A new approach for Kirchhoff-Love plates and shells

Similar documents
A new mixed isogeometric approach to Kirchhoff-Love shells. Katharina Rafetseder and Walter Zulehner. G+S Report No. 70

JOHANNES KEPLER UNIVERSITY LINZ. Institute of Computational Mathematics

Some Remarks on the Reissner Mindlin Plate Model

A DECOMPOSITION RESULT FOR BIHARMONIC PROBLEMS AND THE HELLAN-HERRMANN-JOHNSON METHOD

arxiv: v2 [math.na] 20 Dec 2017

Gustafsson, Tom; Stenberg, Rolf; Videman, Juha A posteriori analysis of classical plate elements

Finite Element Exterior Calculus and Applications Part V

Finite Elements for Elastic Shell Models in

Kirchhoff Plates: Field Equations

ABHELSINKI UNIVERSITY OF TECHNOLOGY

Wellposedness for A Thermo-Piezo-Electric Coupling Model.

Mathematical modelling and numerical analysis of thin elastic shells

Mixed Finite Element Methods. Douglas N. Arnold, University of Minnesota The 41st Woudschoten Conference 5 October 2016

Aircraft Structures Kirchhoff-Love Plates

Hierarchic Isogeometric Large Rotation Shell Elements Including Linearized Transverse Shear Parametrization

Development DKMQ Shell Element with Five Degrees of Freedom per Nodal

On the Justification of Plate Models

MATHEMATICAL AND NUMERICAL ANALYSIS OF SOME PARAMETER-DEPENDENT MODELS

MIXED FINITE ELEMENTS FOR PLATES. Ricardo G. Durán Universidad de Buenos Aires

arxiv: v1 [math.na] 20 May 2018

Questions (And some Answers) (And lots of Opinions) On Shell Theory

Virtual Element Methods for general second order elliptic problems

A UNIFORMLY ACCURATE FINITE ELEMENT METHOD FOR THE REISSNER MINDLIN PLATE*

IMPLEMENTATION OF FUNCTIONAL-TYPE A POSTERIORI ERROR ESTIMATES FOR LINEAR PROBLEMS IN SOLID MECHANICS. Maksim Frolov

Optimal thickness of a cylindrical shell under dynamical loading

JOHANNES KEPLER UNIVERSITY LINZ. Institute of Computational Mathematics

A-priori and a-posteriori error estimates for a family of Reissner-Mindlin plate elements

Locking phenomena in Computational Mechanics: nearly incompressible materials and plate problems

ANALYSIS OF A MIXED-SHEAR-PROJECTED QUADRILATERAL ELEMENT METHOD FOR REISSNER-MINDLIN PLATES

INNOVATIVE FINITE ELEMENT METHODS FOR PLATES* DOUGLAS N. ARNOLD

Kirchhoff-Love shell theory based on tangential differential calculus

2008 by authors and 2008 Springer Science+Business Media

Fast-slow systems with chaotic noise

A HIGHER-ORDER BEAM THEORY FOR COMPOSITE BOX BEAMS

Chapter 6 2D Elements Plate Elements

ON THE ACCURACY OF REISSNER MINDLIN PLATE MODEL FOR STRESS BOUNDARY CONDITIONS. Sheng Zhang 1

UNIVERSITY OF SASKATCHEWAN ME MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 13, 2008 Professor A. Dolovich

Mesh Grading towards Singular Points Seminar : Elliptic Problems on Non-smooth Domain

A spacetime DPG method for acoustic waves

A primer on Numerical methods for elasticity

UNIVERSITY OF HAWAII COLLEGE OF ENGINEERING DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING

Basic Principles of Weak Galerkin Finite Element Methods for PDEs

MIXED RECTANGULAR FINITE ELEMENTS FOR PLATE BENDING

Multiscale Analysis of Vibrations of Streamers

ABHELSINKI UNIVERSITY OF TECHNOLOGY

GEOMETRIC NONLINEAR ANALYSIS

Finite Element Exterior Calculus. Douglas N. Arnold, University of Minnesota The 41st Woudschoten Conference 5 7 October 2016

COMPUTATIONAL METHODS AND ALGORITHMS Vol. II - Computational Methods in Elasticity - Michel SALAUN

