C.A. Bertulani, Texas A&M University-Commerce

Similar documents
EFT Approaches to αα and Nα Systems

Effective field theory for halo nuclei: shallow p-wave states

INTRODUCTION TO EFFECTIVE FIELD THEORIES OF QCD

Coulomb effects in pionless effective field theory

Modern Theory of Nuclear Forces

Alpha particles in effective field theory

Effective Field Theory for Nuclear Physics! Akshay Vaghani! Mississippi State University!

PoS(Confinement8)147. Universality in QCD and Halo Nuclei

Overview of low energy NN interaction and few nucleon systems

Nuclear Reactions in Lattice EFT

Fate of the neutron-deuteron virtual state as an Efimov level

Electroweak Probes of Three-Nucleon Systems

Charming Nuclear Physics

Evgeny Epelbaum. Forschungszentrum Jülich & Universität Bonn

Hadronic parity-violation in pionless effective field theory

At the end of Section 4, a summary of basic principles for low-energy effective theories was given, which we recap here.

Proton-proton bremsstrahlung and elastic nucleon-nucleon scattering Cozma, Mircea Dan

Effective Field Theories in Nuclear and Hadron Physics

Pion-nucleon scattering around the delta-isobar resonance

From Halo EFT to Reaction EFT

Tritium β decay in pionless EFT

Modern Theory of Nuclear Forces

Theory toolbox. Chapter Chiral effective field theories

The NN system: why and how we iterate

Nuclear Physics from Lattice Effective Field Theory

Coulomb Effects in Low Energy Proton-Proton Scattering

arxiv:nucl-th/ v1 18 Feb 1999

POWER COUNTING WHAT? WHERE?

QCD and Rescattering in Nuclear Targets Lecture 2

Nuclear physics around the unitarity limit

Three-particle scattering amplitudes from a finite volume formalism*

Effective Field Theory and. the Nuclear Many-Body Problem

Effective Field Theory and. the Nuclear Many-Body Problem

THE THREE NUCLEON SYSTEM AT LEADING ORDER OF CHIRAL EFFECTIVE THEORY

Chiral Extrapolation of the Nucleon-Nucleon S-wave scattering lengths

arxiv:nucl-th/ v2 21 Dec 1999

Effective Field Theory for Cold Atoms I

Nucleon Nucleon Forces and Mesons

Lattice Simulations with Chiral Nuclear Forces

B K decays in a finite volume

Quantum Monte Carlo calculations of two neutrons in finite volume

Introduction to Quantum Chromodynamics (QCD)

Nuclear structure I: Introduction and nuclear interactions

Effective Field Theory for light nuclear systems

Manifestations of Neutron Spin Polarizabilities in Compton Scattering on d and He-3

Chiral Nuclear Effective Field Theory

Theory of Elementary Particles homework VIII (June 04)

Structure of near-threshold s-wave resonances

Renormalization and power counting of chiral nuclear forces. 龙炳蔚 (Bingwei Long) in collaboration with Chieh-Jen Jerry Yang (U.

Constraints on interaction from the process near threshold. V.F. Dmitriev and A.I. Milstein Budker Institute of Nuclear Physics

Bayesian Fitting in Effective Field Theory

Range eects on Emov physics in cold atoms

Physics 216 Problem Set 4 Spring 2010 DUE: MAY 25, 2010

Covariant effective field theory (EFT!)

Comparative study of scattering by hard core and absorptive potential

Fully Perturbative Calculation of nd Scattering to Next-to-next. Next-to-next-to-leading-order

Renormalization group methods in nuclear few- and many-body problems

EFT as the bridge between Lattice QCD and Nuclear Physics

Donoghue, Golowich, Holstein Chapter 4, 6

Towards Faddeev-AGS equations in a Coulomb basis in momentum space

July 19, SISSA Entrance Examination. Elementary Particle Theory Sector. olve two out of the four problems below

Theory of Elementary Particles homework XI (July??)

arxiv:nucl-th/ v4 6 Mar 2000

The non-perturbative N/D method and the 1 S 0 NN partial wave

arxiv: v1 [nucl-th] 31 Oct 2013

Week 3: Renormalizable lagrangians and the Standard model lagrangian 1 Reading material from the books

