x = π m (a 0 + a 1 π + a 2 π ) where a i R, a 0 = 0, m Z.

Similar documents
Local Fields. Chapter Absolute Values and Discrete Valuations Definitions and Comments

Material covered: Class numbers of quadratic fields, Valuations, Completions of fields.

Introduction to Arithmetic Geometry Fall 2013 Lecture #7 09/26/2013

Absolute Values and Completions

MA257: INTRODUCTION TO NUMBER THEORY LECTURE NOTES

Chapter 8. P-adic numbers. 8.1 Absolute values

Algebraic Number Theory Notes: Local Fields

NOTES ON DIOPHANTINE APPROXIMATION

8 Complete fields and valuation rings

Introduction to Arithmetic Geometry Fall 2013 Lecture #5 09/19/2013

FILTERED RINGS AND MODULES. GRADINGS AND COMPLETIONS.

p-adic fields Chapter 7

Places of Number Fields and Function Fields MATH 681, Spring 2018

Algebraic function fields

ABSOLUTE VALUES AND VALUATIONS

MATH 205B NOTES 2010 COMMUTATIVE ALGEBRA 53

LOCAL FIELDS AND p-adic GROUPS. In these notes, we follow [N, Chapter II] most, but we also use parts of [FT, L, RV, S].

A BRIEF INTRODUCTION TO LOCAL FIELDS

Lecture Notes Math 371: Algebra (Fall 2006) by Nathanael Leedom Ackerman

In Theorem 2.2.4, we generalized a result about field extensions to rings. Here is another variation.

The p-adic numbers. Given a prime p, we define a valuation on the rationals by

EXTENSIONS OF ABSOLUTE VALUES

p-adic Analysis Compared to Real Lecture 1

1 Absolute values and discrete valuations

February 1, 2005 INTRODUCTION TO p-adic NUMBERS. 1. p-adic Expansions

Real Analysis Prelim Questions Day 1 August 27, 2013

LECTURE 2. Hilbert Symbols

OSTROWSKI S THEOREM FOR Q(i)

= 1 2x. x 2 a ) 0 (mod p n ), (x 2 + 2a + a2. x a ) 2

Valuations. 6.1 Definitions. Chapter 6

p-adic Analysis in Arithmetic Geometry

Number Theory Fall 2016 Problem Set #6

MASTERS EXAMINATION IN MATHEMATICS SOLUTIONS

Introduction to Arithmetic Geometry Fall 2013 Lecture #24 12/03/2013

Part III. x 2 + y 2 n mod m

Section III.6. Factorization in Polynomial Rings

Homework 2 - Math 603 Fall 05 Solutions

THE P-ADIC NUMBERS AND FINITE FIELD EXTENSIONS OF Q p

Problem 1. Characterizing Dedekind domains (64 points)

12 Ramification, Haar measure, the product formula

ZEROES OF INTEGER LINEAR RECURRENCES. 1. Introduction. 4 ( )( 2 1) n

Factorization in Polynomial Rings

OSTROWSKI S THEOREM. Contents

Immerse Metric Space Homework

15 Dirichlet s unit theorem

Math 547, Exam 2 Information.

Quaternion algebras over local fields

1/30: Polynomials over Z/n.

Factorization in Integral Domains II

be any ring homomorphism and let s S be any element of S. Then there is a unique ring homomorphism

The p-adic Numbers. Akhil Mathew

1 Topology Definition of a topology Basis (Base) of a topology The subspace topology & the product topology on X Y 3

NOTES ON FINITE FIELDS

Algebraic Number Theory

Nonarchimedean Local Fields. Patrick Allen

Discrete valuation rings. Suppose F is a field. A discrete valuation on F is a function v : F {0} Z such that:

Introduction to Arithmetic Geometry Fall 2013 Lecture #2 09/10/2013

Algebraic Geometry Spring 2009

COMPLEX VARIETIES AND THE ANALYTIC TOPOLOGY

Gauss s Theorem. Theorem: Suppose R is a U.F.D.. Then R[x] is a U.F.D. To show this we need to constuct some discrete valuations of R.