Rigorous derivation of a sixth order thin film equation

Table of Contents. Preface... 13

Discontinuous Petrov-Galerkin Methods

Unified A Posteriori Error Control for all Nonstandard Finite Elements 1

Some New Elements for the Reissner Mindlin Plate Model

On the characterization of drilling rotation in the 6 parameter resultant shell theory

arxiv: v1 [math.na] 27 Jan 2016

Finite elements for plates and shells. Advanced Design for Mechanical System LEC 2008/11/04

Adaptive methods for control problems with finite-dimensional control space

Nonlinear Thermo- Mechanics of Plates and Shallow Shells

EXISTENCE AND REGULARITY OF SOLUTIONS FOR STOKES SYSTEMS WITH NON-SMOOTH BOUNDARY DATA IN A POLYHEDRON

Phase-field description of brittle fracture in plates and shells


ANALYSIS OF MIXED FINITE ELEMENTS FOR LAMINATED COMPOSITE PLATES

Lecture 7: The Beam Element Equations.

Chapter 12 Plate Bending Elements. Chapter 12 Plate Bending Elements

3D-SHELL ELEMENTS AND THEIR UNDERLYING MATHEMATICAL MODEL

Towards effective shell modelling with the FEniCS project

Navier-Stokes equations in thin domains with Navier friction boundary conditions

Linear Cosserat elasticity, conformal curvature and bounded stiffness

Lecture Notes Introduction to Vector Analysis MATH 332

NONLINEAR CONTINUUM FORMULATIONS CONTENTS

Transactions on Modelling and Simulation vol 9, 1995 WIT Press, ISSN X

Dual-Primal Isogeometric Tearing and Interconnecting Solvers for Continuous and Discontinuous Galerkin IgA Equations

ANALYSIS OF A LINEAR LINEAR FINITE ELEMENT FOR THE REISSNER MINDLIN PLATE MODEL

External Work. When a force F undergoes a displacement dx in the same direction i as the force, the work done is

Lecture 3. Vector fields with given vorticity, divergence and the normal trace, and the divergence and curl estimates

arxiv: v2 [cs.ce] 22 Feb 2018

CHAPTER THREE SYMMETRIC BENDING OF CIRCLE PLATES

Traces and Duality Lemma

ENERGY NORM A POSTERIORI ERROR ESTIMATES FOR MIXED FINITE ELEMENT METHODS

A Domain Decomposition Method for Quasilinear Elliptic PDEs Using Mortar Finite Elements

Hybrid equilibrium plate elements of high degree

JOHANNES KEPLER UNIVERSITY LINZ. Institute of Computational Mathematics

3 2 6 Solve the initial value problem u ( t) 3. a- If A has eigenvalues λ =, λ = 1 and corresponding eigenvectors 1

Stability of an abstract wave equation with delay and a Kelvin Voigt damping

A Locking-Free MHM Method for Elasticity

MULTIGRID PRECONDITIONING IN H(div) ON NON-CONVEX POLYGONS* Dedicated to Professor Jim Douglas, Jr. on the occasion of his seventieth birthday.

THE INFLUENCE OF LATERAL BOUNDARY CONDITIONS ON THE ASYMPTOTICS IN THIN ELASTIC PLATES

Basic concepts to start Mechanics of Materials

ROBUST BDDC PRECONDITIONERS FOR REISSNER-MINDLIN PLATE BENDING PROBLEMS AND MITC ELEMENTS

A Subspace Correction Method for Discontinuous Galerkin Discretizations of Linear Elasticity Equations

AMS subject classifications. Primary, 65N15, 65N30, 76D07; Secondary, 35B45, 35J50

Numerical results: Isotropic plates and shells

LECTURE # 0 BASIC NOTATIONS AND CONCEPTS IN THE THEORY OF PARTIAL DIFFERENTIAL EQUATIONS (PDES)

Isogeometric Kirchhoff Love shell formulations for general hyperelastic materials

Stress Analysis of Elastic Roof with Boundary Element Formulations

EDGE EFFECTS IN THE REISSNER-MINDLIN PLATE THEORY*

Introduction to finite element exterior calculus

MATH 332: Vector Analysis Summer 2005 Homework

Weighted Regularization of Maxwell Equations Computations in Curvilinear Polygons

Standard Finite Elements and Weighted Regularization

Transcription:

A new approach for Kirchhoff-Love plates and shells Walter Zulehner Institute of Computational Mathematics JKU Linz, Austria AANMPDE 10 October 2-6, 2017, Paleochora, Crete, Greece Walter Zulehner (JKU Linz) Kirchhoff-Love plates and shells AANMPDE 10 1 / 30

