL CAPITALS UNIQUE FJORDS & THE NORTH CAPE & UNIQUE NORTHERN CAPITALS

Symbols and dingbats. A 41 Α a 61 α À K cb ➋ à esc. Á g e7 á esc. Â e e5 â. Ã L cc ➌ ã esc ~ Ä esc : ä esc : Å esc * å esc *

Damping Ring Requirements for 3 TeV CLIC

THE ANALYSIS OF THE CONVECTIVE-CONDUCTIVE HEAT TRANSFER IN THE BUILDING CONSTRUCTIONS. Zbynek Svoboda


Max. Input Power (W) Input Current (Arms) Dimming. Enclosure

!!"# $% &" ( )

Research of Application the Virtual Reality Technology in Chemistry Education

Redoing the Foundations of Decision Theory

Advanced Treatment of Sewage Using a Magnetic Fluid Separation

4.3 Laplace Transform in Linear System Analysis

Optimization of a parallel 3d-FFT with non-blocking collective operations

Principal Secretary to Government Haryana, Town & Country Planning Department, Haryana, Chandigarh.

SCOTT PLUMMER ASHTON ANTONETTI

Chair Susan Pilkington called the meeting to order.

New method for solving nonlinear sum of ratios problem based on simplicial bisection

The Synthesis of Zeolite Using Fly Ash and its Investigate Adsorption Character

QUESTIONS ON QUARKONIUM PRODUCTION IN NUCLEAR COLLISIONS

. ffflffluary 7, 1855.

A Study on Dental Health Awareness of High School Students

Pharmacological and genomic profiling identifies NF-κB targeted treatment strategies for mantle cell lymphoma

MARKET AREA UPDATE Report as of: 1Q 2Q 3Q 4Q

New BaBar Results on Rare Leptonic B Decays

Towards a numerical solution of the "1/2 vs. 3/2" puzzle

TELEMATICS LINK LEADS

Building Products Ltd. G Jf. CIN No. L26922KA199SPLC018990

Complex Analysis. PH 503 Course TM. Charudatt Kadolkar Indian Institute of Technology, Guwahati

Books. Book Collection Editor. Editor. Name Name Company. Title "SA" A tree pattern. A database instance

1.0 Hypothesis Testing

cº " 6 >IJV 5 l i u $

Numerical Simulation for the Development of Waste Oil Cavity Incinerator

February 17, 2015 REQUEST FOR PROPOSALS. For Columbus Metropolitan Library. Issued by: Purchasing Division 96 S. Grant Ave. Columbus, OH 43215

APPH 4200 Physics of Fluids

PART IV LIVESTOCK, POULTRY AND FISH PRODUCTION

Plasma diagnostics and abundance determinations for planetary nebulae current status. Xiaowei Liu Department of Astronomy, Peking University

Preparation of Hydrophilic Inorganic-Organic Hybrid Coating Solutions by Sol-Gel Method

Winsome Winsome W Wins e ins e WUin ser some s Guide

T i t l e o f t h e w o r k : L a M a r e a Y o k o h a m a. A r t i s t : M a r i a n o P e n s o t t i ( P l a y w r i g h t, D i r e c t o r )

Obtain from theory/experiment a value for the absorbtion cross-section. Calculate the number of atoms/ions/molecules giving rise to the line.

Emphases of Calculus Infinite Sequences and Series Page 1. , then {a n } converges. lim a n = L. form í8 v «à L Hôpital Rule JjZ lim

A Functional Quantum Programming Language

This document has been prepared by Sunder Kidambi with the blessings of

Matrices and Determinants

JEE(Advanced) 2015 TEST PAPER WITH ANSWER. (HELD ON SUNDAY 24 th MAY, 2015) PART - III : MATHEMATICS

Rarefied Gas FlowThroughan Orifice at Finite Pressure Ratio

A Beamforming Method for Blind Calibration of Time-Interleaved A/D Converters

APPH 4200 Physics of Fluids

Klour Q» m i o r L l V I* , tr a d itim i rvpf tr.j UiC lin» tv'ilit* m in 's *** O.hi nf Iiir i * ii, B.lly Q t " '

Ä D C Ã F D {f n } F,

Optimal data-independent point locations for RBF interpolation

Computer Systems Organization. Plan for Today

Safety Mats. Presence Sensing Safety Devices MatGuard Mats. Specifications. Description. Features

ACS AKK R0125 REV B 3AKK R0125 REV B 3AKK R0125 REV C KR Effective : Asea Brown Boveri Ltd.

SOLAR MORTEC INDUSTRIES.

Constructive Decision Theory

DISSIPATIVE SYSTEMS. Lectures by. Jan C. Willems. K.U. Leuven

F O R SOCI AL WORK RESE ARCH

B œ c " " ã B œ c 8 8. such that substituting these values for the B 3 's will make all the equations true

Unit 3F: Reading and Understanding in Urdu. Wednesday 19 May 2010 Afternoon Time: 35 minutes

Glasgow eprints Service

6. Convert 5021 centimeters to kilometers. 7. How many seconds are in a leap year? 8. Convert the speed 5.30 m/s to km/h.

Harlean. User s Guide

Some emission processes are intrinsically polarised e.g. synchrotron radiation.

