Intermediate Math Circles February 22, 2012 Contest Preparation II

Similar documents
Intermediate Math Circles February 14, 2018 Contest Prep: Number Theory

2005 Pascal Contest (Grade 9)

The CENTRE for EDUCATION in MATHEMATICS and COMPUTING cemc.uwaterloo.ca Cayley Contest. (Grade 10) Thursday, February 20, 2014

The CENTRE for EDUCATION in MATHEMATICS and COMPUTING cemc.uwaterloo.ca Cayley Contest. (Grade 10) Tuesday, February 27, 2018

Individual Events 1 I2 x 0 I3 a. Group Events. G8 V 1 G9 A 9 G10 a 4 4 B

2012 Fermat Contest (Grade 11)

2008 Cayley Contest. Solutions

BC Exam Solutions Texas A&M High School Math Contest October 24, p(1) = b + 2 = 3 = b = 5.

2009 Math Olympics Level II Solutions

The CENTRE for EDUCATION in MATHEMATICS and COMPUTING cemc.uwaterloo.ca Cayley Contest. (Grade 10) Tuesday, February 28, 2017

THE CALGARY MATHEMATICAL ASSOCIATION 30 TH JUNIOR HIGH SCHOOL MATHEMATICS CONTEST April 26, 2006

The problems in this booklet are organized into strands. A problem often appears in multiple strands. The problems are suitable for most students in

Finding Prime Factors

USA Aime 1983: Problems & Solutions 1

3. Applying the definition, we have 2#0 = = 5 and 1#4 = = 0. Thus, (2#0)#(1#4) = 5#0 = ( 5) 0 ( 5) 3 = 2.

Arithmetic with Whole Numbers and Money Variables and Evaluation (page 6)

UNC Charlotte 2005 Comprehensive March 7, 2005

= How many four-digit numbers between 6000 and 7000 are there for which the thousands digits equal the sum of the other three digits?

CBSE X Mathematics 2012 Solution (SET 1) Section B

State Math Contest Senior Exam SOLUTIONS

Solutions th AMC 10 B 2

2009 Math Olympics Level II

2005 Euclid Contest. Solutions

Instructions. Do not open your test until instructed to do so!

number. However, unlike , three of the digits of N are 3, 4 and 5, and N is a multiple of 6.

SOUTH AFRICAN TERTIARY MATHEMATICS OLYMPIAD


CLASS-IX MATHEMATICS. For. Pre-Foundation Course CAREER POINT

MATHEMATICS IN EVERYDAY LIFE 8

Intermediate Mathematics League of Eastern Massachusetts

3. A square has 4 sides, so S = 4. A pentagon has 5 vertices, so P = 5. Hence, S + P = 9. = = 5 3.

D - E - F - G (1967 Jr.) Given that then find the number of real solutions ( ) of this equation.

2016 Pascal Contest (Grade 9)

The CENTRE for EDUCATION in MATHEMATICS and COMPUTING cemc.uwaterloo.ca Euclid Contest. Tuesday, April 12, 2016

High School Math Contest

of a circle Q that can be inscribed in a corner of the square tangent to two sides of the square and to the circle inscribed in the square?

(A) 20% (B) 25% (C) 30% (D) % (E) 50%

Class X Delhi Math Set-3 Section A

2011 Cayley Contest. The CENTRE for EDUCATION in MATHEMATICS and COMPUTING. Solutions. Thursday, February 24, (Grade 10)

Unofficial Solutions

Twenty-fifth Annual UNC Math Contest First Round Fall, 2016 Rules: 90 minutes; no electronic devices. The positive integers are 1, 2, 3, 4,...

Sample AMC 12. Detailed Solutions MOCK EXAMINATION. Test Sample. American Mathematics Contest 12

2018 LEHIGH UNIVERSITY HIGH SCHOOL MATH CONTEST

Student Activity: Finding Factors and Prime Factors

The CENTRE for EDUCATION in MATHEMATICS and COMPUTING Fryer Contest. Thursday, April 12, 2012

Math 46 Final Exam Review Packet

Math Contest, Fall 2017 BC EXAM , z =

27 th Annual ARML Scrimmage

Some practice questions for CIMC.

02)

The Second Annual West Windsor-Plainsboro Mathematics Tournament

Warm-Up 11 Solutions. Peter S. Simon. December 1, 2004

The Alberta High School Mathematics Competition Solution to Part I, 2014.