Acknowledgment Joint work with Wolfgang Krendl, Katharina Rafetseder The research was funded by the Austrian Science Fund (FWF): S11702-N23 Walter Zulehner (JKU Linz) Kirchhoff-Love plates and shells AANMPDE 10 2 / 30

Outline 1 The Kirchhoff plate bending problem 2 Extension to Mindlin-Reissner plates? 3 Extension to Kirchhoff-Love shells 4 Numerical results 5 Conclusion and outlook Walter Zulehner (JKU Linz) Kirchhoff-Love plates and shells AANMPDE 10 3 / 30

Kirchhoff plate bending problem Figure: Geometry of a shell Unknown: covariant components of the displacement u = (u i ) Walter Zulehner (JKU Linz) Kirchhoff-Love plates and shells AANMPDE 10 4 / 30

Kirchhoff plate bending problem plate: S is flat, for simplicity: θ = Id pure bending: u 3 = w. dimensional reduction of 3D elasticity for Ω = ( t/2, t/2) find w W H 2 () which minimizes J(w) = 1 C 2 w : 2 w dx 2 with Cε = 2µ ( ε + ν ) (tr ε)i 1 ν g w dx Walter Zulehner (JKU Linz) Kirchhoff-Love plates and shells AANMPDE 10 5 / 30

Kirchhoff plate bending problem (kinematic) boundary conditions: = γ c γ s γ f if the plate is clamped on γ c simply supported on γ s then free on γ f W = {v H 2 () : v = 0, n v = 0 on γ c, v = 0 on γ s }. variational formulation: find w W such that C 2 w : 2 v dy = g v dx for all v W, Walter Zulehner (JKU Linz) Kirchhoff-Love plates and shells AANMPDE 10 6 / 30

Kirchhoff plate bending problem quantities of interest: w vertical deflection M = C 2 w bending moments Mixed variational formulation: Find M V and w Q such that C 1 M : L dy + L : 2 w dy = 0 for all L V, M : 2 v dy = g v dx for all v Q, e.g., with the function spaces V = L 2 (Ω) sym, Q = W. Walter Zulehner (JKU Linz) Kirchhoff-Love plates and shells AANMPDE 10 7 / 30

Kirchhoff plate bending problem An different choice for Q with less smoothness: if W = {v H 2 () : v = 0, n v = 0 on γ c, v = 0 on γ s }, then Q = {v H 1 () : v = 0, on γ c, v = 0 on γ s } = H 1 0,γ c γ s (). The choice for V : transposition method b(v, L) = L : 2 v dy Bv, L B L, v, where B L, v is well-defined for v Q. Walter Zulehner (JKU Linz) Kirchhoff-Love plates and shells AANMPDE 10 8 / 30

Kirchhoff plate bending problem The linear operator B: B : D(B) Q Y, here with domain D(B) = W and Y = L 2 (Ω) sym, is a densely defined linear operator and unbounded operator in Q. Its adjoint operator is given by the identity B : D(B ) Y Q and all L from the domain B L, v = Bv, L for all v W D(B ) = {L Y : Bv, L c v Q for all v D(B)} Walter Zulehner (JKU Linz) Kirchhoff-Love plates and shells AANMPDE 10 9 / 30

Kirchhoff plate bending problem standard integration by parts: L : 2 v dy = Div L v dy + = Div L v dy + (Ln) v ds L nt t v ds + L nn n v ds?? L nn = 0 on γ s γ f (L nn = Ln n, L nt = Ln t) = γ s : D(B ) = {L L 2 (Ω) sym : div Div L H 1 ()} Walter Zulehner (JKU Linz) Kirchhoff-Love plates and shells AANMPDE 10 10 / 30

Kirchhoff plate bending problem Lemma Let L L 2 (Ω) sym C 1 (). Then L D(B ) if and only if L nn = 0 on γ s γ f and L nt x = 0 on interior corner points x of γ f. Walter Zulehner (JKU Linz) Kirchhoff-Love plates and shells AANMPDE 10 11 / 30

Kirchhoff plate bending problem Notations for B = 2 = Grad grad: with B = div Div, D(B ) = H(div Div, ; Q ) sym. H(div Div, ; Q ) sym = {L L 2 (Ω) sym : L : 2 v dy c v H 1 () for all v W } Observe H 1 0 () sym H(div Div, ; Q ) sym L 2 (Ω) sym Bernardi/Girault/Maday (1992), Z. (2015), Pechstein/Schöberl (2011), Rafetseder/Z. (2017) Walter Zulehner (JKU Linz) Kirchhoff-Love plates and shells AANMPDE 10 12 / 30

