Quantum Reduced Loop Gravity: matter fields coupling

Similar documents
Symmetry reductions in loop quantum gravity. based on classical gauge fixings

Loop Quantum Gravity 2. The quantization : discreteness of space

The Effective Equations for Bianchi IX Loop Quantum Cosmology

Cosmological Effective Hamiltonian from LQG. from full Loop Quantum Gravity

Spherically symmetric loop quantum gravity

On deparametrized models in LQG

Problem 1(a): As discussed in class, Euler Lagrange equations for charged fields can be written in a manifestly covariant form as L (D µ φ) L

arxiv: v1 [gr-qc] 16 Oct 2012

Introduction to Loop Quantum Gravity

Cosmological applications of loop quantum gravity

arxiv:gr-qc/ v1 11 Oct 1994

On a Derivation of the Dirac Hamiltonian From a Construction of Quantum Gravity

Interfacing loop quantum gravity with cosmology.

Bianchi I Space-times and Loop Quantum Cosmology

Loop quantum gravity: A brief introduction.

New applications for LQG

Connection Variables in General Relativity

Universe with cosmological constant in Loop Quantum Cosmology

An Introduction to Loop Quantum Gravity with Application to Cosmology

Loop Quantum Gravity. Carlo Rovelli. String 08 Genève, August 2008

Tailoring BKL to Loop Quantum Cosmology

arxiv: v3 [gr-qc] 9 May 2016

Quantum Reduced Loop Gravity I

Degenerate sectors of the Ashtekar gravity

Canonical quantum gravity

Gravitational Renormalization in Large Extra Dimensions

arxiv:gr-qc/ v2 9 Oct 2005

Spin foam vertex and loop gravity

Loop Quantum Cosmology

The Dirac Field. Physics , Quantum Field Theory. October Michael Dine Department of Physics University of California, Santa Cruz

Polymer Parametrized field theory

ECD. Martin Bojowald. The Pennsylvania State University Institute for Gravitation and the Cosmos University Park, PA

Quantum Field Theory I Examination questions will be composed from those below and from questions in the textbook and previous exams

[1] On the measure problem in slow roll inflation and loop quantum cosmology, A. Corichi and A. Karami. Preprint arxiv: [gr-qc].

Canonical Gravity: Spacetime Covariance, Quantization and a New Classical Identity

arxiv: v2 [gr-qc] 10 May 2013

Black holes in loop quantum gravity

Quantum Geometry and Space-time Singularities

How do quantization ambiguities affect the spacetime across the central singularity?

Probing the spacetime fabric:

arxiv: v1 [physics.gen-ph] 17 Apr 2016

Off-shell loop quantum gravity

etc., etc. Consequently, the Euler Lagrange equations for the Φ and Φ fields may be written in a manifestly covariant form as L Φ = m 2 Φ, (S.

Semiclassical analysis of Loop Quantum Gravity

FERMIONS AND BOSONS IN LOOP QUANTUM GRAVITY AND ITS COSMOLOGICAL IMPLICATIONS

arxiv:gr-qc/ v1 6 Mar 1995

Quantum Gravity and Black Holes

Loop Quantum Gravity a general-covariant lattice gauge theory. Francesca Vidotto UNIVERSITY OF THE BASQUE COUNTRY

arxiv: v1 [gr-qc] 5 Apr 2014

Manifestly Gauge Invariant Relativistic Perturbation Theory

Gauge invariant quantum gravitational decoherence

Some analytical results of the Hamiltonian operator in LQG

Mathematical structure of loop quantum cosmology

U(N) FRAMEWORK FOR LOOP QUANTUM GRAVITY: A PRELIMINARY BLACK HOLE MODEL

A possible interpretation of the Barbero Immirzi parameter and its consequences

Electric Dipole Moment of Magnetic Monopole

arxiv: v1 [gr-qc] 2 Oct 2007

Jonathan Engle (Florida Atlantic University), Christian Fleischhack Emanuele Alesci. International LQG Seminar, May 3 rd, 2016

1 Quantum fields in Minkowski spacetime

Emergent symmetries in the Canonical Tensor Model

Loop Quantum Gravity and Its Consistency

2-Form Gravity of the Lorentzian Signature

arxiv:gr-qc/ v2 23 Aug 2004

Quantum Electrodynamics Test

ENTANGLEMENT ON SPIN NETWORKS LOOP QUANTUM GRAVITY

A perturbative approach to DIrac observables

Loop quantum gravity from the quantum theory of impulsive gravitational waves

arxiv:gr-qc/ v2 4 Sep 1998

Covariant loop quantum gravity as a topological field theory with defects

1 The Quantum Anharmonic Oscillator

Understanding big bang in loop quantum cosmology: Recent advances

A note on the principle of least action and Dirac matrices

General Relativity without paradigm of space-time covariance: sensible quantum gravity and resolution of the problem of time