Beloved Script. User s Guide

DYNAMIC SAMPLED-DATA OUTPUT REGULATION: A SWITCHING ADAPTIVE APPROACH. HUANG Yaxin 1 LIU Yungang 1 ZHANG Jifeng 2,3

OVER 150 J-HOP To Q JCATS S(MJ) BY NOON TUESDAY CO-ED S LEAGUE HOLDS MEETING

Connection equations with stream variables are generated in a model when using the # $ % () operator or the & ' %

Full file at 2CT IMPULSE, IMPULSE RESPONSE, AND CONVOLUTION CHAPTER 2CT

On principal eigenpair of temporal-joined adjacency matrix for spreading phenomenon Abstract. Keywords: 1 Introduction

Min-Guk Seo, Dong-Min Park, Jae-Hoon Lee, Kyong-Hwan Kim, Yonghwan Kim

TWO-DIMENSIONAL CUSP ON THE FREE SURFACE AT LOW REYNOLDS NUMBER FLOW. vß (cusp) Ç\ Hassager[1,2], Coutanceau & Hajjam[3], Bhaga & Weber[4] #

I n t e r ku l t ú r n a ko mu n i ká c i a na hodine anglické h o jazyka. p r ostrední c tvom použitia PC

: œ Ö: =? À =ß> real numbers. œ the previous plane with each point translated by : Ðfor example,! is translated to :)

Sample Exam 1: Chapters 1, 2, and 3

R for beginners. 2 The few things to know before st. 8 Index 31

Transcription:

HWAHAK KONGHAK Vol. 37, No. 4, August, 1999, pp. 522-530 (Journal of the Korean Institute of Chemical Engineers) * * (1999 1 29, 1999 3 16 ) Design of the Triple and Quadruple Fixed-Bed Catalytic Reactor for Phthalic Anhydride Production Young-Sam Yoon and Pan-Wook Park* Kum River Water Quality Res. Lab., National Institute of Environmental Research *Dept. of Chem. Eng., Pusan National University (Received 29 January 1999; accepted 16 March 1999) 2 o-xylene! "#$! %& '#() *+!,-. /01. 123 4546("#7 8$9(, :!;(, "#7< :!= >)&.?@! "#$ AB45 CD. EF01.! "#$ $G H/ I <J K L -! "#$[1]M1 "#7 8$9(, :!;(, "#7< :! NO P3 QR 45C D. STU 45 46 VR &O 3 N WS 7X AB 45 46 MYZ [\1. *P ] ^ [ "#$. _`$ Da b!,-. &Fc! "#$ de 401. "#$ fg, B!,- z=2.58 moh b!,- L1=1.1, L2=1.0 L L3=0.48 m ij fg z=2.58 m koh L1=1.0, L2=0.5, L3=0.48 L L4=0.6 moh * de M01. Abstract The parametric sensitivity and optimal catalyst bed length of triple and quadruple fixed-bed catalytic reactors (FBCRs) are calculated using a two-dimensional pseudohomogeneous model for the partial oxidation of o-xylene to phthalic anhydride. The safety operation ranges of triple and quadruple FBCRs from various operating condition changes like initial concentration of the reactant, temperature of the cooling medium, and reactant and coolant flow rate are presented. Triple and quadruple FBCRs showed the behavior of wide operating range than single and double FBCRs on the initial concentration, coolant temperature, and reactant and coolant flow rate. Triple and quadruple FBCRs with nonuniform activities could assure safety operating condition and production increase by minute variation of operating condition. In order to design the FBCRs which could obtained maximum yield, we investigated the performance of FBCRs from catalyst bed length changes. Triple and quadruple FBCRs showed the best performance at L1=1.1, L2=1.0 and L3=0.48 m, and L1=1.0, L2=0.5, L3=0.48 and L4=0.6 m in case of total catalyst bed length z=2.58 m. Key words : Parametric Sensitivity, Maximum Yield, Phthalic Anhydride, Safety Operation Ranges, Fixed-Bed Catalytic Reactor 1. V 2 O 5 -TiO 2 o-xylene! "#$ % &'(, )! *! +) ' ",+ )-. ",+. /0 +! "#$ 1234 564 78 9: ;! <=>? @A +B /@. C DEF G1 HIJ K LIM N OPQ R%1 E-mail : ysyoon_3_sf@hanmail.net ST UV WX X4@ YZ-. [\ ",+ "#$ ]1I ^_ ^` Y! au ST bc 9d ef g @(, hi34 jk l, mno g <=?pfq (temperature runaway) r?@m g-. s )t ua L =(parametric sensitivity)v <=?pfq[2] 78 ua Y! au #w ST x 9d eyz ' ^Y [{ ^` U }-[3, 4]. )v ~) *! +) ' "#$ ƒp Uƒ ua {gz ^ˆ @Š C= < = > 6, <=?pfq Œ ua L = Ž g= 522