Vacuum Energy and Effective Potentials

Pionless EFT for Few-Body Systems

2. Hadronic Form Factors

5 Infrared Divergences

Nuclear Forces / DFT for Nuclei III

NUCLEAR FORCES. Historical perspective

National Nuclear Physics Summer School Lectures on Effective Field Theory. Brian Tiburzi. RIKEN BNL Research Center

Charge exchange reactions and photo-nuclear reactions

Generalized Parton Distributions in PT

Universality in Halo Systems

Few Body Methods in Nuclear Physics - Lecture I

Electric Dipole Moment of Light Nuclei. Iraj R. Afnan. (The Flinders University of South Australia) Happy Birthday Tony

The 1/N c Expansion in Hadron Effective Field Theory

Isospin breaking in pion deuteron scattering and the pion nucleon scattering lengths

MICROSCOPIC OPTICAL POTENTIAL FROM NN CHIRAL POTENTIALS. Carlotta Giusti Università and INFN, Pavia. Matteo Vorabbi (TRIUMF) Paolo Finelli (Bologna)

Coupled-channel Bethe-Salpeter

What do g 1 (x) and g 2 (x) tell us about the spin and angular momentum content in the nucleon?

HALO/CLUSTER EFFECTIVE FIELD THEORY. U. van Kolck

The 1/N expansion method in quantum field theory

Gravitational radiation

Introduction to Perturbative QCD

Lecture 5 Krane Enge Cohen Williams

Hadronic Weak Interactions

Effective Field Theory

arxiv: v1 [nucl-th] 23 Feb 2016

arxiv: v1 [cond-mat.quant-gas] 23 Oct 2017

FINAL EXAM PHYS 625 (Fall 2013), 12/10/13

Nuclear Structure and Reactions using Lattice Effective Field Theory

arxiv:nucl-th/ v1 15 Mar 2002

Compound Nucleus Reactions

National Nuclear Physics Summer School Lectures on Effective Field Theory. Brian Tiburzi. RIKEN BNL Research Center

Chapter 10: QUANTUM SCATTERING

Weakly-Bound Systems in Atomic and Nuclear Physics March 2010

strong coupling Antonio Vairo INFN and University of Milano

Transcription:

C.A. Bertulani, Texas A&M University-Commerce in collaboration with: Renato Higa (University of Sao Paulo) Bira van Kolck (Orsay/U. of Arizona) INT/Seattle, Universality in Few-Body Systems, March 10, 014 1

probe: f(x) monopole: dipole: quadrupole: controlled precision

Scattering amplitude f( θ) = ( l +1)P l ( cosθ) l Bethe, Peierls, 1935 Bethe, 1949 T-matrix T l ( k) T l ( k) = 1 k eiδ l ( k ) sinδ l ( k) = 1 kcot δ l k ( ) ik k l+1 cot δ l = 1 a l + 1 r l k l 4 k 4 +! Effective Range Expansion (ERE) monopole : (scattering length) dipole : (effective range) quadrupole : (shape parameter) u( r) ~ k( r a) a ~ R 1+ 1 L R ( ) 1 r l ~ u asymp ( r) u r [ ( )] dr! sharp surface (L = logarith. der.) 3

4

1 S 0 nn channel 1 S 0 np channel 3 S 1 np channel u 0 ( r) ~ e ikr S 0 ( k)e ikr S 0 ~ i { { { a 0 nn = 18.8fm r 0 nn =1.7 fm ( ) = 3.7fm ( ) =.73 fm a 0 np I =1 r 0 np I =1 ( ) = 5.74fm ( ) =1.73 fm a 0 nn I = 0 r 0 nn I = 0 1/a + r 0 k / ik 1/a r 0 κ / + κ = 0 κ = 0.137 fm -1 ; E B =! κ pole on imaginary axis (k = iκ) m N =.3 MeV a > 0 particularly large scattering lengths a >> r NN ~ 1fm (unnatural) existence of a bound state (deuteron) (deuteron) 5

small difference from a 0 nn = -18.8 fm due to m n m p 6 Bethe, 1949 Jackson, Blatt, 1950 e ikr, e ikr F( kr), G( kr) F ~ C [ η 1 r /a B +! ] ( ) 1/kr + η( h η + γ 1+ lnr /a ) B +! G ~ 1/C η [ ] match logarithimic derivative: kcot δ C η + a B ~ 1 R 1+ 1 L R ( ) h η ln a B R = 1 a S + γ 1 definition of pp-scatttering length, a C : k cot δ C η + h a η = 1 +! B a C γ = 0.57715, a B =1/mα, η =1/ka B C η = πη/ e πη 1 ( ) ( ), h η = ReH iη H( x) = ψ(x) +1/x ln x 1 a S = 1 a C a B ln a B R +1 γ a C = a 0 pp = 7.8fm r 0 pp =.83 fm a S = 17 fm ~ a 0 nn