Quantization of Scalar Field

Path integral measure as determined by canonical gravity

Hidden structures in quantum mechanics

Quantum Extension of Kruskal Black Holes

Supersymmetric quantum mechanics of the 2D Kepler problem

arxiv:gr-qc/ v3 19 Jun 2006

Covariant Loop Gravity

Atomism and Relationalism as guiding principles for. Quantum Gravity. Francesca Vidotto

arxiv:gr-qc/ v2 20 Sep 2006

Introduction to the Mathematics of the XY -Spin Chain

Fermion Doubling in Loop Quantum Gravity

Non-abelian statistics

Statistical physics and light-front quantization. JR and S.J. Brodsky, Phys. Rev. D70, (2004) and hep-th/

A loop quantum multiverse?

LQG Dynamics: Insights from PFT

An Invitation to the New Variables with Possible Applications

MP463 QUANTUM MECHANICS

Pedro and the WOLF: the quantum and the vacuum in cosmology

Graviton propagator from LQG

Graviton propagator. Carlo Rovelli. LOOPS05, Potsdam October 2005

Is there any torsion in your future?

Quantum Dynamics. March 10, 2017

(a p (t)e i p x +a (t)e ip x p

BLACK HOLES IN LOOP QUANTUM GRAVITY. Alejandro Corichi

Stability of Black Holes and Black Branes. Robert M. Wald with Stefan Hollands arxiv: Commun. Math. Phys. (in press)

BLACK HOLES IN LOOP QUANTUM GRAVITY. Alejandro Corichi

Hironori Mori (Osaka Univ.)

Transcription:

Quantum Reduced Loop Gravity: matter fields coupling Jakub Bilski Department of Physics Fudan University December 5 th, 2016 Jakub Bilski (Fudan University QRLG: matter fields coupling December 5 th, 2016 1 / 19

Outline 1 Canonical approach to Loop Quantum Gravity Background-independent quantum field theory Gravitational field Scalar field Gauge field 2 Regularization, quantization and reduction Thiemann s method Alesci-Cianfrani s method Illustration of a basic cell state 3 Results Hamiltonian constraint for quantum-gravitational scalar electrodynamics Lattice (constructional and quantum corrections 4 Conclusions and open problems 5 References Jakub Bilski (Fudan University QRLG: matter fields coupling December 5 th, 2016 2 / 19

Background-independent quantum field theory Quantum gravity as the natural regulator of matter quantum field theories ˆF 2 1 (x lim d 3 y χ ε(x y ε 0 ε ˆF (x ˆF (y 3 Matter fields in general relativity S (gr + S (φ + S (A +... = 1 κ + 1 2λ d 4 x gr+ M d 4 x g ( g µν ( µφ( νφ V (φ + M 1 d 4Q M 4 x gg µν g ρσ F I 2 µρ F I νσ +... Jakub Bilski (Fudan University QRLG: matter fields coupling December 5 th, 2016 3 / 19

Gravitational field: Wheeler-DeWitt equation The ADM decomposition results in the Hamiltonian, which is a constraint: ( Ĥ sc (gr 1 ψ(q = 2 q Ĝabcdˆπ abˆπ cd q (3ˆR ψ(q = 0 where G abcd = q acq bd + q ad q bc q ab q cd. After the quantization, canonical operators read: ˆq ab ψ(q = qab ψ(q, ˆπ ab ψ(q = i κ 2 δ ψ(q, δq ab [ˆqab (t, x, ˆπ cd (t, y ] = i κ 2 δc aδ d b δ (3 ( x y. Jakub Bilski (Fudan University QRLG: matter fields coupling December 5 th, 2016 4 / 19