Math 210B. Artin Rees and completions

Definitions. Notations. Injective, Surjective and Bijective. Divides. Cartesian Product. Relations. Equivalence Relations

Homework 8 Solutions to Selected Problems

MAT 570 REAL ANALYSIS LECTURE NOTES. Contents. 1. Sets Functions Countability Axiom of choice Equivalence relations 9

Quadratic reciprocity (after Weil) 1. Standard set-up and Poisson summation

Math 209B Homework 2

Notes on Primitive Roots Dan Klain

MATH 115, SUMMER 2012 LECTURE 12

Course 311: Michaelmas Term 2005 Part III: Topics in Commutative Algebra

1 Adeles over Q. 1.1 Absolute values

The p-adic Numbers. Akhil Mathew. 4 May Math 155, Professor Alan Candiotti

7 Orders in Dedekind domains, primes in Galois extensions

Proof. The sufficiency has already been noted, so the only issue is necessity. Consider the binomial theorem

SPRING 2006 PRELIMINARY EXAMINATION SOLUTIONS

An Introduction to Rigid Analytic Geometry

RINGS: SUMMARY OF MATERIAL

MAT 544 Problem Set 2 Solutions

Section 33 Finite fields

g(x) = 1 1 x = 1 + x + x2 + x 3 + is not a polynomial, since it doesn t have finite degree. g(x) is an example of a power series.

CLASS FIELD THEORY WEEK Motivation

Algebraic Number Theory II: Valuations, Local Fields and Adeles. Pete L. Clark

INVERSE LIMITS AND PROFINITE GROUPS

Elliptic Curves Spring 2015 Lecture #7 02/26/2015

Quadratic reciprocity (after Weil) 1. Standard set-up and Poisson summation

EXAMPLES OF PROOFS BY INDUCTION

Factorization in Polynomial Rings

FACTORIZATION OF IDEALS

NONSINGULAR CURVES BRIAN OSSERMAN

Real Analysis Notes. Thomas Goller

Zair Ibragimov CSUF. Talk at Fullerton College July 14, Geometry of p-adic numbers. Zair Ibragimov CSUF. Valuations on Rational Numbers

Introduction to Topology

Algebra Exam Fall Alexander J. Wertheim Last Updated: October 26, Groups Problem Problem Problem 3...

MH 7500 THEOREMS. (iii) A = A; (iv) A B = A B. Theorem 5. If {A α : α Λ} is any collection of subsets of a space X, then

Formal Modules. Elliptic Modules Learning Seminar. Andrew O Desky. October 6, 2017

Extension theorems for homomorphisms

Topological properties

MATH 51H Section 4. October 16, Recall what it means for a function between metric spaces to be continuous:

Notions such as convergent sequence and Cauchy sequence make sense for any metric space. Convergent Sequences are Cauchy

Section IV.23. Factorizations of Polynomials over a Field

1 Rings 1 RINGS 1. Theorem 1.1 (Substitution Principle). Let ϕ : R R be a ring homomorphism

Transcription:

ALGEBRAIC NUMBER THEORY LECTURE 7 NOTES Material covered: Local fields, Hensel s lemma. Remark. The non-archimedean topology: Recall that if K is a field with a valuation, then it also is a metric space with d(x, y) = x y. The topology has a basis of open neighborhoods given by B(x, ǫ) = {y K x y < ǫ}. If the valuation is nonarchimedean, then this metric space or topology is rather bizarre. For instance, the open balls don t have a unique center: in fact, if we take any y B(x, ǫ), then y is a center of the ball as well, i.e. B(x, ǫ) = B(y, ǫ)! To see this, use the strong triangle inequality d(z, x) < ǫ and d(y, x) < ǫ d(z, x) < ǫ so that B(x, ǫ) B(y, ǫ) and similarly, B(y, ǫ) B(x, ǫ). Note that the set D(x, ǫ) = {y K x y ǫ} is a closed set, but it is not necessarily the closure of B(x, ǫ) (see the next remark). Remark. If the norm is discrete as well as nonarchimedean, then things get even stranger. Suppose x = c v(x) for some c > 1 and a normalized exponential valuation v. Then the set B(x, ǫ) can be identified with {y K v(x y) > log c (ǫ)}. Since the valuation is discrete and integer-valued, it s easy to see that v(x y) > log c (ǫ) is equivalent to v(x y) log c (ǫ) + 1 = δ, say. Therefore B(x, ǫ) = D(x, δ) is closed. Hence K is disconnected, and the same argument shows that any subspace of K containing more than one point is disconected. In other words, K is totally disconnected. Proposition 1. Let K be a field with a discrete valuation v, and o its valuation ring, p the maximal ideal. Let K be the completion of K with respect to v and ˆo, p ˆ the valuation ring and maximal ideal of v. ˆ Then ˆo/ˆ p = o/p (and in fact, ˆ p r o/p r o/ˆ = for r 1). Proof. We have a map o ô ô/pˆ and the kernel of this composition consists of all elements x of o which are in p, so those which have ˆv = v(x) 1. In other words, the kernel is p. So o/p o/ˆ ˆ p and we just need to see that the map is surjective. Let 0 = x ô be the (limit of) the sequence {a n } in K. Now because 1 lim n a n = a m for m large enough, it follows that the sequence a n eventually lies in o. Now choose N large enough such that v(a n a N ) 1 for n N. Then x = a N + y where y = lim(a n a N ) lies in pˆ, by definition. 1

2 LECTURE 7 NOTES Therefore ô = o + pˆ proving the surjectivity. A similar proof works for the more general statement. Example. If we start with K = Q with its p-adic valuation v p (x) = power of p dividing x, then the completion is called the field of p-adic numbers Q p. Any nonzero element Q p can be written as an infinite convergent series p k (a 0 + a 1 p + a 2 p 2 +... ), with k Z and a 0, a 1, {0, 1,..., p 1}. More generally, we have the following description. Proposition 2. Let R o be a system of representatives for κ = o/p, which is usually taken to include 0 for convenience. Then every 0 = x K ˆ has a unique representation as a convergent series where a i R, a 0 = 0, m Z. x = π m (a 0 + a 1 π + a 2 π 2 +... ) Proof. Since π is also a uniformizer of the DVR ô, let x = π m u, where u ô. Since ô/pˆ = o/p, the class u mod pˆ has a unique representative a 0 R, a 0 0. So u = a 0 + πb 1, with b 1 ô. Assume by induction we have u = a 0 + a 1 π + a 2 π 2 + + a n 1 π n 1 + π n b n with b n ô, and let a n be the representative in R of the residue class of b n mod ˆp to continue. So we get ai π i which is easily seen to be convergent and unique. Remark. The valuation ring Z p of Q p can be thought of as the collection of all the Z/p n Z together. Any element of Z p determines a compatible collection of elements of Z/p n Z and vice versa. In formal terminology, Z p is the inverse limit of the Z/p n Z. Note that, for instance, every prime q = p is invertible in Z p ; in fact, it is already invertible in the valuation ring of Q with respect to p. The completion Kˆ of K with respect to the discrete valuation v is a complete metric space. We say that a field K is a complete discretely valued field (or CDVF for short) if it is complete with respect to the discrete valuation specificied. Exercise. Two valuations are equivalent iff they define the same topology on K. Example. In Q p, a basis of neighborhoods of 0 is given by p n Z p, n Z. These get smaller as n increases. Lemma 1. Let K be a CDVF such that κ = o/p is finite. Then o is compact and K is locally compact. Proof. For a metric space, compactness is equivalent to sequential compactness. So let {a n } be a sequence in o. Write a n = a n0 + a n1 π + a n2 π 2 +...