523 %1 ^_ VŽ g 3^_) U -. ). % s3 r š U i\ œzz Zo g-. šžÿc ) "#$ simulator G X c ua 8 G0 simulator Z @Š I C Z@ 3 U Ž g-. 3. 3 / ^` Œ %1^_ ª v «3@ m ' ua L =v 3 $ ;) Œ j m 8U 3)-. "#$ R%1 ST «34 D44 +B ^ˆ p @ ± ²³.,/0 + ±v + µ. 6S @Š ;! <= #= ^ˆŽ g-[5, 6]. Wb ± +1¹ I 56v ±ºƒ +) 1¹' C# "» p. ¼5 ",+ jk j) hi 3@ L' Wb,/0 +) D z ± 1 ¹'ƒ ½-¾ ± <= ^ˆ! UH-. )v ~) ST UV WX 564 +56.n p @ -W@ À1 78 9: C= 19: "Á IJ.n -W "#$ =7Ž g-. 1980 )1 / rv i? "# $ Ã@, ÄÅ "#$ 123 4 564 % + 56 4 )W "#$»'Æ-. )W$ =7. i?$ ib4 78 9: C= ;! <= >4 +B! #= hçãƒè, )W$ :I ÉZ U 78 Ê= Œ ±<= Ë g Ì-Í 6 Uƒ" g /Î ÏU Œ %1^_ UF Ð Ñ-. ) Ò m8 Ó m8[1, 7]4 i? Œ )W "#$.Ô mõ m8 )W$ ÖWC W$,1IJ 78 9: +B.n, /Î ÏU, Ö W$ ØE 6 Ë Ù3@ ]1I,/z ' Í( 78 <= Œ Ê=, ± 78<=, œõ) ua L = ÚÛ ", c $ Ü) Œ j Ë aij U( 3 Ö W$ «34 # 6"Ø -. j a jk Ó Ý Œ G1» Þß j634 à¾ Ë á& m8u &' -. â Ò m8 Ó Vy œƒ¾ Ù3 / /Î ÏU t %1 ^_^` uá «3@ m 0 À1 p (i?, )W ÖW$ Ë@ À1) Œ -W$ c $ Ü) a 3 ^` 6I"Ø -. 2. s3 šž! %? s3 r(f, + Œ ]TÎ 1¹, ã¾ ä å Œ s )C s3 8^ Œ ^Y2w(operation mode) s3@ ãr e-[8]. s s s3 šž!.ô34. 8Ž g i æ y.ô " computer )Z. È Çç Ë -è 2w é H-. ã 34 2w á2 á2@ )Á H ê?, œ ê? Œ Rê?šž Ë@ ë g-. Rê?šž(heterogeneous model) 4 "»7Øv 4 œ» {u @ "³ (, œ ê?šž(pseudohomogeneous model)! "»C œ» @ U#-. Ò m8 ",+ o-xylene Ù3 á# šžÿã-. 8^ «j 2.54 cm, ì Ü ) 3.2 m, À1;) 2.58 m(öw$: L1=1.0, L2=1.1, L3=0.48 m, W$: L1=1.0, L2=0.5, L3=0.48, L4=0.6 m) D )(, «j) 6mm4 - íqîï pellet ð ã¾ UH V 2 O 5 U ñò 0.1-0.2 mm óz ôõ' g-. <= molten salt(kno 3 :NaNO 2 =59 : 41, m.p=142 o C) ö dø ²ù@Š C + µ. ^ˆ0-. v ~! "#$ šž ík. Oúv ~! U# Ã-. (1) UH U pellet ð ã¾ ñò 0.1-0.2 mm ó z ôõ'! ã¾è? â œ» <=v Ê =U "» <=, Ê=v cc ~-" q œ ê? šž U#-. (2) pellet y?# )", œ»v +1 ¹!?#-. (3) j Œ û pd œü + Œ F ý!? #-. (4) C / œ7 œþ Ê=v <=, ± 7 þ8<= j ^`@ -. (5) œ» ÿ= <= )» Z. 8", œõ! FÎ Ó @ -. (6) $! 78 þ8ºƒ á2@ L -. (7) c i! Ê=U 1C#. C)â œ? @ U#-. (8) ± Œ "» ÿ=?#-. (9) Õ= š i¾ ê?-. v ~! U# Z 2D, #w œ ê? šž œ» + Œ F ƒ " ± + ƒ C j Œ ^`! - C ~-[1, 9]. % ƒv F ƒ ( ρc p ) m ------ 2 T 2 T 1 ελ t ez -------- ελ z 2 er -------- -- = + + ------ r 2 r r ----- ( u (1) z f ( ρc p ) f T) + ε( H A )r A ε C j ------- εd (2) t ez 2 2 C C j εd er --------- j 1 -- C j = + + ------- r 2 ----- ( u r r z f C j ) εr j (ρc p ) m =[(ρc p ) f ε+(ρc p ) s (1 ε)] (3) ± ƒƒ : c ( ρc p ) c -------- c = u t c ( ρc p ) c -------- + h z w AT ( T c ) (4) j Œ ^`: T=T o, T c =T co, C j =C jo at t=0 (5) D ez C ------- j z z = 0 = u o ( C j ) z = 0- C j z = 0+ at z=0 0rR (6) HWAHAK KONGHAK Vol. 37, No. 4, August, 1999