Gravitational field: Ashtekar variables Introducing the Ashtekar variables: Ei a = q ei a, A i a = Γ i a + γk i a, { A i a (t, x, Ej b (t, y } = γ κ 2 δb aδjδ i (3 ( x y, one obtains the total Hamiltonian: H (gr = 1 d 3 x N ( A i tg (gr i κ + N a V (gr a + NH sc (gr, where tha scalar constraint density is given by the formula: H sc (gr = 1 d 3 x 1 ( F i ab (γ 2 + 1ɛ ilm K l ak m b ɛ ijk Ej a κ q E b k The Schrödinger representation reads: Â i a ψ = A i a ψ, Ê a i κ δ ψ = i γ 2 δa i a ψ, [ A i a (t, x, E b j (t, y ] = i γ κ 2 δb aδ i jδ (3 ( x y. Jakub Bilski (Fudan University QRLG: matter fields coupling December 5 th, 2016 5 / 19

Gravitational field: canonical variables and the Hilbert space Holonomies of Ashtekar-Barbero connections and by fluxes of densitized triads: ( h γ = P exp A j a(γ(sτ j γ a (s, E j(s = ɛ pqr dl q dl r E p j (v γ The kinematical Hilbert space is defined as: := H (gr kin Γ H (gr Γ = L 2 ( A, dµal, S l p (v while the states are cylindrical functions of all links l i Γ and they are defined as Ψ Γ,f (A := A Γ, f := f ( h l 1(A, h l 2(A,..., h l L(A for f : SU(2 L C. The basis states, called spin network states and are given by the expression: Ψ Γ,jl,i v (h = h {Γ, j l, i v} = i v D j l (h l v Γ l and the action of the canonical operators reads: ĥ γd j l (h l = h γd j l (h l, Ê id j l (h l = γ κ 2 σ(s, γdj l (h l1 τ id j l (h l2. Jakub Bilski (Fudan University QRLG: matter fields coupling December 5 th, 2016 6 / 19

Scalar field: classical Hamiltonian and discretization Hamiltonian of the scalar field: [ H (φ = Single-point states: Σ t d 3 x N a π aφ + N ( ] λ q q 2 q π2 + 2λ qab aφ b φ + 2λ V (φ v; U ψ := e iψvφv Action of diffeomorphism: w; U ψ v; U ψ := δ w,vδ ψ,ψ ϕ v; U ψ = ϕ(v; U ψ Canonical Poisson brackets: { } φ(x, Π(y = χε(x, y, Π(v := d 3 uχ ε(v, uπ(u Action of basic operators: e iψw ˆφ w v; U ψ = e iψwφw v; U ψ = v w; U ψ ˆΠ(v v; U ψ = i φ(v v; U ψ = ψ v v; U ψ Jakub Bilski (Fudan University QRLG: matter fields coupling December 5 th, 2016 7 / 19

Scalar field: canonical variables and the Hilbert space Kinematical Hilbert space: H (φ kin = { a 1U ψ1 +... + a nu ψn : a i C, n N, ψ i R } U ψ := e i v Σ ψvφv := U ψ U ψ U ψ := δ ψ,ψ H (φ kin := L2 ( RBohr Σ is obtained from the single-point one L 2 ( RBohr, where the Bohr measure is defined as follows: dµ Bohr (φe iψvφv = δ 0,v R Bohr Basic variables: Û ψ U ψ = U ψ+ψ, ˆΠ(V Uψ = ψ v U ψ v V Jakub Bilski (Fudan University QRLG: matter fields coupling December 5 th, 2016 8 / 19

Gauge field: canonical variables and the total Hilbert space Hamiltonian of the gauge field: ( H (A = d 3 x A I t D a Ea I + N a F I ab Eb I + N Q2 Σ t 2 q q ( ab E a I Eb I + Ba I Bb I Natural lattice representation: fluxes and holonomies ( E I (S p ε 2 E a I (v ( δp a, ɛ pqr tr τ I h q r (v Q 2 ε 2 B a I (v V(v, ε δp a, where the expansion h q r = 1 + 1 2 ε2 F qr + O(ε 4 has been applied. The phase space variables: ( h γ = P exp Aa( I γ(s τ I γ a (s γ, E I (S p = ɛ pqr dl q dl r E p I (v S l p (v Total kinematical Hilbert space: H (tot kin = H(gr kin H(φ kin H(A kin Jakub Bilski (Fudan University QRLG: matter fields coupling December 5 th, 2016 9 / 19