Invariance: (a) parity, (b) Galilean, (c) time reversal, (d) particle number L EFT ~ N + i t + m N N + µ π-less EFT N T = ( p n) = isopin doublet; 4 D C 0 ( N + N) + C! = " " # + # [ ( ) + h.c.+" ] 8 N+ N N! + N δ( r) + higher derivatives of δ( r) µ = arbitrary mass to make C n n same dimension for any D Feynman rules: C 0 C = i ( µ /) 4 D C 0 = i ( µ /) 4 D C k { is N = i q 0 q /m + iε Weinberg, 1991 it tree = i ( µ /) 4 D C 0 i ( µ /) 4 D C k +! ( ) 4 D C n k n = i µ / n =0 Short-range physics (quarks, gluons) encoded in C 0, C, 7

(E/; k) (E/+q 0 ; k+q) C i q C j = i ( µ /) 4 D C i C j I i+ j ( ) 4 D dd 1 q I n = µ / (E/; -k) ( π) D 1 (E/-q 0 ; -k-q) q n residues + minimal subtraction scheme* E q /m N + iε ; m NE = k I MS n = i m N k 4π n +1 + +!!! T = T tree + T loops = C l k l 1+ l m i m N 4π C m k m + i m C n k n N C 4π m k m C n k n +! m,n = n 1+ i m N 4π k C k n n n * MS = subtract any 1/(D - 4) pole before taking the D " 4 limit. 8

exp( iθ) = cosθ + isinθ mathematical jewel for physicists (Feynman Lectures of Physics) 1+ x + x +! = 1 1 x mathematical jewel for quantum field theorists M hi ~ m π C n ~ 4π 1 m N n +1 M hi higher derivative contact terms suppressed naturalness: physical parameters with dimension (mass) d scale as (M hi ) d. C 0 I 0 ~ C 0 m N 4π k ~ k M hi loops also suppressed EFT series perturbative: can be organized in powers of k/m hi 9

T EFT = C 0 1 i m N 4π C 0k T ERE = 4π a 1 iak a ar 0 k +! m N m N 4π C 0 C C 0 k +! C 0 ~ 4π m N a valid for C ~ C 0 ar 0 a, r n ~ 1 M hi (natural case) in general C n ~ 4π 1 m N M hi n M hi 10

deuteron, halo nuclei T expansion in terms of ka fails for k ~ 1/a " use ERE keeping all orders in ka : T eff.range = 4π 1 m N 1/a + ik 1+ r 0 / 1/a + ik k + van Kolck, 1997 Gegelia, 1998 Kaplan, Savage, Wise, 1998 ( r 0 /) k 4 +! ( 1/a + ik) To match with above EFT expansion scale as (k -1, k 0, k 1, ) 1 Expansion should be: T = Tn ; T n ~ O(k n ) Use PDS regularization* scheme (Kaplan, Savage, Wise): - subtract not only 1/(D-4) poles corresponding to log divergences but also poles of lower dimension D (e.g., I n has a pole at D = 3) by adding a counterterm: δi n = m N m N E ( ) n µ 4π(D 3) n = 1 I PDS n = I n + δi n = k m N 4π µ + ik ( ) * PDS = Power Divergence Subtraction. 11

Using subtraction scheme " T 1 = C 0 1+ C m 0 N 4π ( µ + ik ) 1 T 0 = C k 1+ C m 0 N 4π ( µ + ik ) 1