ALGEBRAIC NUMBER THEORY 3 for every n, where a ni are elements of a system of representatives R o of κ, which is finite. Since the values taken by the sequence {a n0 } n q lie in a finite set R, some value must be taken infinitely often, say by some subsequence {a n } where a n = a f(n) for some increasing function n. Then looking at the values a n1 we refine further to a sequence {a n } and so on. It s clear that the sequence {a (n) n } will converge, and it is a subsequence of the original sequence. Example. In particular, Z p is compact and Q p is locally compact. Definition 1. Let K p be the completion of a number field K with respect to the nonarchimedean valuation v p corresponding to a prime p of the ring of integers O K. (Recall that v p (x) is the power of p dividing the principal fractional ideal (x) if 0 = x K.) These fields K p are called nonarchimedean local fields. The archimedean local fields are R and C. Theorem 1 (Ostrowski). Let K be a field complete with respect to an archimedean valuation. Then K is isomorphic to R or C, and the valuation is equivalent to the usual archimedean valuation. We will omit the proof of this theorem (see, for instance, Neukirch pg. 125). Remark. Nonarchimedean local fields are always CDVFs. There are also some local fields in positive characteristic (namely the Laurent series F q ((t)) over a finite field), but we will not discuss them in this course. Example. There is no square root of 1 in Q, but there is a square root in Q 5 for instance, which we may see from ( ( 1 5 1 ) ( ) ) 2 5 ( 1) 1/2 = (4 5) 1/2 = 2(1 5/4) 1/2 = 2 1 + 2 +... 2 4 2 4 which converges since 5 < 1 in Q 5, and 2 is invertible. The following lemma is extremely important in the study of CDVFs. Theorem 2 (Hensel s lemma). Let f(x) o[x] be a primitive polynomial, i.e. f(x) = 0 mod p. Suppose that the reduction f(x) of f mod p factors as h(x)g(x), into relatively prime polynomials g, h κ[x]. Then f(x) = g(x)h(x) for some polynomials g, h o[x] such that deg g = deg g and g(x) g(x) mod p, h(x) h(x) mod p. Proof. Let π be a uniformizer. Let deg f = d, deg g = m. Then deg h d m (this is because the degree of f might be smaller than degree of f, if the highest coefficient is divisible by π. We inductively construct polynomials g n and h n of degrees m and at most d m respectively, such that g n+1 g n mod π n+1 h n+1 h n mod π n+1

4 LECTURE 7 NOTES f g n h n mod π n+1. Then it will follow that g n, h n converge to polynomials g, h with the required degree constraints and reductions mod p, such that f = gh. Now, g 0 and h 0 can be taken to be lifts of g, h of the same degrees. Note that by assumption, ag 0 + bh 0 1 mod p for some polynomials a, b o[x]. To do the inductive step, suppose we have already constructed g 0, h 0,...,g n, h n with the desired properties. Let g n+1 = g n + p n π n+1, h n+1 = h n + q n π n+1. The first two conditions are automatically satisfied, and the third condition for n + 1 becomes f g n h n (g n q n + h n p n )π n+1 mod π n+2 since the last term is π 2n+2 p n q n which is divisible by π n+2. By the induction hypothesis, the LHS is divisible by π n+1. Let r n = π n 1 (f g n h n ). Then cancelling π n+1, the third condition becomes r n g n q n + h n p n mod π g 0 q n + h 0 p n mod π. Now we recall that ag 0 + bh 0 1 mod π, so that (ar n )g 0 + (br n )h 0 r n mod π. At this point we would just like to set q n = ar n and p n = br n, but the problem is that the degrees might become too large if we do that. So the final trick is the following: noting that the highest coefficient of g 0 is a unit (because deg g 0 = deg g), we can divide with remainder: br n = qg 0 + p n where deg p n < degg 0 = m. Then we have r n ar n g 0 + br n h 0 ar n g 0 + (qg 0 + p n )h 0 = (ar n + h 0 q)g 0 + p n h 0 mod π. Let q n be the polynomial obtained from ar n + h 0 q by omitting all coefficients divisible by π. Then because g 0 q n + h 0 p n r n mod π and deg r n d (follows from induction hypothesis), deg h 0 p n (d m) + (m 1) = d 1, and the fact that the highest coefficient of g 0 is a unit, forces deg q n d m. This completes the inductive step. Corollary 1. Let f(x) o[x] be such that f(x) has a root α κ with f (α) = 0. Then f(x) has a root x 0 o which reduces to α mod p. 2 Example. If p = 2 and x a mod p has a solution then a is a square in Z p. Example. The polynomial x p 1 1 F p [x] has p 1 distinct solutions. So all the (p 1) st roots of unity exist in Z p. Corollary 2. Let K be a CDVF. Then for every irreducible polynomial f(x) = a 0 + a 1 x + + a n xn K[x]