524 λ ez ------ z z = 0+ = ( ρc p ) m u o ( T z = 0- T z = 0+ ) at z=0 (7) T=T o at z=0 for 0rR (8) C ------- j = 0 r ------ = 0 r h ------ w = ------ ( T T r c ) λ er T c = T co, C ------ = 0, z ------ = 0 z at r=0 and r=r (9) at r=0, 0<zL (10) at r=r (11) at z=l (12) (1)-(4) s34 šž C Œ j ^` (5)-(12) Petrov-Galerkin method 3Z á2 p# @ ai } - p# Newton-Raphson p C Predictor-Multicorrector algorithm@ 1 FEM(Finite Element Method).4 <= v ) Ê= 8-. y.ô Œ y.ô X,, ± Œ ) "5[1, 9, 10] íz ' g-. 3. 3-1. Fig. 1! Ö W "#$ ûpd <= ù@š Ö W$ ûpd à <= Ñ ƒè, à )W$ þ8 1KC K?y = I&. 3 3 yš nc =I ù )-. Ö W$ 1» $ Ü) 6 / _34 4 )W$ v T? 2.58 m Z Ã-. )v ~! Ö W$ simulator G s34 šž % 0 š ua! )W$ nc 3 3. 8 #Ñ) Z "[1], Ö W$ c $ =v c $ Ü)(1 $Ü) 2.58 m "#) aij )W$ v T? (1K=98.29%, K=78.92%) UF g Ö W Table 1. Optimal estimated values of triple and quadruple FBCRs from model simulation Triple-bed Catalyst bed First-bed Second-bed Third-bed Reactor length(m) 1.0 1.10 0.48 Relative activity 0.76 1.63 2.24 Hot spot( o C) 401.51 388.85 366.79 Conversion 98.25 Yield 78.79 Quadruple-bed Catalyst bed First-bed Second-bed Third-bed Fourth-bed Reactor length(m) 1.0 0.5 0.48 0.6 Relative activity 0.51 1.01 1.91 2.64 Hot spot( o C) 386.2 385.6 384.5 375.2 Conversion 98.01 Yield 78.03 $ ^` 8 @Š simulator GÃ-[1, 9]. Ö W$ 3 3. ^# a c $ = Œ 1$ Ü) 2.58 m "#I} w c $ Ü) ^#Ã-. ) ^` )W$ à þ8 1KC K 3 3I} nc Ö W$ U )W$C œ (Table 1 1KC K ) Uƒ ^` 78 +B jk <=U cc 22 o C(ÖW$)v 37 o C( W$) z š 'Æ-. )W$ à þ8 1KC K '= š 0 Ö W$ nc4 c $ Ü), c $ =, þ8 1K, K, c $ <= Ë # Table 1 í\ Ã-. Table 1 = )W$ $ = 1 U # ¼ -. )v ~) Ö W$ U 78 +B9: i? Œ )W$.! <= Uƒ æ! -W@ À1 ÞQ 1» ) c $ "Á ¼5 9: C= 4 ;! <= > 6Ž g VB Uƒ" g-. Table 1 g!v ~) Ö W$ )W $[1,7,9]C T?," ^`, +B 9: <= > jk i? Œ )W$. #$ O "#$ +56.nŽ g À U ƒp" g-. Fig. 1. Best fitting of triple (a) and quadruple (b)-bed catalytic reactor. (air :o-xylene=20 : 1, salt bath temp.=354.2 o C, reactor radius=0.01254 m) 3-2. ]1 W U ^_ ^`( œ7 <=, Ê= Œ œ ÎC ± œ7 <= Œ œî)c ~! ua a ST ÚÛ%@Š &à šž) ØEv ^_ W? ' g ) ST(K, 1K Œ <= Ë R%#) D4 ( U Ž g # 6 ua L = Œ <=?pfq )*Ã-. 3-2-1. ± <= Œ 78 Ê= 9d Fig. 2(a) /o-xylene (20 :1)?#z " = (F 1 =0.76, F 2 =2.0, F 3 =2.24) Uƒ ÖW$, Fig. 2(b) =(F 1 =0.51, F 2 =1.01, F 3 =1.91, F 4 =2.64) Uƒ W$ ± <= a 9d š nc)-. ±<= ÏU ÞQ c $ +B 9: + ;! <= >?@,", ûpd 1 9: -. ;! <= Uƒ jd qæ-. [\, ± <=U T c =370 o C(ÖW$)C T c =384 o C( W$) 1 o C ÏU' œ7'¾ 78 <=?pfq(temperature 37 4 1999 8

