Domains and Domain Walls in Quantum Spin Chains

Similar documents
The Ising model Summary of L12

Statistical Thermodynamics Solution Exercise 8 HS Solution Exercise 8

The Quantum Heisenberg Ferromagnet

Numerical diagonalization studies of quantum spin chains

8.334: Statistical Mechanics II Problem Set # 4 Due: 4/9/14 Transfer Matrices & Position space renormalization

Trigonometric SOS model with DWBC and spin chains with non-diagonal boundaries

Physics 127b: Statistical Mechanics. Renormalization Group: 1d Ising Model. Perturbation expansion

Exam TFY4230 Statistical Physics kl Wednesday 01. June 2016

J ij S i S j B i S i (1)

(# = %(& )(* +,(- Closed system, well-defined energy (or e.g. E± E/2): Microcanonical ensemble

First Problem Set for Physics 847 (Statistical Physics II)

Quantum spin systems - models and computational methods

VI.D Self Duality in the Two Dimensional Ising Model

Techniques for translationally invariant matrix product states

Non-magnetic states. The Néel states are product states; φ N a. , E ij = 3J ij /4 2 The Néel states have higher energy (expectations; not eigenstates)

Statistical Physics. Solutions Sheet 11.

Phase Transition & Approximate Partition Function In Ising Model and Percolation In Two Dimension: Specifically For Square Lattices

i=1 n i, the canonical probabilities of the micro-states [ βǫ i=1 e βǫn 1 n 1 =0 +Nk B T Nǫ 1 + e ǫ/(k BT), (IV.75) E = F + TS =

VI.D Self Duality in the Two Dimensional Ising Model

Phys Midterm. March 17

Topological Work and the Laws of Thermodynamics

Scaling Theory. Roger Herrigel Advisor: Helmut Katzgraber

8.334: Statistical Mechanics II Spring 2014 Test 2 Review Problems

5. Systems in contact with a thermal bath

Quantum Integrability and Algebraic Geometry

CHAPTER 4. Cluster expansions

Perimeter Institute Lecture Notes on Statistical Physics part III: From Quantum to Ising to RG Version 1.6 9/11/09 Leo Kadanoff 1

Efficient time evolution of one-dimensional quantum systems

The monopole physics of spin ice. P.C.W. Holdsworth Ecole Normale Supérieure de Lyon

Read carefully the instructions on the answer book and make sure that the particulars required are entered on each answer book.

WORLD SCIENTIFIC (2014)

A THREE-COMPONENT MOLECULAR MODEL WITH BONDING THREE-BODY INTERACTIONS

Thermodynamic and transport properties of infinite U Hubbard model

Thermal and Statistical Physics Department Exam Last updated November 4, L π

The 1+1-dimensional Ising model

Grand Canonical Formalism

The properties of an ideal Fermi gas are strongly determined by the Pauli principle. We shall consider the limit:

Phase transitions in the complex plane of physical parameters

Complex Systems Methods 9. Critical Phenomena: The Renormalization Group

Critical Behavior I: Phenomenology, Universality & Scaling

Problem set for the course Skálázás és renormálás a statisztikus fizikában, 2014

Metropolis, 2D Ising model

Spin liquids in frustrated magnets

Magnetism at finite temperature: molecular field, phase transitions

Geometry, topology and frustration: the physics of spin ice

The 6-vertex model of hydrogen-bonded crystals with bond defects

VI. Series Expansions

Negative Binomial Coherent States

Magnetic ordering of local moments

Phase transitions and critical phenomena

Meron-Cluster and Nested Cluster Algorithms: Addressing the Sign Problem in Quantum Monte Carlo Simulations

Magnetism in Condensed Matter

arxiv: v1 [cond-mat.stat-mech] 20 Feb 2018

Path Integral for Spin

Assignment 8. Tyler Shendruk December 7, 2010

Lattice study of quantum entanglement in SU(3) Yang-Mills theory at zero and finite temperatures

Krammers-Wannier Duality in Lattice Systems

Classical and quantum aspects of ultradiscrete solitons. Atsuo Kuniba (Univ. Tokyo) 2 April 2009, Glasgow

Structure and Topology of Band Structures in the 1651 Magnetic Space Groups

An ingenious mapping between integrable supersymmetric chains

3.320 Lecture 18 (4/12/05)

Ising model and phase transitions

Intro. Each particle has energy that we assume to be an integer E i. Any single-particle energy is equally probable for exchange, except zero, assume