Thiemann s method: lattice-regularization Thiemann s trick: ( q Ea i n 2 δv n = = 4 { A i n δei a a, V n}, Ka i = δk nγκ δei a = 2 { A i a, K } γκ Example: gravitational part of the Hamiltonian constraint H (gr sc = 1 κ lim ε 0 25 (γ 2 + 1 γ 3 κ 3 ( 1 d 3 x Nɛ abc 2 3 ( ε 3 γκ tr { h a b h 1 l V, c hl c} + ( { tr h 1 l K, a hl a } { } { h 1 l K, b hl b h 1 l V, c hl c}, where F ab = F j ab τj, Aa = Ai aτ i, τ j = i 2 σj and K = d 3 xk i ae a i. Canonical quantization: {, } 1 [, ], canonical variables operators i Jakub Bilski (Fudan University QRLG: matter fields coupling December 5 th, 2016 10 / 19

Alesci-Cianfrani s method: reduction Canonical variables in the diagonal gauge: E a i = p i δ a i, A i a = c iδ i a Cuboidal lattice: Γ Γ R Reduced group elements: D j m n(h l D j m ±j l (u l l D j l m l m l (h l (D 1 j ±j l n (u l, h l SU(2, where the projected Wigner matrices (SU(2 U(1 read: l D j l m l m l (h l = (D 1 j ±j l m (u l D j m n (h l D j n ±j l (u l = m l, u l D j l (h l ml, u l. The basis element of the Hilbert space after gauge-fixing: j l h l j l j l, m m l, u l m l, u l D j l (h l ml, u l ml, u l jl, m, m l = ±j l. Jakub Bilski (Fudan University QRLG: matter fields coupling December 5 th, 2016 11 / 19

Alesci-Cianfrani s method: Quantum Reduced Loop Gravity The kinematical Hilbert space: R H (gr kin := Γ R H (gr Γ. Reduced states are given by the formula: R Ψ Γ,ml,i v (h = h {Γ, m l, i v} = j l, i v m l, u l l D j l m l m l (h l, m l = ±j l, v Γ where j l, i v m l, u l are reduced (one-dimensional intertwiners. l The scalar product between reduced intertwiners is given by: Γ, ml, i v Γ, m l, i v = δγ,γ δ ml,m m l, u l j l, i l v j l, i v ml, u l. v Γ l Γ Jakub Bilski (Fudan University QRLG: matter fields coupling December 5 th, 2016 12 / 19

Illustration of a basic cell state: a spider state Γ; j l, i v; n l, i v ; U π R = Γ; j l, i v R Γ; n l, i v R Γ; U π R = e iψ x,y,z+1φ x,y,z+1 j (3 x,y,z n (3 x,y,z x direction h (3 x,y,z h (3 x,y,z x direction j (3 x,y,z n (3 x,y,z j (2 j (2 x,y 1,z x,y 1,z h (2 j x,y,z (2 x,y-1,z h (2 j x,y,z (2 x,y,z = e iψ x,y,z+1φ x,y,z+1 e iψ x,y,z+1φ x,y,z+1 e iψ x,y,z+1φ x,y,z+1 n (2 h (2 n (2 x,y 1,z x,y-1,z x,y 1,z n (2 x,y,z h (2 x,y,z n (2 x,y,z j (3 x,y,z 1 n (3 x,y,z 1 Jakub Bilski (Fudan University QRLG: matter fields coupling December 5 th, 2016 13 / 19

Hamiltonian constraint for quantum-gravitational scalar electrodynamics Scalar constraint operator: Ĥ sc Γ; j l, i v; n l, i v ; U π R = (Ĥ(gr sc +Ĥ(A E +Ĥ(A B +Ĥ(φ kin +Ĥ(φ der +Ĥ(φ pot Γ; j l, i v; n l, i v ; U π R Action in a form containing gravitational eigenvalues and matter operators: Ĥ sc Γ; j l, i v; n l, i v ; U π R = N v Ĥ v,sc Γ; j l, i v; n l, i v ; U π R Volume operator v ( (8πγl n ˆV n (v x,y,z Γ; j l, i v R = Vv n 2 3 x,y,z Γ; j l, i v R = P Σ (1 v x,y,z Σ (2 v x,y,z Σ (3 2 v x,y,z Γ; j l, i v R, ( where Σ (i v := 1 (i 2 j v + j (i v e i denotes the mean value of the spin along a direction i. [( J (i,n v = 1 1 8γπlP 2 2 ( j (i v n ( 1 1 + + j (i v e i 2 ( j (i v n ] 1 + j (i v e i j s denote the quantum number around which semiclassical states are peaked Jakub Bilski (Fudan University QRLG: matter fields coupling December 5 th, 2016 14 / 19

