HST Transmission Spectral Survey: observations, analysis and results

Similar documents
A Precise Optical to Infrared Transmission Spectrum for the Inflated Hot Jupiter WASP-52b

A dozen years of hot exoplanet atmospheric investigations. Results from a large HST program. David K. Sing. #acrosshr Cambridge.

Transmission spectra of exoplanet atmospheres

CHARACTERIZING EXOPLANET ATMOSPHERES USING GENERAL CIRCULATION MODELS

Exoplanet Forum: Transit Chapter

Science with Transiting Planets TIARA Winter School on Exoplanets 2008

The Transit Method: Results from the Ground

Exoplanetary Atmospheres: Temperature Structure of Irradiated Planets. PHY 688, Lecture 23 Mar 20, 2009

ORE Open Research Exeter

Exoplanet Atmospheres Observations. Mercedes López-Morales Harvard-Smithsonian Center for Astrophysics

HD Transits HST/STIS First Transiting Exo-Planet. Exoplanet Discovery Methods. Paper Due Tue, Feb 23. (4) Transits. Transits.

Challenges in Exoplanet Research for the UV

Transit spectrum of Venus as an exoplanet model prediction + HST programme Ehrenreich et al. 2012, A&A Letters 537, L2

New exoplanets from the SuperWASP-North survey

Extrasolar Transiting Planets: Detection and False Positive Rejection

Transit Spectroscopy Jacob Bean

Exoplanet Atmosphere Characterization & Biomarkers

Irradiated brown dwarfs

Observations of Extrasolar Planets

The Search for an Atmospheric Signature of the Transiting Exoplanet HD b 1

arxiv: v2 [astro-ph.ep] 25 Nov 2009

Observations of transits of the southern exoplanets WASP 4b and WASP 46b by using a 40 cm telescope

arxiv: v2 [astro-ph.ep] 4 Aug 2016

What is to expect from the transit method. M. Deleuil, Laboratoire d Astrophysique de Marseille Institut Universitaire de France

The obliquities of the planetary systems detected with CHEOPS. Guillaume Hébrard Institut d astrophysique de Paris Observatoire de Haute-Provence

HST hot-jupiter transmission spectral survey: detection of potassium in WASP-31b along with a cloud deck and Rayleigh scattering

HST hot Jupiter transmission spectral survey: detection of water in HAT-P-1b from WFC3 near-ir spatial scan observations

Atmosphere Models. Mark Marley, Didier Saumon, Jonathan Fortney, Richard Freedman, Katharina Lodders

II. Results from Transiting Planets. 1. Global Properties 2. The Rossiter-McClaughlin Effect

Adam Burrows, Princeton April 7, KITP Public Lecture

Atmospheric Dynamics of Exoplanets: Status and Opportunities

A continuum from clear to cloudy hot-jupiter exoplanets without primordial water depletion

arxiv: v1 [astro-ph.ep] 29 Jul 2009

Strong water absorption in the dayside emission spectrum of the planet HD b

Michaël Gillon (Université de Liège, Belgium)

Exoplanetary Atmospheres: Atmospheric Dynamics of Irradiated Planets. PHY 688, Lecture 24 Mar 23, 2009

arxiv: v2 [astro-ph] 22 Feb 2008

Hands-on Session: Detection and Spectroscopic Characterization of Transiting Exoplanets with the James Webb Space Telescope

Atmospheric Study of Exoplanets by Transmission Spectroscopy (keynote talk)

Evaporation of extrasolar planets

TIDAL HEATING OF EXTRASOLAR PLANETS

Atmospheres and evaporation of extrasolar planets

TrES Exoplanets and False Positives: Finding the Needle in the Haystack

Ground-based detection of sodium in the transmission spectrum of exoplanet HD209458b

arxiv: v3 [astro-ph.ep] 21 Mar 2017

Finding terrestrial planets in the habitable zones of nearby stars

The formation of giant planets: Constraints from interior models

Comparative Planetology: Transiting Exoplanet Science with JWST

arxiv: v1 [astro-ph] 16 May 2008

Carbon- rich Exoplanets

Evaporation of planetary atmospheres

A continuum from clear to cloudy hot-jupiter exoplanets without primordial water depletion

arxiv: v1 [astro-ph] 31 Oct 2008

The Rossiter- McLaughlin Effect

The atmosphere of Exoplanets AND Their evolutionary properties. I. Baraffe

Department of Physics, and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology

Heather A. Knutson. Appointments. Research Interests. Education. Selected Awards and Prize Lectures. Teaching and Mentoring

PRIMARY TRANSIT OF THE PLANET HD b AT 3.6 AND 5.8 m

An HST optical-to-near-ir transmission spectrum of the hot Jupiter WASP-19b: detection of atmospheric water and likely absence of TiO

SPICA Science for Transiting Planetary Systems

Characterization of Transiting Planet Atmospheres

H 2 OABUNDANCESINTHEATMOSPHERESOFTHREEHOTJUPITERS

Exoplanets Atmospheres. Characterization of planetary atmospheres. Photometry of planetary atmospheres from direct imaging

Observational Techniques: Ground-based Transits

THE COMPLETE TRANSMISSION SPECTRUM OF WASP-39b WITH A PRECISE WATER CONSTRAINT

Characterization of Exoplanets in the mid-ir with JWST & ELTs

Cloud Formation & Dynamics in Cool Stellar & Planetary Atmospheres

Science Olympiad Astronomy C Division Event National Exam

arxiv: v1 [astro-ph.ep] 30 Jun 2009

Extrasolar planets and their hosts: Why exoplanet science needs X-ray observations

Detection of atmospheric haze on an extrasolar planet: The micron transmission spectrum of HD189733b with the Hubble Space Telescope

THE TRANSIT LIGHT CURVE (TLC) PROJECT. VI. THREE TRANSITS OF THE EXOPLANET TrES-2

Proxima Cen b: theoretical spectral signatures for different atmospheric scenarios

Tidal Evolution of Close-In Extra-Solar Planets

Observations of Extrasolar Planets During the non-cryogenic Spitzer Space Telescope Mission

Search for Transiting Planets around Nearby M Dwarfs. Norio Narita (NAOJ)

The effect of condensates on the characterization of transiting planet atmospheres with transmission spectroscopy

Finding Other Worlds with

The Rossiter effect of transiting extra-solar planets Yasushi Suto Department of Physics, University of Tokyo

arxiv: v2 [astro-ph.ep] 20 Dec 2010

Characterizing the Atmospheres of Extrasolar Planets. Julianne I. Moses (Space Science Institute)

Transiting Extrasolar Planets

Direct imaging characterisation of (exo-) planets with METIS

New Dimensions of Stellar Atmosphere Modelling

International Symposium on Planetary Science (IAPS2013)

arxiv: v1 [astro-ph.ep] 19 Aug 2011

STRONG INFRARED EMISSION FROM THE EXTRASOLAR PLANET HD b

OGLE-TR-56. Guillermo Torres, Maciej Konacki, Dimitar D. Sasselov and Saurabh Jha INTRODUCTION

The KELT Transit Survey:

Actuality of Exoplanets Search. François Bouchy OHP - IAP

Brown dwarfs and hot young planets

Exoplanets and their Atmospheres. Josh Destree ATOC /22/2010

Planetary interiors: What they can(not) tell us about formation

Hubble Science Briefing

Challenges and Opportunities in Constraining the Bulk Properties of Super-Earths with Transmission Spectroscopy

Exoplanet Search Techniques: Overview. PHY 688, Lecture 28 April 3, 2009

ORE Open Research Exeter

Detecting Terrestrial Planets in Transiting Planetary Systems

Transit infrared spectroscopy of the hot Neptune around GJ 436 with the Hubble Space Telescope

4. Direct imaging of extrasolar planets. 4.1 Expected properties of extrasolar planets. Sizes of gas giants, brown dwarfs & low-mass stars

Transcription:

Image credit: David A. Aguilar (CfA) Image credit: ESA HST Transmission Spectral Survey: observations, analysis and results Nikolay Nikolov and the HST Team

Collaborators: Image credits: NASA, ESA, and G. Bacon (STScI) D. K. Sing (PI) F. Pont T. Kataria T. M. Evans H. R. Wakeford N. Nikolov A. S. Burrows J. J. Fortney G. E. Ballester C. M. Huitson J.-M. Desert P. A. Wilson S. Aigrain D. Deming N. P. Gibson G. W. Henry H. Knutson A. Lecavelier des Etangs A. P. Showman A. Vidal-Madjar K. Zahnle Princeton University UC Santa Cruz University of Arizona University of Colorado University of Colorado CNRS, Paris University of Oxford University of Maryland ESO Tennessee SU Caltech CNRS, Paris University of Arizona CNRS, Paris NASA