Physics 112 The Classical Ideal Gas

arxiv:cond-mat/ v1 12 Dec 2006

Ising Lattice Gauge Theory with a Simple Matter Field

Computational Physics (6810): Session 13

3. General properties of phase transitions and the Landau theory

Unstable K=K T=T. Unstable K=K T=T

The Mott Metal-Insulator Transition

ANTICOMMUTING INTEGRALS AND FERMIONIC FIELD THEORIES FOR TWO-DIMENSIONAL ISING MODELS. V.N. Plechko

From unitary dynamics to statistical mechanics in isolated quantum systems

s i s j µ B H Figure 3.12: A possible spin conguration for an Ising model on a square lattice (in two dimensions).

Nonlinear Sigma Model(NLSM) and its Topological Terms

LECTURES ON STATISTICAL MECHANICS E. MANOUSAKIS

S Leurent, V. Kazakov. 6 July 2010

Hydrodynamics. Stefan Flörchinger (Heidelberg) Heidelberg, 3 May 2010

The AC Wien effect: non-linear non-equilibrium susceptibility of spin ice. P.C.W. Holdsworth Ecole Normale Supérieure de Lyon

Statistical. mechanics

summary of statistical physics

(a) Write down the total Hamiltonian of this system, including the spin degree of freedom of the electron, but neglecting spin-orbit interactions.

V. SCALING. A. Length scale - correlation length. h f 1 L a. (50)

Introduction to the Renormalization Group

4. Systems in contact with a thermal bath

Introduction to the Mathematics of the XY -Spin Chain

Physics 582, Problem Set 3 Solutions

Lee Yang zeros and the Ising model on the Sierpinski gasket

The Random Matching Problem

Phase transitions in discrete structures

SECOND QUANTIZATION. Lecture notes with course Quantum Theory

Quantum wires, orthogonal polynomials and Diophantine approximation

We already came across a form of indistinguishably in the canonical partition function: V N Q =

1.7 Plane-wave Solutions of the Dirac Equation

Application of Mean-Field Jordan Wigner Transformation to Antiferromagnet System

From random matrices to free groups, through non-crossing partitions. Michael Anshelevich

Partition functions for complex fugacity

Statistical and Thermal Physics. Problem Set 5

Statistical mechanics, the Ising model and critical phenomena Lecture Notes. September 26, 2017

Non-perturbative effects in ABJM theory

( ) ( )( k B ( ) ( ) ( ) ( ) ( ) ( k T B ) 2 = ε F. ( ) π 2. ( ) 1+ π 2. ( k T B ) 2 = 2 3 Nε 1+ π 2. ( ) = ε /( ε 0 ).

Transcription:

Domains and Domain Walls in Quantum Spin Chains Statistical Interaction and Thermodynamics Ping Lu, Jared Vanasse, Christopher Piecuch Michael Karbach and Gerhard Müller 6/3/04 [qpis /5]

Domains and Domain Walls (Mesoscopic) Exchange interaction (strong, short-range) Magnetic dipolar interaction (weak, long range) Anisotropy, crystal field 6/3/04 [qpis /5]

Quantum Spin Chain CsCoCl 3 6/3/04 [qpis 3/5]

Quantum Spin Chain l l l + CsCoCl 3 6/3/04 [qpis 3/5]

Quantum Spin Chain l l l + CsCoCl 3 [Yoshizawa, Hirakawa, Satija, and Shirane 98] 6/3/04 [qpis 3/5]

Domains and Domain Walls (Microscopic) Spin-/ Ising chain: H / = J NX Sl z Sz l+ ; Sz l = +,, FM (J < 0), AFM (J > 0). l= vacuum domain...... vacuum vacuum vacuum...... 6/3/04 [qpis 4/5]

Nested Domains and Composite Domain Walls Spin- Ising chain: H = J NX Sl z Sz l+ ; Sz l = +,0, l= vac. outer domain vac....... inner dom. inner dom. vac. vac. vac. vac....... 6/3/04 [qpis3 5/5]

Statistical Interaction Generalized Pauli principle [Haldane 99] How is the number of states accessible to one particle of species i affected if other particles (of any species j) are added?. X d i = g ij N j g ij : coefficients of statistical interaction, A i : statistical capacity constants. j d i = A i X j g ij (N j δ ij ), 6/3/04 [qpis4 6/5]