525 Fig. 2. Axial temperature profiles of triple (a) and quadruple (b)-bed catalytic reactors for coolant temperature changes. (air: o-xylene=20 :1, reactor radius=0.01254 m) runaway)?@a" g-. /, Fig. 2 ^_ ^` W ± œ7 ÉZ <= ª 370 o C(ÖW$)C 384 o C( W$)))(, ) <= 1 o C ÏU <=?pfq?@a 0L " g-. Ö W$ jk i?$ ÉZ78 ± < = 355 o Cv )W$ 362 o C[3, 4, 7]. 370 o C(ÖW$)v 384 o C ( W$) i\ 1! ÉZ 78 ± <= ª Uƒâ ]1I,/Ž g 34 "V) ^YØ Y! 4 234 5. ST %1 Ž g VB ƒpz 0-. Fig. 3! Œ ± œ7 <=?#(T c =T o = 354.20 o C)z " œ7 Ê=4 /o-xylene ai, ¼ Ö W$ <= &à nc)-. o-xylene œ7 Ê= ÏU 78 9:(0<η Fig. 3. Axial temperature profiles of triple (a) and quadruple (b)-bed catalytic reactors for inlet concentration changes. (salt bath temp.=354 o C, reactor radius=0.01254 m) <0.2) +B <= x ÏU?@A" g@, $ S ~! <= q" g-. ÖW$ jk Fig. 3(a)v ~) o-xylene U 17.07 :1 <=?pfq?@,@(, W$ jk Fig. 3(b)v ~) 12.95: 1 <=?pfq?@,-. 78 Ê= a ÖW$ nc4 Fig. 3(a) jk $ <=U S ƒ ½ æ! 78 Ê= ÏU ÞQ 78 9: Î) ÏUz '", 78 9:,. / 0 +! 78 9: <= ;)z ' )v ~! ;! <= 4 S š ) 78 9: H&' ¼5 6 e o-xylene) $ C è 67'ƒ ½O S ~! <= š 'Æ-. Fig. 3(b) W$ ÖW$. 78 Ê= ÏU ÞQ 19: -. <=U >'" g-. ) W$ $ =U F 1 =0.51 ÖW$ F 1 =0.76. ¼5 78 Ê=U ÏU ÞQ )! $ C e Î) ÖW$. *O8 ) e ) ) ;! $ C z ' Ê= ÏU ÞQ 19: -. ;! <= 4-. Rê? Ö W "#$ ±<=v 78 Ê= a ST v ~) ÚÛÒ nc 6 rv ^_ W g ƒ ½! x l Í. Ö W$ šñ 0Lz 9ƒ ½:-. â "#$ À1$ ÏU 78 Ê= ÏU i I ; /Î ÏU t %1 ^_ VŽ g-. [\ ",+ ) ' "#$ jk Table 2. The performance of triple and quadruple FBCRs for coolant temperature and inlet concentration changes Figure number Fig. 2 Fig. 3 Reactor Triple-bed (T c =T o ) Quadruple-bed (T c =T o ) Triple-bed (air :o-x) Quadruple-bed (air :o-x) Coolant temp. ( o C) and initial conc. Conversion Yield First hot spot( o C) 345.2 98.24 78.79 401.51 366 99.63 67.88 442.84 368 99.73 65.57 455.85 370 99.77 64.24 476.45 371 100 0 runaway 354.2 98.01 78.03 386.15 364 99.33 70.50 407.01 374 99.83 60.39 425.16 380 99.89 56.99 442.50 382 99.93 53.50 453.10 384 99.96 48.72 473.71 385.2 100 0 runaway 20.0 :1 98.25 78.79 401.51 18.0 :1 98.55 77.69 415.31 17.0 :1 98.72 76.92 427.68 16.1 :1 98.92 75.72 457.23 16.08 :1 98.95 75.43 466.64 16.07 :1 98.97 75.20 474.06 16.068 :1 100 0 runaway 20.0 :1 98.01 78.03 386.15 18.0 :1 98.33 76.95 392.68 16.0 :1 98.69 75.42 403.04 14.0 :1 99.07 73.18 424.22 13.5 :1 99.17 72.46 435.05 12.95 :1 99.27 71.56 459.82 12.90 :1 100 0 runaway HWAHAK KONGHAK Vol. 37, No. 4, August, 1999

526 % +56 -W@ À1 @ #=.nž gæ-. Table 2 &à šž œ7 Ê=v <= a ÖW$ v W$ L = 3@ n C)-. Table 2 Ö W "#$ œ7 <=v Ê = ÏU ÞQ +B <=U ÏU'(, ÞQ 1K! ÏU'ƒ È K) L <-., WX r! ñ ~! 1KC K = ^_ ^`! ÖW$ - W$ U + 1! ª Uƒ" g-. ñ ÉZ Ê= Œ ± <= ª W$ U Ö W$. >$ 1! ª ^Y U g-. ñ šñ ^_^` a. Ó i? Œ )W $. k Ã-. ÞQ -W@ À 1I?@Š %1 ª ^_ ^` ai?@š /Î ÏUv V Z @ 4 K L Ž g U UH-. )v ~! r! Papageorgiou [11], Pirkle Ë[12] š ncv?y-. 3-2-2. ± Œ 78 œî 9d Fig. 4 =(F 1 =0.76, F 2 =1.63, F 3 =2.24) ÖW "#$ v =(F 1 =0.51, F 2 =1.01, F 3 =1.91, F 4 =2.64) W "#$ ± œî a Þß " #$ % ST "A ù@š ñ šñ ± œî ÏU ÞQ %,/ + D 6S @ 4. +B <= >l) LÃ-., ÖW$ U W$. $ +B 9:,/ + ÏU 4. 78 +B 9: <= > l) ;z B-. ± œî L.,/ + 6S I ƒm@ 4. +B <= ÏUIJ hi34 jk ñ šñ 0.07 m/s(öw$)v 0.048 m/s( W$) <=?pfq r à -., U -W@ À1C ÞQ ± œî ^Y ª r@\ ÏUÃ-. Fig. 5 Ö W $ 78 œî a Þß % ST ^ nc)-. 78 œî ÏU 78 Ê= ÏUv œ jk 78 +B 9: Fig. 4. Axial temperature profiles of triple (a) and quadruple (b)-bed catalytic reactors for coolant flow rate changes. (air:o-xylene=20 :1, salt bath temp.=354.2 o C, reactor radius=0.01254 m) Fig. 5. Axial temperature profiles of triple (a) and quadruple (b)-bed catalytic reactors for reactant flow rate changes. (air: o-xylene=20 :1, salt bath temp.=354.2 o C, reactor radius=0.01254 m) C= @ 4. ñ šñ +B <= ÏUI, -., 78 œî ÉZ ª :I $ U *! W$) 1! ÉZ ª UD-. ñ 78 œî ÏU ÞQ )! 78 9: e Î ÏU 4. *! è e Table 3. The performance of triple and quadruple FBCRs for coolant and reactant velocity changes Figure number Fig. 4 (Coolant velocity changes) Fig. 5 (Reactant velocity changes) Reactor Coolant and Conversion reactant velocity(m/s) Yield First hot spot( o C) Triple-bed 0.181 98.25 78.79 401.51 0.110 98.65 77.52 418.60 0.090 98.85 76.62 433.58 0.080 98.99 75.86 447.82 0.075 99.07 75.28 459.58 0.073 99.11 74.97 466.36 0.070 100 0 runaway Quadruple-bed 0.181 98.01 78.03 386.16 0.100 98.51 76.78 401.92 0.070 98.98 75.43 419.62 0.060 99.08 74.35 433.39 0.053 99.24 73.32 450.64 0.050 99.28 72.93 457.83 0.048 100 0 runaway Triple-bed 1.8 98.91 76.36 397.78 2.1 98.25 78.79 388.85 3.0 96.09 81.71 410.14 4.0 94.03 81.78 423.00 4.7 93.62 80.72 435.86 4.8 100 0 runaway Quadruple-bed 2.1 98.01 78.03 386.16 3.0 95.91 80.49 389.79 4.0 94.05 80.54 397.65 4.5 93.53 80.15 401.28 5.0 93.40 79.56 405.13 5.2 93.49 79.24 407.23 5.3 100 0 runaway 37 4 1999 8