C 0 ( µ ) = 4π 1 ; C m N µ +1/a µ ( ) = 4π 1 r0 m N µ +1/a ;! T 1 = C k ( ) /4π ( ) m N µ + ik 1+ C m 0 N 4π ( µ + ik ) 3 C 4 k 4 1+ C m 0 N 4π µ + ik ( ) ;!! 4 power counting: C n ~ 4π 1 m N M n hi µ n +1 T-matrix for physics at k ~ 1/a scale: has a pole in k = iκ corresponding to real or virtual bound states κ ~ i/a + higher order corrections T EFT should not depend on µ e.g. µ d dµ 1 T = 0 renormalization group equations µ d dµ C n = m N 4π n m =0 C m C (n m ) with the boundary condition that C 0 (0) = 4πa/m N 13

C 0 ( µ ) = 4π 1 ; C m N µ +1/a µ ( ) = 4π 1 r0 m N µ +1/a ;! T EFT should not depend on µ e.g. µ d dµ 1 T = 0 renormalization group equations µ d dµ C n = m N 4π n m =0 C m C (n m ) with the boundary condition that C 0 (0) = 4πa/m N T 1 = C k ( ) /4π ( ) m N µ + ik 1+ C m 0 N 4π ( µ + ik ) 3 C 4 k 4 1+ C m 0 N 4π µ + ik ( ) ;!! 4 power counting: C n ~ 4π 1 m N M n hi µ n +1 T-matrix for physics at k ~ 1/a scale: has a pole in k = iκ corresponding to real or virtual bound states κ ~ i/a + higher order corrections 14

11 Be 15

J π kev ~ 5 fm 1.9 fm 6 He M hi 4 He J π MeV M lo ~ 1 threshold n + 4 He 16

Goal: use EFT to reproduce ERE for p-wave T ( 1 k, cosθ) = 1πa 1 CB, Hammer, van Kolck, 00 m k cosθ 1+ a 1r 1 k ia 1 k 3 + a 1 ( 4 a r 1 1 l )k 4 +! Natural case, assuming spinless particles most general p-wave interaction: L EFT ~ N + i 0 + N + C p m 8 N! N! = " # Galilean derivative is( p 0, p) = C C 4 ( ) + ( N! N) C p 4 i p 0 p /m + iε 64 N!! i N ( ) + ( N! i N) + h.c. propagator +" it 1(a ) = ic p k k' it 1(b) = ic 4 p k k k' 17

C C Natural case: it 1(c) = ic p = C p ( ) d 4 q ( π) 4 ( ) d 3 q imk' i k j iq k E / q 0 q /m + iε ( π) 3 q i q j q k + iε iq k' E / q 0 q /m + iε it 1(c) = ( p C ) im 6π k k' L + k 3 L 1 + π ik 3 L 1 and L 3 are (ultraviolet) infinities that can be absorbed in C and C 4 a Matching to ERE " T T 1(b) C p 4 = C p r 1 1(a) C p =1π a 1 m 1 + T 1(c) reproduces 3 rd term of ERE expansion 18

Unnatural case (shallow state) p waves: with C p and Cp 4 to all orders Kaplan, 1997 introduce auxiliary field d (dimeron) which reproduces same physics as original EFT Lagrangian L EFT ~ N + i 0 + N + η m 1 d + i i 0 + 4m Δ 1 d i + g 1 4 d + i N! N [ ( ) + h.c. ] +" 1- parameters η 1 = ±1, g 1 and Δ 1 fixed from matching - advantage: get quicker to the answer, appropriate for large a s dimeron propagator: id 0 ( 1 p 0,p) ij = Feynman rules: nucleon-dimeron vertex: V N d = g 1 ( 4 p 1 p ) iη 1 δ ij p 0 p /4m Δ 1 + iε 19

self-energy Σ 1 full dimeron propagator: mg iσ 1 = iδ 1 ij 1π π L 3 + π L 1( mp 0 k /4) + i( mp 0 k /4) 3 / infinite constants absorbed into g 1 and Δ 1 id 0 1 = id 0 1 + id 0 1 ( Σ 1 )id 0 1 +! = id 1 0 1 Σ 1 D 1 0 attach external legs to full dimeron propagator " T (p wave) EFT = 1π R m k 1πΔ η 1 1 R m g 1 ( ) η 1 1πΔ 1 R ( ) k ik m g 1 R With renormalized parameters g R, Δ R Now match to T (p wave) EFE = 1π m k 1 + r 1 a 1 k ik 3 1 to get η 1R, g 1 R and Δ 1 R 0

for a 1, r 1 < 0 (e.g., n + 4 He) ( ) 1 r 1κ a 1 iκ3 = 0; κ 1 = iγ 1 ; κ ± = i γ ± i γ bound-state resonance δ 1 = 1 EB Γ( E) arctan arctan E B E E 0 E = k m ; ( ) ; E 0 = γ + γ m ; Γ( E) = 4γ E m ; B = γ 1 m 1