Statistical Interaction Generalized Pauli principle [Haldane 99] How is the number of states accessible to one particle of species i affected if other particles (of any species j) are added?. X d i = g ij N j g ij : coefficients of statistical interaction, A i : statistical capacity constants. j d i = A i X j g ij (N j δ ij ), Number of distinct many-particle states with composition {N i }: W({N i }) = Y i d i + N i N i! = Y i Γ(d i + N i ) Γ(N i + )Γ(d i ). Packing capacity limited by requirement d i > 0. 6/3/04 [qpis4 6/5]

Solitons in Spin-/ Ising Chain Soliton content and energy of nearest-neighbor bonds: bond N + 0 0 0 N 0 0 0 E/J 0 0 Solitons... have spin ±/, are fundamental, are independent, are statistically interacting. 6/3/04 [qpis5 7/5]

Solitons in Spin-/ Ising Chain Soliton content and energy of nearest-neighbor bonds: bond N + 0 0 0 N 0 0 0 E/J 0 0 M z \N A 0 4 6 3 6 6 9 6 5 0 6 0 9 6 5 6 6 3 30 30 64 Solitons... have spin ±/, are fundamental, are independent, are statistically interacting. 6/3/04 [qpis5 7/5]

Solitons in Spin-/ Ising Chain Soliton content and energy of nearest-neighbor bonds: bond N + 0 0 0 N 0 0 0 E/J Solitons... have spin ±/, are fundamental, are independent, 0 0 are statistically interacting. M z \N A 0 4 6 3 6 6 9 6 5 0 6 0 9 6 5 6 6 3 30 30 64 M z \N A 3 5 7 7/ 5/ 7 7 3/ 4 7 / 7 7 35 / 7 7 35 3/ 4 7 5/ 7 7 7/ 4 70 4 8 6/3/04 [qpis5 7/5]

Statistical Interaction of Solitons Number of Ising eigenstates with N A = N + + N solitons: W A (N +, N ) = N Y N N A σ=± d σ = A σ X σ g σσ (N σ δ σσ ) d σ + N σ N σ! A σ = (N ) g σσ = M z = (N + N ) ǫ ± = (J ± h) (AFM) X W A (N +, N ) = N N +,N 6/3/04 [qpis6 8/5]

Statistical Interaction of Solitons Number of Ising eigenstates with N A = N + + N solitons: W A (N +, N ) = N Y N N A σ=± d σ + N σ N σ! d σ = A σ X g σσ (N σ δ σσ ) σ A σ = (N ) g σσ = M z = (N + N ) ǫ ± = (J ± h) (AFM) X W A (N +, N ) = N N +,N particle n + n motif N + + N + 0 0 + A σ N N ǫ σ (J + h) (J h) g σσ + + 6/3/04 [qpis6 8/5]

Thermodynamics with Statistical Interaction Specifications of quantum many-body system: particle energies ǫ i, statistical interaction coefficients g ij, statistical capacity constants A i. 6/3/04 [qpis8 9/5]

Thermodynamics with Statistical Interaction Specifications of quantum many-body system: particle energies ǫ i, statistical interaction coefficients g ij, statistical capacity constants A i. Two tasks: combinatorial problem: W({N i }) = Y i extremum problem: δ(u TS µn) = 0. d i + N i N i!, 6/3/04 [qpis8 9/5]

Thermodynamics with Statistical Interaction Specifications of quantum many-body system: particle energies ǫ i, statistical interaction coefficients g ij, statistical capacity constants A i. Two tasks: combinatorial problem: W({N i }) = Y i extremum problem: δ(u TS µn) = 0. d i + N i N i!, Grand potential [Wu 994]: Ω = k B T ln Z, ǫ i µ k B T = ln( + w i) X j «+ Ai wi, Z = Y w i i «+ wi g ji ln. w i 6/3/04 [qpis8 9/5]

Thermodynamics of Solitons Specifications: ǫ ± = (J ± h), g σσ =, A ± = (N ). Grand partition function: Z = «+ N/ «w+ + N/ w, w + w J ± h k B T = ln( + w ±) ln + w ± w ± ln + w w. 6/3/04 [qpis0 0/5]

Thermodynamics of Solitons Specifications: ǫ ± = (J ± h), g σσ =, A ± = (N ). Grand partition function: Z = «+ N/ «w+ + N/ w, w + w J ± h k B T = ln( + w ±) ln + w ± w ± ln + w w. Solution: w ± =» q e ±h/kbt + (e ±h/kbt ) + 4e (J±h)/k BT, Z = h i N e K cosh H + psinh H + e 4K. J, K = 4k B T, H =. h k B T. 6/3/04 [qpis0 0/5]