527 o-xylene) ) ;! $ Cz ' 78 œî ÏU ÞQ 78 9: <= > l ) þ8 +B 9: <= >l - z B-. ) nc 1K, K " +B<= í ØE Table 3 Ã-. m w (L1=1.0, L2=0.5, L3=0.48, L4=0.6) š ' Æ-. ÖW$C W$ jk ÖW$ K) W$. 1»3@ ;z B-. ) W$ ÖW$. 3-3. 3 c $ Ü) E# <@ _34 ] 1 W @ 4 1K 98%, K 78%) @' I» @, ) ) ^`È @ K) ;! 3 á#ã-. Ö W "#$ jk 1 Ü) aia ƒ ½" iƒ c $ Ü)v jè aij nc Fig. 6-8C Table 4-7 Ã-. Ö W "#$ c $ cc L1, L2, L3 " L4 ñ" ^ 2 @ c $ FG Hƒ 1 $ Ü) 2.58 m "# I} w Ï LIJ :-. Ö W$ šñ )! $ Ü) Iz J ) ;! $ Ü) ÏUIJU¾ ;! UH $ Ü) Ï U ÞQ 1K! ÏU" K! LÃ-. )v ~! Ç Y_. ÖW$ jk 1K 98%, K 78% ) Uƒ Table 4v ~) (L1=1.0, L2=1.1, L3=0.48), (L1=1.1, L2=1.0, L3=0.48), (L1=1.0, L2=1.2, L3=0.38) Œ (L1=1.0, L2=1.0, L3=0.58) K u gæ-. ) K u W K 79.51% UV ;! UH (L1=1.1, L2=1.0, L3=0.48) U ÖW$ 1 $ Ü) 2.58 m w 3 c $ Ü)Ã-. W$ jk 3 ^`4 1K 98%, K 78% ) UH c $ Ü) «ÓÝÃ-. â W "#$ c $ 3 Ü) 1 $ Ü) 2.58 Fig. 7. Axial and radial temperature profiles of triple-bed catalytic reactor for reactor radius changes. (air: o-xylene=20 :1, salt bath temp.=354.2 o C, catalyst length=2.58 m) Fig. 6. Axial temperature profiles of triple-bed catalytic reactor for catalyst bed length changes. (air:o-xylene=20 :1, salt bath temp.=354.2 o C, reactor radius=0.01254 m) Fig. 8. Axial and radial temperature profiles of quadruple-bed catalytic reactor for reactor radius changes. (air: o-xylene=20 :1, salt bath temp.=354.2 o C, catalyst bed length= 2.58 m) HWAHAK KONGHAK Vol. 37, No. 4, August, 1999