CB, Hammer, van Kolck, 00 Partial wave l ± a i± [fm 1+l ] r i± [fm 1-l ] P l± [fm 3-l ] 0 +.4641(37) 1.385(41) -- 1 - -13.81(68) -0.419(16) -- 1 + -6.951(3) -0.8819(11) -3.00(6) n + 4 He: p 3/ resonance - shallow: ~ 1 MeV - has to be treated nonperturbatively - p 1/ weak " perturbatively - s 1/ also perturbatively neutron spin ( ) ; T = π F + i σ! n ˆ G m 0 Arndt, Roper, 1973 dσ dω = F( θ) + G( θ) F(k,θ) = l 0 [(l +1)f l+ (k) + lf l (k)] P l ( cosθ) G(k,θ) = [ f l+ (k) f l (k)] l 1 P 1 l ( cosθ) f l± = 1 k cot δ l± ik

parity- and time-reversal-invariant Lagrangians: L LO = φ + i 0 + φ + N + i m 0 + N + η α m 1+ t + i 0 + N m α + m N [ ] + h.c. r t + S + Nφ + g 1+ t + S + N φ ( N)φ [ ( ) + h.c. ] { } [ ] + g' 1+ t + i 0 + L NLO = η 0+ s + [ Δ 0+ ]s + +g 0+ s + Nφ + φ + N + s notation: s, d, t = s 1/, p 1/, p 3/ ϕ = 4 He scalar field S i = x 4 spin-transition matrices ( ) Δ 1+ ( ) m α + m N t t S i S j + = 3 δ ij i 3 ε ijk σ k, S i + S j = 3 4 δ ij 1 6 J i { 3 / 3 /,J } j + i 3 ε J 3 / ijk k J i 3 /,J j 3 / [ ] = iε ijk J k 3 / generators of the J = 3/ representation of the rotation group 3

α and nucleon propagators (,a,b = spin, α,β = isospin) is φ ( p 0,p) = Dimeron propagators 1 p 0 p /m α + iε, is p,p ab iδ N( 0 ) αβ δ ab αβ = p 0 p /m N + iε 0 id 1+ 0 id 1 ab iη ( p 0,p) 1+ δ αβ δ ab αβ = p 0 p /(m N + m α ) Δ 1+ + iε, id 0 ab 0+ ( 0,0) αβ ab ( p 0,p) αβ = 0 id0+ ( 0 + 1 ab ) αβ = iη 0+δ αβ δ ab Δ 0+ Leading contribution for k ~ M lo is ~ 1π/mM lo solely from the 1+ partial wave with the scattering-length and effective-range terms included to all orders. NLO order correction suppressed by M lo /M hi and fully perturbative. 1 partial wave still vanishes at NLO. 4

1+ dimeron propagator, using 0 id 1+ ab ( p 0,p) αβ = iη1+ δ αβ δ p ab p 0 m α + m N id = id 1 Σ 1 D + attaching the external particle lines (m 0 = reduced mass) ( ) Δ 1+ + η µg 1+ 1+ 6π ( m 0 ) 3 / p p 0 + m α + m N ( ) iε 3 / + iε 1 T LO = π k cosθ + i! 6πΔ ( σ n ˆ )sinθ η 1+ 3π m 1+ η 0 m 0 g 1+ 1+ m 0 g k ik 3 1+ 1 Matching to ERE: m a 1+ = η 0 g 1+ 6π 1+ ; r 6πΔ 1+ = η 1+ 1+ m 0 g 1+ g 1+, Δ 1+, sign η 1+ in terms of a 1+ and r 1+ F LO = k cosθ 1/a 1+ + r 1+ k / ik 3, G LO = k cosθ 1/a 1+ + r 1+ k / ik 3 5