Thermodynamics of Solitons Specifications: ǫ ± = (J ± h), g σσ =, A ± = (N ). Grand partition function: Z = «+ N/ «w+ + N/ w, w + w J ± h k B T = ln( + w ±) ln + w ± w ± ln + w w. Solution: w ± =» q e ±h/kbt + (e ±h/kbt ) + 4e (J±h)/k BT, Z = h i N e K cosh H + psinh H + e 4K. J, K = 4k B T, H =. h k B T. Comparison with transfer matrix solution: Z = Z N e NK. 6/3/04 [qpis0 0/5]

Transfer Matrix Solution Ising chain with spin s = / in a magnetic field: H = NX n=» JSnS z n+ z + h `S n z + Sn+ z. Canonical partition function (use σ n = S z n = ±): Z N = X σ,...,σ N exp NX n=» Kσ n σ n+ + H(σ n + σ n+ )! h i = Tr V N = λ N + " + λ λ + «N #. Transfer matrix [Kramers and Wannier 94]: V = e K+H e K e K e K H!, V (σ n, σ n+ ) = exp h i Eigenvalues: λ ± = e K cosh H ± psinh H + e 4K Kσ n σ n+ + «H(σ n + σ n+ ), K. = J 4k B T, H. = h k B T. 6/3/04 [qpis9 /5]

Soliton Occupancies Linear relations [Wu 994]: w i N i + X j g ij N j = A i, i =,,.... Solitons in s = / Ising chain at h 0: w ± + «N ± + N = N 0.5 0.4 -.5 N ± = Nw w + w + w + + w <N + > / N 0.3 0. -0.5-0.75 0. 0.75 0.5 h/j=0 0.5 0 4 6 8 0 J/k B T N ± N = hp i e ±H sinh H + e 4K ± sinh H sinh H + e 4K + cosh H p sinh H + e 4K h 0 / e K + 6/3/04 [qpis5 /5]

Solitons in Spin- Ising Chain Soliton content and energy of nearest-neighbor bonds: bond N + 0 0 0 0 0 N 0 0 0 0 0 E/J 0 0 6/3/04 [qpis 3/5]

Solitons in Spin- Ising Chain Soliton content and energy of nearest-neighbor bonds: bond N + 0 0 0 0 0 N 0 0 0 0 0 E/J 0 0 M z \N A 0 4 6 3 3 3 3 3 6 0 6 7 3 3 6 3 3 3 0 3 7 M z \N A 0 4 6 8 4 3 4 4 6 4 0 4 8 4 6 0 6 9 4 8 4 6 6 4 0 3 4 4 4 8 48 0 3 8 6/3/04 [qpis 3/5]

Soliton Pairs in Spin- Ising Chain particle r + r r 0 q + q q 0 motif, N + + N + 0 0 + + + 0 0 + + ǫ m J J J J J J Independent particles... are composite (soliton pairs), have spin +,0,, come in six species: - confined soliton pairs (r +, r ), - deconfined soliton pairs (q +, q 0, q ), - spacer particle (r 0 ). 6/3/04 [qpis 4/5]

Soliton Pairs in Spin- Ising Chain particle r + r r 0 q + q q 0 motif, N + + N + 0 0 + + + 0 0 + + ǫ m J J J J J J Independent particles... are composite (soliton pairs), have spin +,0,, come in six species: - confined soliton pairs (r +, r ), - deconfined soliton pairs (q +, q 0, q ), - spacer particle (r 0 ). Sample configurations: : r + r +, : q + + r 0 : q 0 + r 0 + r 6/3/04 [qpis 4/5]

Statistical Interaction of Soliton Pairs Multiplicity expression for soliton pairs: W 6 ({X m }) = N N N Σ 6Y m= d m = A m X m g mm (X m δ mm ) d m + X m X m! g mm 3 4 5 6 0 0 3 0 0 0 4 N Σ = X + X + X 3 + (X 4 + X 5 + X 6 ) 5 6 particle r + r r 0 q + q q 0 motif, N + + N + 0 0 + + + 0 0 + + m 3 4 5 6 A m N N 0 N N N ǫ m J J J J J J 6/3/04 [qpis3 5/5]

Thermodynamics of Soliton Pairs Six coupled equations for given ǫ i, g ij, and µ = 0: ǫ i µ k B T = ln( + w i) X j + wj g ji ln w j «, i =,,..., 6. Set K. = J/k B T. w = w, w 4 = w 5, + w 3 + w = e K, w 3 w 6 = e K, w 4 = + w 6, + w 6 w w 6 = e K. 6/3/04 [qpis4 6/5]