High School Math Contest

California 5 th Grade Standards / Excel Math Correlation by Lesson Number

Decimal Addition: Remember to line up the decimals before adding. Bring the decimal straight down in your answer.

UNC Charlotte Super Competition Comprehensive Test Test with Solutions for Sponsors

Chapter 1: Fundamentals of Algebra Lecture notes Math 1010

Solution: By direct calculation, or observe that = = ( ) 2222 = =

2017 OHMIO Individual Competition

The problems in this booklet are organized into strands. A problem often appears in multiple strands. The problems are suitable for most students in

6 SQUARES AND SQUARE ROOTS

2003 Solutions Pascal Contest (Grade 9)

Trigonometric Functions and Triangles

Day What number is five cubed? 2. A circle has radius r. What is the formula for the area of the circle?

SAGINAW VALLEY STATE UNIVERSITY SOLUTIONS OF 2013 MATH OLYMPICS LEVEL II. 1 4n + 1. n < < n n n n + 1. n < < n n 1. n 1.

2015 Canadian Team Mathematics Contest

Divisibility, Factors, and Multiples

MATHS DEPARTMENT SYNA INTERNATIONAL SCHOOL CLASS V 3 X 1 = 3 3 X 2 = 6 3 X 3 = 9 3 X 4 = 12 3 X 5 = 15 3 X 6 = 18 3 X 7 = 21 3 X 8 = 24 3 X 9 = 27

St. Fatima Language Schools

1999 Solutions Fermat Contest (Grade 11)

CHAPTER 1 REAL NUMBERS KEY POINTS

2001 Solutions Pascal Contest (Grade 9)

UNCC 2001 Comprehensive, Solutions

Math Review. Name:

CONTENTS NUMBER SYSTEMS. Number Systems

Intermediate Mathematics League of Eastern Massachusetts

2016 Canadian Intermediate Mathematics Contest

Pre-calculus 12 Curriculum Outcomes Framework (110 hours)

BmMT 2016 Team Test Solutions November 13, 2016

2005 Math Olympics Level I

2008 Pascal Contest (Grade 9)

Math is Cool Championships

2011 Hypatia Contest

CONTENTS COLLEGE ALGEBRA: DR.YOU

BMT 2018 Team Test Solutions March 18, 2018

USA Mathematical Talent Search Round 3 Solutions Year 20 Academic Year

Solutions 2016 AB Exam

RMT 2013 Geometry Test Solutions February 2, = 51.

Intermediate Math Circles February 29, 2012 Linear Diophantine Equations I

2018 Canadian Team Mathematics Contest

2. P = { 0,2,4,6} and { 1,2,4,5} find P Q. A. { 0,6} B. { 2,4} C. {0, 2,4} D. { 0,2,6}

Page 1 of 15. Website: Mobile:

Algebra 2 End of Course Review

MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 5 FEBRUARY 2013 ROUND 1 ALGEBRA 2: ALGEBRAIC FUNCTIONS ANSWERS

Reference Page Math Symbols- + add - subtract x multiply divide = equal % percent $ dollar cent # at degree.

Hyperbolic Geometry Solutions

BHP BILLITON UNIVERSITY OF MELBOURNE SCHOOL MATHEMATICS COMPETITION, 2003: INTERMEDIATE DIVISION

Intermediate Mathematics League of Eastern Massachusetts

SAMPLE. The SSAT Course Book MIDDLE & UPPER LEVEL QUANTITATIVE. Focusing on the Individual Student

Transcription:

Intermediate Math Circles February, 0 Contest Preparation II Answers: Problem Set 6:. C. A 3. B 4. [-6,6] 5. T 3, U and T 8, U 6 6. 69375 7. C 8. A 9. C 0. E Australian Mathematics Competition - Intermediate 9:. D. E 3. C 4. D 5. B 6. D 7. A 8. A 9. A 0. D Problem Set 6 Solutions:. When the sum of each pair is the same, the smallest number in the list must be grouped with the largest number in the list. The smallest number in the list is 9, the largest is 53, and 9 + 53 6. Therefore, the sum of every pair is 6. Since 6 5 47, the number paired with 5 is 47. The answer is C.. See past contest Pascal 005, question 8. 3. First of all, there are 499 positive integers less than 500. Let s first count the numbers less than 500 that are divisible by. All even numbers under 500 are divisible by. There are 498 49 positive even numbers under 500. Next let s count the numbers less than 500 that are divisible by 3. The largest number smaller than 500 that is divisible by 3 is 498, where 498 3 66. Hence there are 66 positive integers under 500 that are divisible by 3. So far we have 499 49 66 85 positive integers that are not divisible by nor 3. But we ve double counted the numbers that are both divisible by and 3. By divisibility rules, we know that if a number is divisible by both and 3, then it is divisible by 6. Therefore, let s add back the numbers that are divisible by 6. The largest number less than 500 divisible by 6 is 498, and 498 6 83. So, there are 83 numbers under 500 that are divisible by 6. Therefore there are a total of 499 49 66 + 83 67 numbers under 500 that are not divisible by or 3. The answer is B.

4. The largest possible interval for S occurs between x y is at a minimum and at a maximum. The minimum value of S occurs at 4 0 6, the maximum value of S occurs at 6 6. Hence the largest possible interval for S is [ 6, 6]. 5. A number is divisible by 36 if it is divisible by all possible combinations of its prime factors, namely 36 3 3. Since the divisibility rules for 4 and 9 are known, we can use the fact that a number is divisible by 36 if it is divisible by both 4 and 9. A number is divisible by 4 if its last digits are divisible by 4. Both 7 and 76 are divisible by 4 so we have choices for U: U or U 6. Case : Consider U If U then the number is 9T 67. A number is divisible by 9 if the sum of its digits is divisible by 9. Then 9T 67 is divisible by 9 only when T 3 since the digit sum 7 is divisible by 9. No other value of T produces a digit sum divisible by 9. Case : Consider U 6 If U 6 then the number is 9T 676. The only choice for T such that 9T 676 is divisible by 9 is T 8 since the digit sum 36 is the only possible sum divisible by 9. No other value of T produces a digit sum divisible by 9.T the possible values for T and U are: U, T 3, and U 6, T 8 6. Let s give a name to these three-digit numbers for easy description, we ll call them completely-odd. There are 5 odd one-digit numbers (namely,3,5,7, and 9). Hence there are 5 choices for the hundred s digit, 5 choices for the ten s digit, and 5 choices for the one s digit. We have a total of 5 5 5 5 completely-odd numbers. Next, we must realize that adding three-digit numbers together is the same as adding the hundreds digits, multiplying by 00, adding the tens digits, multiplying by 0, and adding the ones digits, multiplying by (For example, 53 + 37 00 (5 + 3) + 0 (3 + ) + ( + 7) 848). The in the hundred s digit occurs 5 times (since there are 5 out of the completely-odd numbers with a in the hundred s digit), the in the ten s digit also occurs 5 times, and the in the one s digit also occurs 5. The same goes for the digits 3, 5, 7,

and 9. Hence the sum of all completely-odd numbers is: 5 [00 ( + 3 + 5 + 7 + 9) + 0 ( + 3 + 5 + 7 + 9) + ( + 3 + 5 + 7 + 9)] [5 ( + 3 + 5 + 7 + 9)] (00 + 0 + ) 65 69375 7. See past contest Pascal 005, question 0. 8. All even numbers are divisible by. No odd numbers are divisible by. We will expand 90! and try to divide it by as many times as possible until the quotient is odd, then we know that we can no longer divide by. (Note, a number n divided by, say 8 3, is the same as n ). From to 90, there are 45 even numbers. So all of these are divisible by. Then we can divide 90! by at least 45 times. Performing this operation (dividing by forty-five times) leaves a quotient of (45)(89)(44)(87)...()(3)()(). Then we notice that every 4 of these numbers are still even. Namely, from to 45, we have 44 even numbers left. So we can divide into this quotient another times. We get a new quotient of (45)(89)()(87)(43)(85)()...()(3)()(). Now every 8 numbers is a even number. Namely from to, there are even numbers. So we can divide into this new quotient another times. Carrying on this pattern we get that there are 0 5 more even numbers that occur every 6 numbers; then there are 4 more even numbers that occur every 3 numbers, and finally more even number that occur every 64 numbers. In total, the number of factors of in 90! is 45 + + + 5 + + 86 (i.e. 86 divides 90!). Therefore, the highest exponent n such that n divides evenly into 90! is 86. The answer is A. 9. See past contest Cayley 997, question. 0. See past contest Cayley 998, question. 3