Kirchhoff plate bending problem Mixed variational formulation of Find M V and w Q such that C 1 M : L dy + div Div L, w = 0 for all L V, div Div M, v = g v dx for all v Q, with the function spaces V = H(div Div, ; Q ) sym, Q = H 1 0,γ c γ s (), equipped with norms v Q = v 1 and L V = L div Div;Q, given by L 2 div Div;Q = L 2 L 2 (Ω) + div Div L 2 Q. Walter Zulehner (JKU Linz) Kirchhoff-Love plates and shells AANMPDE 10 13 / 30

Kirchhoff plate bending problem Theorem The mixed problem is well-posed in V Q = H(div Div, ; Q ) sym H 1 0,γ c γ s (). Corollary The primal variational problem and the mixed problem are equivalent: If w W solves the primal problem, then M = C 2 w V and (M, w) solves the mixed problem. If (M, w) V Q solves the mixed problem, then w W and w solves the primal problem. Walter Zulehner (JKU Linz) Kirchhoff-Love plates and shells AANMPDE 10 14 / 30

Kirchhoff plate bending problem Theorem Let be simply connected. M H(div Div, ; Q ) sym if and only if M = p I + symcurl φ with with Ψ p = p Q = H 1 0,γ c γ s () and φ Ψ p { ψ (H 1 ()) 2 : t ψ, v Γ = p n v ds Γ } for all v W ( ) ( 1 φ1 φ =, sym Curl φ = 2 φ 1 2 ( ) 2φ 2 1 φ 1 ) φ 1 2 2 ( 2φ 2 1 φ 1 ) 1 φ 2 Krendl/Rafetseder/Z. (2014,2016), Rafetseder/Z. (2017) Walter Zulehner (JKU Linz) Kirchhoff-Love plates and shells AANMPDE 10 15 / 30

Kirchhoff plate bending problem Equivalent variational formulation in ( 2 p Q = H0,γ 1 c γ s (), φ Ψ p H ()) 1, w Q = H 1 (). 0,γc γs 1 Find p Q such that p v dy = g v dx for all v Q. 2 For given p Q, find φ Ψ p such that C 1 symcurl φ : symcurl ψ dy = G[p], ψ for all ψ Ψ 0. 3 For given M = pi + symcurl φ, find w Q such that w q dy = H[M], q for all q Q. Walter Zulehner (JKU Linz) Kirchhoff-Love plates and shells AANMPDE 10 16 / 30

Decomposition of the problem 2 for φ = ( φ 2, φ 1 ) T we obtain Ĉ 1 ε(φ ) : ε(ψ) dy = Ĝ[p], ψ for all ψ Ψ 0 with an appropriately rotated material tensor Ĉ 1 and ε αβ (ψ) = 1 2 ( βψ α + α ψ β ) decomposition of the Kirchhoff model into 1 Poisson problem 2 plane linear elasticity problem 3 Poisson problem Walter Zulehner (JKU Linz) Kirchhoff-Love plates and shells AANMPDE 10 17 / 30

Mindlin-Reissner plates Mindlin-Reissner model J = 1 { Cε(θ) : ε(θ) + µ t 2 w θ 2} dx 2 g w dx min Kirchhoff model: θ = w. J = 1 { } C 2 w : 2 w 2 dx g w dx min decomposition of the Mindlin-Reisser model into 1 Poisson problem 2 Stokes-like problem 3 Poisson problem Brezzi/Fortin 1986 Walter Zulehner (JKU Linz) Kirchhoff-Love plates and shells AANMPDE 10 18 / 30

Kirchhoff-Love shells variational formulation of the linearized model: find u W such that ] [t Cε(u) : ε(v) + t3 a Cκ(u) : κ(v) dy = F, v for all v W 12 with the membrane strain the bending strain W H 1 () H 1 () H 2 (), ε αβ (u) = 1 2 (u α β + u β α ) b αβ u 3, κ αβ (u) = u 3 αβ b σ αb σβ u 3 + b σ αu σ β + b τ β u τ α + bτ β α u τ = αβ u 3 +.... Walter Zulehner (JKU Linz) Kirchhoff-Love plates and shells AANMPDE 10 19 / 30