Thermodynamics of Soliton Pairs Six coupled equations for given ǫ i, g ij, and µ = 0: ǫ i µ k B T = ln( + w i) X j + wj g ji ln w j «, i =,,..., 6. Set K. = J/k B T. w = w, w 4 = w 5, + w 3 + w = e K, w 3 w 6 = e K, w 4 = + w 6, + w 6 w w 6 = e K. Solution: w 3 = cosh K + s cosh K «+. Grand partition function: Z = 6Y» + wi i= w i Ai = h ( + w 3 )e Ki N = ZN e NK. 6/3/04 [qpis4 6/5]

Soliton-Pair Occupancies at h = 0 Linear relations: w i N i + X j g ij N j = A i, i =,..., 6. Symmetry implies N = N, N 4 = N 5 = N 6. N = N = N N 3 = w 3 (w 3 + ek ) (w 3 + )(w 3 e K + 4w 3 + e K ), N(w 3 + e K ) (w 3 + )(w 3 e K + 4w 3 + e K ), N 4 = N 5 = 4 w 3 N 3, 0. N 6 = w 3 N 3. <N m > /N 0.05 m=, m=3 m=6 m=4,5 0 0 3 J/k B T 6/3/04 [qpis6 7/5]

Combinatorics of Domains Number of Ising states with {N, N,...} strings: W µ ({N µ }) = N N r Y d µ = A µ X µ g µµ (N µ δ µµ ) A µ = N µ ( µ, µ < µ g µµ = µ +, µ µ µ d µ + N µ N µ! { } +3 { } + 6 N = 6 { } + 6 N = { } + 6 N = { } + 3 N = 5 { } 0 6 N 3 = { } 0 6 N = N = { } 0 N = 3 M z = N r, r = X µ ǫ µ = J + µh (FM) X W µ ({N µ }) = N. {N µ } µn µ { } 0 6 N = N = 0 { } 3 N = { } 6 N = N 3 = { } 6 N 4 = 5 { } 6 N 5 = 6 { } 3 N 6 = 6/3/04 [qpis7 8/5]

Nested Domains in Spin- Ising Chain Nested two-level systems: µ-string vacuum: (FM ground state), ν-string vacuum: (µ-string particle). { } +4 { } +4, 4 { } +3 4 { } +3 4, { }+ 4, 8 4 { } + 4 { } + 4, { }+ 4, { }0 4, 6 4 { } + 4 { } + 4, { }0 4 3, { } 4 3, { } 4 3 { } 0 { } 0, { } 4 { } 4, { }, { } 3 4, { } 4, 6 { } + { } +, { }+ 4, { }0, 8 6 8 Link to nested coordinate Bethe ansatz. 6/3/04 [qpis7 9/5]

Combinatorics of Nested Domains Multiplicity expression: W {N µ }, {N ν (µ) } = N N r Y µ µ Y µ r µ ν d µ + N µ N µ! d (µ) ν + N (µ) ν N (µ) ν!, d µ = N µ X µ g µµ (N µ δ µµ ), d (µ) ν = µ ν X ν g νν (N (µ) ν δ νν ), r = X µ µn µ, r µ = X ν νn (µ) ν, g µµ = ( µ, µ < µ, µ + µ µ. Link to nested thermodynamic Bethe ansatz. 6/3/04 [qpis8 0/5]

Statistical Mechanics of Domains I Strings of restricted length: µ =,,..., M N. Grand potential: Ω M (T) = k B T MX µ= 4K µ = ln(w µ + ) A µ = N µ, ( µ, µ < µ g µµ = µ +, µ µ, K µ = ǫ µ k B T. wµ + A µ ln MX µ = w µ «. g µ µ ln w µ + w µ, µ =,..., M. Spin-/ ising chain: ǫ µ = J + µh. Thermodynamic limit: first N then M. 6/3/04 [qpis4 /5]

Statistical Mechanics of Domains II Solution for ǫ µ = J, finite M, and N. Introduce ξ µ. = ln(wµ + ), q. = e 4K, K = J /4k B T. Introduce Φ M. = 4K MX µ= ln e ξ µ. Grand potential per site: ω M (T). = lim N N Ω M(T) = J Φ M. Polynomial equation: qx (M+) + ( q)x x + = 0, x. = q Φ M <. 6/3/04 [qpis5 /5]