ALGEBRAIC NUMBER THEORY 5 such that a 0 a n = 0, we have that f := max{ a 0, a 1,..., a n } equals max( a 0, a n ). In particular, if a n = 1 and a 0 o, then f o[x]. Proof. After multiplying by an element of K we may assume w.lo.g. that f o[x] and that f = 1, i.e. that one of a 0, a 1,..., a n is a unit. Let a r be the first among the a 0, a 1,...,a n such that a r = 1. Then f(x) xr (a r + a r+1 x +...a n xn r ) mod p. If max( a 0, a n ) < 1 then 0 < r < n and so f would factor in o[x] by Hensel s lemma, contradicting irreducibility. Now let L/K be a finite (hence algebraic) extension of a CDVF K. Then we ll define a valuation on L which extends that on K L, and show that L is a CDVF with respect to it. Theorem 3. There is a unique extension of a discrete valuation of K to any n finite extension L/K, and it is given by α = NL/K (α), where L/K has degree n. The field L is complete with respect to this valuation. Proof. Let O be the integral closure of o in L. We claim O = {α L N L/K (α) o}. It s clear that α O N L/K (α) o, since o is integrally closed (it s a PID). Conversely, let α L and N L/K (α) o. Let f(x) = xd + a d 1 xd 1 + + a 0 K[x] m be the minimal polynomial of α. Then N L/K (α) = ±a 0 o for m = [L : K(α)], so a 0 o as well. By the irreducibility of f(x), the lemma above implies f(x) o[x], so that α O. n Now for the function α = NL/K (α), it s clear that α = 0 α = 0 and αβ = α β. To prove the stong triangle inequality α + β max( α, β ), it s enough after dividing by α or β to show α 1 α + 1 1 But α 1 is equivalent to α O which implies α+1 O which gives α+1 1, so this is true as well. It s clear from N L/K (a) = a n for a K that the valuation extends that of K. Uniqueness: suppose we have another valuation extending that of K. Then let O, O be the corresponding DVRs and B, B the associated maximal ideals. We will show that the valuations are equivalent, so one is a power of the other. Since they agree on K, they are equal. Suppose α O\O. Let f(x) = xd + a d 1 xd 1 + + a 0 K[x]

6 LECTURE 7 NOTES be the minimal polynomial of α over K. Then a d 1,...,a 0 o by the above. Also α O v (α) < 0 α 1 B. Then 1 = a d 1 α 1 a 0 (α 1 ) d B which is impossible. This shows that O O or in other words x 1 x 1. The reverse implication must also be true: otherwise if x 1 and x > 1, then letting π be a uniformizer for O, we have that y = 1/(π + π 2 x e ) has y < 1 for large enough e, but y > 1. Therefore the valuations are equivalent. Finally, to show that L is complete, notice that L is a finite dimensional vector space over L. Now we use the standard fact that for any field complete with respect to an absolute value, any two norms on a finite dimensional vector space over it are equivalent, i.e. they define the same topology, or equivalently, each norm is bounded by a fixed positive multiple of the other. So the above norm on L must be equivalent (in the topological sense) to the max norm, which is defined as follows: let v 1,..., v n be a basis of L over K. The max norm of an element x = xi v i (x i K), is just max{ x 1,..., x n }. Now it s clear that L is complete with respect to the max norm, since for any Cauchy sequence, each of the coordinates will define Cauchy sequences in K, which comverge because K is complete. So L is complete with respect to the other norm as well.

MIT OpenCourseWare http://ocw.mit.edu 18.786 Topics in Algebraic Number Theory Spring 2010 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.