Kirchhoff-Love shells quantities of interest: u displacement M = t3 12 Cκ(u) a bending moments M = Ĉκ(u) Mixed variational formulation: Find M V and u Q such that Ĉ 1 M : L dy div Div L, u 3 L : κ 1 (u) dy = 0 div Div M, v 3 M : κ 1 (v) dy t Cɛ(u) : ɛ(v) a dy = F, v for all L V and v Q, with the function spaces where Q i H 1 (). V = H(div Div, ; Q 3 ) sym, Q = Q 1 Q 2 Q 3, Walter Zulehner (JKU Linz) Kirchhoff-Love plates and shells AANMPDE 10 20 / 30

Numerical results benchmark examples of the shell obstacle course: Scordelis-Lo roof pinched cylinder pinched hemisphere midsurface represented as B-spline surfaces approximation spaces: equal-order approximation for u i, p, φ single patch: B-splines of maximum smoothness multipatch: C 0 implementation in G+Smo (C++ library for IgA) Walter Zulehner (JKU Linz) Kirchhoff-Love plates and shells AANMPDE 10 21 / 30

Numerical results Example: Scordelis-Lo roof Figure: Geometry and load Walter Zulehner (JKU Linz) Kirchhoff-Love plates and shells AANMPDE 10 22 / 30

u Numerical results Example: Scordelis-Lo roof 0.35 Scordelis-Lo roof 0.3 0.25 0.2 0.15 0.1 0.05 p = 2 p = 3 p = 4 p = 5 0 0 200 400 600 800 1000 1200 1400 1600 1800 2000 D.O.F. Figure: Results, 1 patch Walter Zulehner (JKU Linz) Kirchhoff-Love plates and shells AANMPDE 10 23 / 30

u Numerical results Example: Scordelis-Lo roof 0.35 Scordelis-Lo roof (4 patches) 0.3 0.25 0.2 0.15 0.1 0.05 p = 2 p = 3 p = 4 p = 5 0 0 200 400 600 800 1000 1200 1400 1600 1800 2000 D.O.F. Figure: Results, 4 patches Walter Zulehner (JKU Linz) Kirchhoff-Love plates and shells AANMPDE 10 24 / 30

Numerical results Example: pinched Cylinder Figure: Geometry and load Walter Zulehner (JKU Linz) Kirchhoff-Love plates and shells AANMPDE 10 25 / 30

Numerical results Example: pinched Cylinder 2 Pinched cylinder (4 patches) #10-5 1.8 1.6 1.4 u 1.2 1 0.8 0.6 p=2 p=3 p=4 p=5 0.4 0.2 0 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 D.O.F. Figure: Results, 4 patches Walter Zulehner (JKU Linz) Kirchhoff-Love plates and shells AANMPDE 10 26 / 30

Numerical results Example: pinched Hemisphere Figure: Geometry and load Walter Zulehner (JKU Linz) Kirchhoff-Love plates and shells AANMPDE 10 27 / 30

u Numerical results Example: pinched Hemisphere 0.1 Pinched hemisphere (4 patches) 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 p = 2 p = 3 p = 4 p = 5 0 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 D.O.F. Figure: Results, 4 patches Walter Zulehner (JKU Linz) Kirchhoff-Love plates and shells AANMPDE 10 28 / 30

Conclusion and outlook Kirchhoff plate bending problems and similar 4-th order problems can be decomposed in three (consecutively to solve) second-order problems. extension to Kirchhoff-Love shell: formulation in H 1 spaces. work in progress: extend the numerical analysis from Kirchhoff plates to Kirchhoff-Love shells. behavior of equal-order discretization method w.r.t. membrane locking extension to Mindlin-Reissner plates and shells Walter Zulehner (JKU Linz) Kirchhoff-Love plates and shells AANMPDE 10 29 / 30

References W. Krendl, K. Rafetseder, and W. Z. A decomposition result for biharmonic problems and the Hellan-Herrmann-Johnson method. ETNA, Electron. Trans. Numer. Anal., 45:257 282, 2016. K. Rafetseder and W. Z. A decomposition result for Kirchhoff plate bending problems and a new discretization approach. arxiv:1703.07962. ArXiv e-prints, March 2017. Walter Zulehner (JKU Linz) Kirchhoff-Love plates and shells AANMPDE 10 30 / 30