Statistical Mechanics of Domains II Solution for ǫ µ = J, finite M, and N. Introduce ξ µ. = ln(wµ + ), q. = e 4K, K = J /4k B T. Introduce Φ M. = 4K MX µ= ln e ξ µ. Grand potential per site: ω M (T). = lim N N Ω M(T) = J Φ M. Polynomial equation: qx (M+) + ( q)x x + = 0, x. = q Φ M <. Solution for spin-/ Ising chain (M ): x = + q. ω (T) = k B T ln + e J /k BT. 6/3/04 [qpis5 /5]

Entropy of Domains Entropy per site on infinite lattice: s M (T). = lim N N S M (T) = d dt ω M(T). s (K) k B s (K) k B p! + 4e = ln 4K + 8Ke 4K + + 4e 4K + p (-strings only), + 4e 4K = ln + e K + K e K (all strings allowed). + 0.6 M= M=3 M= 0.4 M= s M /k B 0. 0 0 0.5.5 k B T/ J 6/3/04 [qpis6 3/5]

Distribution of Domains 0 Normalized distribution: ˆn µ = n µ @ Solve the linear equations w µ n µ + MX n µ A µ = MX µ = µ n µ +, n µ. = lim N N µ N. µx n µ =, µ =,..., M. µ = 6/3/04 [qis7 4/5]

Distribution of Domains 0 Normalized distribution: ˆn µ = n µ @ Solve the linear equations w µ n µ + Consider the case M : w µ n µ + MX n µ A µ = MX µ = µ n µ +, n µ. = lim N N µ N. µx n µ =, µ =,..., M. µ = µx n ν = ζ, µ =,,... ν= where w µ = + ( + q) µ, ζ =. q q X µ = µ n µ. 6/3/04 [qis7 4/5]

Distribution of Domains 0 Normalized distribution: ˆn µ = n µ @ Solve the linear equations w µ n µ + Consider the case M : w µ n µ + MX n µ A µ = MX µ = µ n µ +, n µ. = lim N N µ N. µx n µ =, µ =,..., M. µ = µx n ν = ζ, µ =,,... ν= where w µ = + ( + q) µ, ζ =. q q X µ = µ n µ. Result: ˆn µ = q ( + q) µ = e K ( + e K, µ =,,... [Denisov and Hänggi 005] ) µ 6/3/04 [qis7 4/5]

Distribution of Domains 0 Normalized distribution: ˆn µ = n µ @ Solve the linear equations w µ n µ + Consider the case M : w µ n µ + MX n µ A µ = MX µ = µ n µ +, n µ. = lim N N µ N. µx n µ =, µ =,..., M. µ = µx n ν = ζ, µ =,,... ν= where w µ = + ( + q) µ, ζ =. q q X µ = µ n µ. Result: ˆn µ = q ( + q) µ = e K ( + e K, µ =,,... [Denisov and Hänggi 005] ) µ Pascal s distribution: P(µ) = γ( γ) µ, γ = e K e K + e K. 6/3/04 [qis7 4/5]

Open Questions Generalization to spin-3/ Ising chain: independent particles contain,3,...,6 solitons, confined soliton compounds (e.g., ), deconfined soliton compounds (e.g. ), spacer particles (e.g. ). 6/3/04 [qpis8 5/5]

Open Questions Generalization to spin-3/ Ising chain: independent particles contain,3,...,6 solitons, confined soliton compounds (e.g., ), deconfined soliton compounds (e.g. ), spacer particles (e.g. ). Generalization to more complex spin-/ systems: diamond chain, spin ladder. 6/3/04 [qpis8 5/5]

Open Questions Generalization to spin-3/ Ising chain: independent particles contain,3,...,6 solitons, confined soliton compounds (e.g., ), deconfined soliton compounds (e.g. ), spacer particles (e.g. ). Generalization to more complex spin-/ systems: diamond chain, spin ladder. Citeria for independent particle species. 6/3/04 [qpis8 5/5]

Open Questions Generalization to spin-3/ Ising chain: independent particles contain,3,...,6 solitons, confined soliton compounds (e.g., ), deconfined soliton compounds (e.g. ), spacer particles (e.g. ). Generalization to more complex spin-/ systems: diamond chain, spin ladder. Citeria for independent particle species. Links to coordinate Bethe ansatz and thermodynamic Bethe ansatz (including nesting). 6/3/04 [qpis8 5/5]