Hamiltonian constraint for quantum-gravitational scalar electrodynamics i Ĥ v,sc = 2 3 κγ 2( 8πγlP 2 + 2 5 Q 2 V v + 25 Q 2 Vv 3 ( i=1 3 ( i=1 + 2 17 λ V 3 v [( + 215 V 3 v 3 4 λ 3 i=1 {l i l j l k } J (i, 1 4 v J (i, 1 4 v ɛ ijk tr ( ĥ l i l j ĥ 1 l k ˆV ĥl k + 2 (ÊI ( S i (v 2 + 2 ( J (x, 1 4 v J (y, 4 1 v J (z, 1 4 v J (y, 3 8 v J (z, 8 3 v {l j,l k } i {l l,l m } i 2 ˆΠ2 v + + Vv 2λ ˆV ( φ v + + scalar-electrodynamical interactions ɛ ijk ɛ ilm ĥ l j l k(v ĥl l l m(v + e i( ˆφ v ˆφ v ex e i( ˆφ v+ ex ˆφ 2 v + 2i ( x y y z + z x ( x z ] y x + z y Classical-continuum (large-j limit precisely coincides with the classical expression! Jakub Bilski (Fudan University QRLG: matter fields coupling December 5 th, 2016 15 / 19

Hamiltonian constraint for quantum-gravitational scalar electrodynamics Picture of the QRLG action from: E. Alesci and F. Cianfrani, Int. J. Mod. Phys. D 25, no. 08, 1642005 (2016. Jakub Bilski (Fudan University QRLG: matter fields coupling December 5 th, 2016 16 / 19

Lattice (constructional and quantum corrections Lattice corrections: - gravitational, e.g. h p ( (v = 1 + εap(v + O(ε 2, h q r ( (v = 1 + 1 2 ε2 F qr(v + O(ε 4, -matter field, e.g. pφ(v 1 e i(φ v+ ep φv e i(φv φ v ep, ε 2i Large-j expansion: J (i,n v = 8γπlP 2 n ( (i j v + j (i v e i [ 1 + (n 2(n 1 24 ( j v (i + j (i 2 + O v e i ( ( j (i v 1 + j (i v e i 4 ] Jakub Bilski (Fudan University QRLG: matter fields coupling December 5 th, 2016 17 / 19

Conclusions and open problems Conclusions 1 QRLG allows to construct diffeomorphism invariant matter field theories 2 matrix elements of matter field Hamiltonian constraint are analytic 3 large-j limit approach the classical Hamiltonian at the leading order and gives convergent series of next-to-the-leading-order quantum corrections Open problems 1 construction of semiclassical states for matter fields 2 ambiguity in construction of discrete representations for matter fields 3 different powers of gravitational corrections (representation dependent 4 derivation of gravitational action in terms of the original state space (recoupling of intertwiners 5 studies of phenomenological applications (in cosmology 6 fermion field coupling Jakub Bilski (Fudan University QRLG: matter fields coupling December 5 th, 2016 18 / 19

References 1 J. Bilski, E. Alesci and F. Cianfrani, Quantum reduced loop gravity: extension to scalar field, Phys. Rev. D 92, no. 12, 124029 (2015 doi:10.1103/physrevd.92.124029 [arxiv:1506.08579 [gr-qc]]. 2 J. Bilski, E. Alesci and F. Cianfrani, P. Doná, A. Marcianò, Quantum reduced loop gravity: extension to a gauge vector field, (2016 [arxiv:1612.00324 [gr-qc]]. 3 E. Alesci, F. Cianfrani, Loop Quantum Cosmology from Loop Quantum Gravity, Phys. Rev. D 92, no. 12, 124029 (2015 doi:10.1103/physrevd.92.124029 [arxiv:1410.4788 [gr-qc]]. 4 E. Alesci and F. Cianfrani, Quantum Reduced Loop Gravity and the foundation of Loop Quantum Cosmology, Int. J. Mod. Phys. D 25, no. 08, 1642005 (2016 doi:10.1142/s0218271816420050 [arxiv:1602.05475 [gr-qc]]. 5 T. Thiemann, Quantum spin dynamics (QSD, Class. Quant. Grav. 15, 839 (1998 [gr-qc/9606089]. 6 T. Thiemann, QSD 5: Quantum gravity as the natural regulator of matter quantum field theories, Class. Quant. Grav. 15, 1281 (1998 [gr-qc/9705019]. 7 T. Thiemann, Modern canonical quantum general relativity, Cambridge, UK: Cambridge Univ. Pr. (2007. Jakub Bilski (Fudan University QRLG: matter fields coupling December 5 th, 2016 19 / 19