Australian Mathematics Competition - Intermediate 9 Solutions:. (7a + 5b) (5a 7b) 7a + 5b 5a + 7b a + b (D). The sum of angles along a straight line is 80. So, 60 + 0 + 54 + x + x 80 34 + x 80 x 46 x 3 (E) 3. 0 + x 0 x 0 + 4 0 4 0 + 6 0 6 36 4 6 3 (C) 4. Dividing a number n by, say 8 3, is the same as n. How many times can we divide into 000000? We have: 000000 500000 () 500000 50000 () 50000 5000 (3) 5000 6500 (4) 6500 350 (5) 350 565 which is an odd number (6) We ve divided into 000000 six times. That is, 6 divides 000000. The answer is D. 4

5. L of orange fruit juice is equivalent to 000 ml of orange fruit juice. Since the 000 ml contains 0% orange juice, there are 000 0.0 00 ml of orange juice. Let the amount of orange juice to be added be x. Now the mixture contains (00 + x) ml of orange juice and (000 + x) ml of mixture. We want the amount of orange juice to be 50% of the mixture. Therefore, 00 + x 000 + x 0.5 00 + x 0.5 (000 + x) 00 + x 500 + 0.5x 0.5x 400 x 800 The amount of orange juice to be added is 800 ml. The answer is B. 6. One way to approach this problem is by using little strips of paper to represent the rows. We know that there are 4 ways to arrange 3 counters in four spots. If you put each of the ways on a strip of paper, you can rearrange the strips to satisfy the conditions. By doing this, we can see that you can arrange counters in the boxes and satisfy all the conditions required. There are multiple solutions to this problem, but one of them is shown in the diagram below. It is not too difficult to show that 3 is not possible and that more than 0 is possible. You can reduce the possible answers to and quite easily.the answer is D. 5

7. All positive integers less than 000 have either 3 digits, digits or digit. The only digit number whose digit sum is 6 is 6 itself. For two-digit numbers, there are 6 choices for the ten s digit, namely, {6, 5, 4, 3,, }. Each of these choices for the ten s digit has a unique corresponding one s digit. Therefore, there are 6 two-digit numbers whose digit sum is 6. For three-digit numbers, there are 6 choices for the hundred s digit. With each of these choices of the hundred s digit, the remaining digits sum needs to add up to 6 minus the value of hundred s digit. This gives us that the ten s and one s digit must add up to 0,,, 3, 4, or 5, depending on the value of the hundred s digit. Then, by the two-digit number argument, there are respectively,,, 3, 4, 5, or 6 choices for the ten s digit, and each of these choice of the ten s digit correspond to a unique one s digit. Therefore, there are a total of + + 3 + 4 + 5 + 6 such three-digit numbers. Hence the number of positive integers less than 000 whose sum of digits equals 6 is: + 6 + 8. The answer is A. 8. Consider the ratio of John s money compared with Kevin and Robert s combined money. Before gambling, their ratio is 7 :. After gambling, their ratio is 6 : 9. Since 6 : 9 > 7 :, John must have won the $. The winnings came from the combined total of Kevin and Robert. Let 7x be the amount of money John had to start and x be the combined total of Kevin and Robert at the start. Then, 7x + x 6 9 66x 7 63x + 08 3x 80 x 60 So John started with 7x 7(60) $40 dollars. The answer is A. 9. The largest circle that can be drawn in this quarter circle must be an inscribed circle that touches the quarter circle on the arc and the radii. Consider the diagram below. 6

A M Q r O r r B P C From the diagram, we see that OQ AB and OP BC (line from center of circle to a tangent always intersect the tangent at 90 ). Then OBP and OBQ are two identical right-angled triangles, with OP OQ BP BQ r. Then OB has length, by the Pythagorean Theorem, r + r r. Also note that BM is also a radius of the quarter circle. So BM BA BC. But BM OB + OM r + r. Therefore, r + r r( + ) r + + The answer is A. 0. We ll convert 7 0 and 5 into fractions with the same denominator. Namely, 30 < p q < 30 Notice that if q 30, there is not an integer solution for p that satisfies the relationship. Let us multiply the fractions again by, to get: 4 60 < p q < 44 60 Notice that if q 60, then the only integer solution for p is p 43, which satisfies the relationship. The answer is B. 7