NLO contributions come from the shape parameter P 1+ and the s-wave scattering length a 0+ T NLO = η g 0+ 0+ + 6π ' g 1+ πδ 0+ m 4 0 g 1+ m a 0+ = η 0 g 0+ 0+ ; P πδ 1+ = 6πg ' 1+ 0+ m 0 g 1+ k 6 ( cosθ + i σ! n ˆ )sinθ ( 1/a 1+ r 1+ k / ik 3 ) F NLO = a 0+ + P 1+ 4 k 6 cosθ ( 1/a 1+ + r 1+ k / ik 3 ) G NLO = P 1+ 4 k 6 cosθ ( 1/a 1+ + r 1+ k / ik 3 ) 6

PSA, Arndt et al. 73 scatt length only scatt length only 7

NNDC, BNL Haesner et al. 83 8

δt = C 0 e.g., pp-scattering L EFT ~ N + i t + N C m 0 N + N N d 3 q ( π) 3 ( ) e 1 k + λ E k q = C 0 η π + iln k + O λ λ Kong, Ravndal, 000 ( ) /m N + iε ~ C 0 αm N k = C 0 η ( ) non perturbative for k < αm N external legs strongly influenced by Coulomb repulsion δi 0 ~ η m N 8π 1 ε + ln µ π k +# non perturbative for k < αm N pole at D = 4 " need renorm of C 0 strong interaction also much modified by Coulomb interaction 9

+ T = C 0 C η e iσ 0 + C 0C η e iσ 0 J ( k) +! = C C 0 e iσ 0 0 η 1 C 0 J 0 ( k) d ( ) 3 q = m N ( π) 3 J 0 k = αm N 4π ( ) πη q e πη q 1 ε + H η ( ) 1 ( ) + ln µ π 1 k q + iε 3 αm N (0.577..) µm N 4π pole at D = 4 " need renorm of C 0 use PDS and get rid of pole at D = 3, too. 30

1 a pp µ ( ) = 1 now add: a pp a B C ln µ π +1 3 αm N γ 1 µr 0 [ ] + L = C N+ NN! + N + h.c.+" = Jackson, Blatt, 1950 with renormalization of C 0 : 1 a pp µ ( ) = 4π m N C 0 ( µ ) + µ 15.0-1/a 1/a pp pp (MeV) 10.0 5.0 0.0 C 0 + C C 0 5.0 0.0 80.0 140.0 00.0 µ (MeV) µ (MeV) a ( pp µ = m ) π = 9.9 fm a exp ( pn µ = m ) π = 3.7 fm Kong, Ravndal, 000 31

L Nα Higa, CB, van Kolck, 014 LO = φ + id 0 + D φ + N + id m 0 + D N + ς α m 0+ s + [ Δ 0+ ]s α D + ς 1+ t + id 0 + ( m α + m N ) Δ 1+ t 1 4 F µνf µν { [ ] + h.c. r[ t + S + D( Nφ) + h.c. ]} + g 1+ t + S + ndφ ( DN)φ [ ] + g 0+ s + Nφ + φ + N + s - t and s = dimeron fields coupling Nα in P 3/ and S 1/ - with leading-order coupling constants g 1+ and g 0+ - S i = x 4 spin-transition matrices between J = 1/ and J = 3/ - sign variables ζ 0+, ζ 1+ = ±1 adjusted to reproduce the signs of the respective effective ranges. r = m α m N m α + m N D µ = µ + iez 1+ τ 3 A µ 3

NLO = ς 0+ s + id 0 + L Nα D ( ) Δ 1+ m α + m N s + g ' 1+ t + id 0 + D ( ) m α + m N t 33

k r (MeV) k i (MeV) E R (MeV) Γ R / (MeV) 51.1 9.0 1.69 0.61 p 3/ pα resonance parameters Csoto, Hale, 1997 k p = k r ik i k r ~ M lo ~ 50 MeV, k i ~ M lo /M hi ~ 10 MeV a 0+ (fm) r 0+ (fm) 4.97 ± 0.1 1.95 ± 0.08 S 1/ pα ERE parameters Arndt, Long, Roper, 1997 a 0+ (fm 3 ) r 1+ (fm -1 ) P 1+ (fm) -44.83 ± 0.51-0.365 ± 0.013 -.39 ± 0.15 P 1/ pα ERE parameters P 1+ /4 ~ r 0+ / ~ 1/M hi " natural a 0+ ~ 1/M lo, a 1+ ~ 1/M lo 3 and r 1+ / ~ M lo " fine tuned 34