528 Table 4. The performance of triple FBCR for catalyst bed length changes The effect of first & second catalyst bed length changes L1 L2 L3 T1 T2 T3 0.8 1.3 0.48 402.33 399.94 365.85 98.66 77.05 0.9 1.2 0.48 401.89 393.07 366.37 98.43 77.22 1.0 1.1 0.48 401.51 388.85 366.79 98.47 78.79 1.1 1.0 0.48 401.13 379.00 367.28 98.02 79.51 1.2 0.9 0.48 400.76 382.17 367.81 97.78 80.18 1.3 0.8 0.48 400.40 379.67 368.37 97.51 80.78 The effect of second & third catalyst bed length changes L1 L2 L3 T1 T2 T3 1.0 1.2 0.38 401.28 388.38 365.91 98.09 78.41 1.0 1.1 0.48 401.51 388.85 366.79 98.25 78.79 1.0 1.0 0.58 401.73 388.98 367.85 98.36 78.37 1.0 0.9 0.68 401.95 389.11 369.06 98.48 77.93 1.0 0.8 0.78 402.17 389.26 370.47 98.58 77.47 1.0 0.7 0.88 402.39 388.86 372.31 98.66 76.24 The effect of first & third catalyst bed length changes L1 L2 L3 T1 T2 T3 1.1 1.1 0.38 400.05 385.05 366.27 97.88 79.92 1.0 1.1 0.48 401.51 388.85 366.79 98.25 78.79 0.9 1.1 0.58 402.12 393.70 367.29 98.56 77.55 0.8 1.1 0.68 402.75 400.25 367.75 98.83 76.19 0.7 1.1 0.78 403.32 409.99 368.11 99.07 74.61 ) ;! $ Ü)U Ü ¼5 /0 ) ) ;! $ L I ) ÏU' 1K! ;ƒè K! L' jd Ã-. ) Ö W "#$ 3 c $ Ü) E# n C, U -W@ À1C ÞQ %1 ^_ 9:! ÏU ƒè i? Œ )W$C T? ^_ ^` Œ 1 $ Ü) w c $ Ü) aè K ÏU e Ã-. c $ Ü)v ^_ ^` TI aij ]1- ¾ K Œ /Î ÏUU U -. â -W$ =7. /Î ÏU t "#$ 1234 564 ûpd y ;! <= >?@A +B 6 U U -. Fig. 7-8 " Table 6-7! Ö W "#$ j a š nc)-. j ÏU i? Œ )W$ Table 5. The performance of quadruple FBCR for catalyst bed length changes The effect of first & second catalyst bed length changes 0.6 0.9 0.48 0.6 386.59 402.37 377.47 373.10 98.49 77.52 0.7 0.8 0.48 0.6 386.51 396.64 389.03 379.03 98.38 77.91 0.8 0.7 0.48 0.6 386.36 391.58 380.90 374.09 98.21 76.81 0.9 0.6 0.48 0.6 386.25 388.08 382.74 374.68 98.10 77.07 1.1 0.4 0.48 0.6 386.06 383.11 386.77 375.76 97.90 78.23 1.2 0.3 0.48 0.6 386.05 381.00 389.36 370.82 97.87 79.11 The effect of first & third catalyst bed length changes 0.6 0.5 0.88 0.6 387.67 404.11 391.53 369.94 99.06 74.47 0.7 0.5 0.78 0.6 387.32 397.72 389.82 371.01 98.86 75.66 0.8 0.5 0.68 0.6 386.91 392.75 387.99 372.00 98.59 76.09 0.9 0.5 0.58 0.6 386.53 388.82 386.21 373.43 98.32 77.10 1.1 0.5 0.38 0.6 385.78 382.88 382.87 377.32 97.64 78.88 1.2 0.5 0.28 0.6 385.50 380.61 381.40 380.64 97.32 80.39 37 4 1999 8

529 Table 5. Continued The effect of first & fourth catalyst bed length changes 0.6 0.5 0.48 1.0 388.45 405.03 392.11 378.26 99.34 72.00 0.7 0.5 0.48 0.9 387.93 398.33 390.29 377.68 99.13 73.80 0.8 0.5 0.48 0.8 387.40 393.17 388.35 377.03 98.86 75.53 0.9 0.5 0.48 0.7 386.76 389.01 386.38 375.95 98.46 76.49 1.1 0.5 0.48 0.5 385.61 382.76 382.74 374.83 97.49 80.22 1.2 0.5 0.48 0.4 384.98 380.25 381.03 374.07 96.74 81.56 1.3 0.5 0.48 0.3 384.21 377.95 379.32 372.78 95.67 81.92 1.4 0.5 0.48 0.2 383.67 376.04 377.84 372.66 94.52 83.65 The effect of second & third catalyst bed length changes 1.0 0.3 0.68 0.6 386.77 385.49 395.10 372.75 98.44 75.73 1.0 0.4 0.58 0.6 386.44 385.86 388.86 373.88 98.23 77.31 1.0 0.6 0.38 0.6 385.88 385.00 381.32 374.44 97.76 77.93 1.0 0.7 0.28 0.6 385.63 384.80 387.53 378.20 97.51 78.50 The effect of second & fourth catalyst bed length changes 1.0 0.3 0.48 0.8 387.28 385.86 395.55 376.35 98.74 75.14 1.0 0.4 0.48 0.7 386.68 386.04 389.04 376.56 98.39 76.69 1.0 0.6 0.48 0.5 385.74 384.86 381.21 374.35 97.61 79.24 1.0 0.7 0.48 0.4 385.21 384.49 378.27 373.07 97.08 80.37 1.0 0.8 0.48 0.3 384.61 384.32 375.61 371.39 96.36 81.39 1.0 0.9 0.48 0.2 384.23 384.01 373.61 370.78 95.66 83.06 The effect of second & third catalyst bed length changes 1.0 0.5 0.28 0.8 386.73 386.02 384.92 383.01 98.41 77.38 1.0 0.5 0.38 0.7 386.40 385.78 384.67 378.28 98.18 77.40 1.0 0.5 0.58 0.5 386.00 385.48 384.38 373.12 97.88 79.35 1.0 0.5 0.68 0.4 385.78 385.32 384.22 371.15 97.68 79.89 1.0 0.5 0.78 0.3 385.49 385.10 384.02 369.25 97.41 79.66 1.0 0.5 0.88 0.2 385.40 385.03 383.96 368.19 97.24 80.87 1.0 0.5 0.98 0.1 385.26 384.93 383.86 367.38 96.99 81.28 Table 6. The performance of triple catalytic FBCR for reactor radius changes Condition Radius(m) L1 L2 L3 T1 T2 T3 Radius +2% 0.01279 1.0 1.10 0.48 404.29 389.13 367.13 98.32 78.44 Radius +5% 0.01317 1.0 1.10 0.48 408.97 391.36 367.63 98.43 77.91 Radius +7% 0.01342 1.0 1.10 0.48 412.69 392.31 367.98 98.51 77.52 Radius +10% 0.01379 1.0 1.10 0.48 418.79 393.45 368.46 98.61 76.94 Radius +12% 0.01405 1.0 1.10 0.48 423.82 394.04 368.79 98.69 76.52 Radius +13% 0.01417 1.0 1.10 0.48 576.25 375.36 366.61 99.22 70.62 Radius +14% 0.01430 1.0 1.10 0.48 runaway 100 0 v 7MUƒ +B 9: ;! <= >?@,ƒè, ÏUl! üc 4 #$ z š 'Æ-[9]. +B j pd <= :I j) ÏU ÞQ Wb,/0 + ± +1¹ I ƒm Œ "» @N 4 <= j U Åz B-. )v ~) -W$ c $ Ü) a Œ j a k 0L ST O! t 1KC K= rp ) Ã-. â Ž ¼ Ü), 1 $ Ü), c $ Ü) HWAHAK KONGHAK Vol. 37, No. 4, August, 1999

530 Table 7. The performance of quadruple FBCR for reactor radius changes Condition Radius(m) Conversion Radius +5% 0.01317 1.0 0.50 0.48 0.60 389.61 388.58 387.15 376.90 98.23 77.15 Radius +10% 0.01379 1.0 0.50 0.48 0.60 393.48 391.77 389.92 378.71 98.42 76.20 Radius +15% 0.01442 1.0 0.50 0.48 0.60 397.85 395.16 392.81 380.61 98.62 75.16 Radius +20% 0.01505 1.0 0.50 0.48 0.60 402.90 398.69 395.80 382.58 98.80 74.04 Radius +30% 0.01630 1.0 0.50 0.48 0.60 417.56 405.64 401.84 386.82 99.13 71.48 Radius +40% 0.01756 1.0 0.50 0.48 0.60 449.25 407.46 406.57 391.55 99.40 68.49 Yield Œ j Ë 1 # y š =! ) ØE * -¾ I& ;\ Q? g æ@ 0-. 4. à )W$ þ8 1K Œ K Ö W$ 3 3IJ Ö W$ c $ Ü) Œ c $ = 8 @Š Ö W$ simulator u,ã-. U -W@ À10 Ö W$ +B 9: )W$. +! <= >?@,-. ÞQ, 0 = Uƒ "#$ )Z¾ "#$ 1234 564 78 9: ;! <= > 4 +B 56.nŽ g-. &à šž! )W$ v œ KC 1K /IM g= š 0 ÖW, " W$. )W$ +B 9: 22 o C(ÖW$)v 37 o C( W$) ;! <= >?@,-. u a L = m8 input u a av 0 +B <= < c "#$ <=?pfq 8Ã-. Ö W$ c $ Ü) a. K = g Ö W$ c $ Ü) ÖW$ jk, 1 $ Ü) z=2.58 m c $ Ü) L1= 1.1, L2=1.0 Œ L3=0.48 m " W$ jk L1=1.0, L2=0.5, L3=0.48 Œ L4=0.6 mã-. "#$ #w ^Y ^ `! ÈR %? s3 r Œ s Õ= #ý datau ³8 g-¾ s3 šž Z À\ &ào g@(, u,0 simulator Z À1 p ) I 634 # = g-. A : heat transfer area per unit volume [m 1 ] C j : concentration of component (j=1, 2, 3) [kmol/m 3 ] c p D er D ez E i : specific heat [kj/kg K] : radial diffusion coefficient [m 2 /s] : radial diffusion coefficient [m 2 /s] : activation energy of reaction (i=1, 2, 3) [kj/kmol] ( H i ) : heat of reaction (i=1, 2, 3) [kj/kmol] k i : Arrhenius type rate constant (i=1, 2, 3) [s 1 ] k 0i : pre-exponential factor (i=1, 2, 3) [s 1 ] L : reactor length [m] R : radius of reactor tube [m] r : radius coordinate [m] r i : rate of i-th reaction [kmol/m 3 s] T : temperature [K] T c : temperature of coolant [K] T o : inlet fluid temperature [K] t : time [s] h w : heat transfer coefficient [w/m 2 K] u c : coolant velocity [m/s] u f : fluid velocity [m/s] u o : inlet fluid velocity [m/s] z : axial coordinate [m] ε : void of bed ρ : density [kg/m 3 ] λ er : effective radial thermal conductivity [kj/m s K] : effective axial thermal conductivity [kj/m s K] λ ez c : coolant e : effective f :fluid j : component o : initial m : mixture s : solid 1. Yun, Y. S., Park, P. W., Rho, H. R. and Jeong, Y. O.: HWAHAK KONGHAK, 35, 380(1997). 2. Bilous, O. and Amundson, N. R.: AIChE J., 2, 117(1956). 3. Juncu, Gh. and Floarea, O.: AIChE J., 41, 2625(1995). 4. Hlavacek, V.: Ind. Engng. Chem., 62, 8(1970). 5. Karanth, N. G. and Hughes, R.: Cat. Rev. Sci. Eng., 9(2), 119(1974). 6. Parent, Y. O., Caram, H. S. and Coughlim, R. W.: AIChE J., 29, 443 (1983). 7. Yun, Y. S., Park, P. W., Jeong, Y. O. and Han, S. B.: HWAHAK KONG- HAK, 35, 717(1997). 8. Froment, G. F.: Chem. Ing. Tech., 4, 374(1974). 9. Yoon, Y. S.: Ph. D. Dissertation, Pusan National University(1998). 10. Jeong(Park), Y. O.: Ph. D. Dissertation, University of Houston, U.S.A (1989). 11. Papageorgiou, J. N. and Froment, G. F.: Chem. Eng. Sci., 51, 2091 (1996). 12. Pirkle, J. C. and Wachs, I. E.: Chem. Eng. Prog. Aug., 29(1987). 37 4 1999 8