T 0+ = π µ C η e iσ 0 1/a 0+ k C H η ( ) 1 r 0+k / ( ) 1/a 0+ k C H η now pα reduced mass k C = Z p Z α α em µ T 1+ = π µ C (1) η e iσ 1 k P 1+ ( θ) 1/a 1+ + r 1+ k / k C H η ( ) 1+ P k 4 1+ /4 ( ) 1/a 1+ + r 1+ k / k C H (1) η C (1) η = ( 1+ η )C η H (1) ( η) = k ( 1+ η )H( η) k C = Z α Z p µα P 1+ ( θ) = cosθ + σ! n ˆ sinθ k θ k T (LO) = T 0+ + T 01 n = k k' k k' 35

T NLO pα = π µ r 0+k (0) ( C η ) e iσ 0 + P 1+k [ 1/a 0+ k C H( η) ] 4 4 (1) ( C η ) e iσ 1 k P 1+ θ ( ) 1/a 1+ + r 1+ k / k C k ( + k C )H η [ ( )] Matching to ERE: (R) µg a 1+ = ζ 1+ 1+ 6πΔ, r = ζ (R) 1+ 1+ 1+ 6π µ g, and P = 6πg ' 1+ (R) 1+ 1+ µ 3 g 1+ (R) p 3/ channel (R) µg a 0+ = ζ 0+ π 0+ (R), and r πδ 0+ = ζ 0+ 01+ µ g 0+ s 1/ channel (R) 36

S 1/ pα ERE fits with EFT S 1/ a 0+ (fm) r 0+ (fm) LO 7.4 + 8.0. - NLO 4.81 + 0.05 0.1 1.7 + 1.3 0.8 P 1/ pα ERE fits with EFT P 3/ a 1+ (fm 3 ) r 1+ (fm -1 ) P 1+ (fm) LO -58.0 + 11.0 9.0-0.15 + 0.14 0.09 - NLO -44.5 + 1.6 0.1-0.40 + 0.04 0.10 -.8 + 1.0 1.8 P 3/ pα ERE resonance fits with EFT P 3/ k r (MeV) k i (MeV) E R (MeV) Γ R / ( MeV) LO -50.6 + 1..5-10.3 + 1.4 0.8 1.64 + 0.09 0.18 0.70 + 0.1 0.09 NLO -50.7 + 0.5 0.6 9.40 + 0.01 0.10 1.66 + 0.04 0.04 0.63 + 0.01 0.0 37

EFT results for S 1/ and P 3/ scattering phase shifts at LO (dotted) and NLO (solid), compared against the partial wave analysis (diamonds). 38

EFT at LO (dotted) and NLO (thick solid) for pα elastic crosssection at θ lab = 140 0, compared against the partial wave analysis (thin solid) and measured data points. 39

Recent results for pα system: 1 We include P-waves with resonance and Coulomb interactions. - We perform an expansion of the P 3/ amplitude around the resonance pole to extract the resonance properties directly from a fit to the phase shift. 3- Our results at LO and NLO exhibit good convergence and the resonance energy and width are consistent with the ones using the extended R-matrix analysis. 4- Comparison with the differential cross-section at 140 o reassures the consistency of the power counting, with P 1/ contribution showing up only for proton energies beyond 3.5 MeV. 5 Final adjustments necessary: a shallow bound state appears in the s-wave "unitary correction necessary in the absence of Coulomb might need test. 40

41

T 1+ = π µ For P 3/ resonance amplitude " resonance pole expansion 1+ r 1+ k k p r 1+ ( ) C (1) η e iσ 1 k P 1+ θ H (1) k k ( ) k C H (1) C k k p ( ) /4 P 1+ k k p k ( ) k C H (1) C k H (1) k C k p k C k p r 1+ = k r { L i ik i P 1+ } { k C H (1) k C /k p LO { NLO L i, L r defined at the pole from ( ) = k r 3 L r + ik r k i L i = k r L i k rp 1+ r 1+ 1 k i k k r L i k rp 1+ r { { LO NLO 1 = k 3 a r L r + L i 1 k i 1+ k r k rp 1+ 4 1 k i k 3 k r L r + L i k rp 1+ r 4 { LO { NLO 4