Image credit: ESA Spectra based on the models (red/purple) of Fortne al. (2010)PI andd.k. ZahnleSing) et al. (2009) and the STIS Large HST program (C) (126 etorbits, Hat-P-12b S/N levels achievable in this program (blac for 8 planets with TeqWFC3 = 1000-3000 K histogram - STIS & WFC3 simulated spectra wi final co-added noise). (A) The hotter planets lik Na Published results for:strong Ti K H O Wasp-17b are expected to have 2 STIS: optical G430L & G750L (0.3-1μm ) WASP-12b, signatures. WASP-19b, (B) Alternatively, these planets cou WFC3: near-ir G141 HAT-P-1b, WASP-31b, WASP-6b; but have stratosphere-causing HS. (C) Th Spitzer/IRAC 3.6 μm and 4.5 μm lack TiO cooler planets HAT-P-12b are expected hav two like more in preparation; Rayleigh strong Na and K lines, and intermediate cases lik (i) compare atmospheric properties; Wasp-6b are possible (D). The targets span a wid (ii) detect strong absorbers (e.g. Na, K, TiO, hazes, clouds, etc.); range of effective temperature from 1000 to 3000 K Image credit: David A. Aguilar (CfA) Aims: (iii) probe atmospheric diversities. Table 1. Hot-Jupiter Target List Target Hat-P-12b Nikolov et al. 2015 Wasp-6b Wasp-39b Wakeford et al. 2013 Hat-P-1b Nikolov et al. 2014 Sing et al. 2015 Wasp-31b Ballester et al. in prep. Wasp-17b Huitson et al. 2013 Wasp-19b Sing et al. 2013 Wasp-12b N. Nikolov Period Rplanet (days) (Jup) 3.21 0.96 3.36 1.22 4.05 1.27 4.46 1.20 3.4 1.54 3.74 1.74 2.15 1.15 1.09 1.79 Mplanet (Jup) 0.21 0.50 0.28 0.53 0.48 0.49 1.31 1.41 ( Teff is estimated equilibrium temperature) Teff (K) 1080 1340 1360 1500 1800 1860 2319 2800 11 g Irradiation Vmag (m/s2) (ergs/s/cm2) 5.7 8.3 4.3 9.1 5.02 4.0 16.6 11.0 2.2E+08 5.2E+08 5.00E+08 7.3E+08 1.50E+09 1.9E+09 4.10E+09 1.0E+10 12.8 11.9 12.1 10.4 11.7 11.6 12.3 11.69 H (km) 680 580 1140 580 1280 1670 501 930 From Super-Earths to Brown Dwarfs: Who s Who?

Relative altitude in scale heights z( )/H 15 10 5 0 5 STIS G430L STIS G750L WFC3 IRAC 3.6 4.5 10 3 Rayleigh H2 Rayleigh Na I K I Hazy atmosphere H2O H 2O H 2O CO Cloud-free atmosphere Hot Jupiter models from Fortney et al. (2010).3.4.5.6.7.8.9 1 2 3 4 5 Wavelength (µm)

HST STIS 3.5 3.0 G430L G750L Photon counts ( 10 4 ) 2.5 2.0 1.5 1.0 corrected 0.5 0.0 fringing 3000 4000 5000 6000 7000 8000 9000 10000 Wavelength (Å)

Our pipeline Assume orbital period (Porb) from literature 2 3 Fit for all transit parameters and systematics (at fixed limb darkening and Porb) 1 HST STIS and WFC3 spectra + Spitzer IRAC photometry 2 HST STIS white light curves + Spitzer IRAC 3.6 & 4.5 µm 4 Marginalize over ~50 systematics models (Gibson et al. 2014) System parameters (a/rst, i, Rp/Rst, T0, Porb) 5 Update orbital ephemeris (new + literature T0s) 6 Fix system parameters and limb darkening; fit for Rp/Rst, and systematics; TRANSMISSION SPECTRUM 7

HST STIS Normalised raw raw flux flux 1.010 1.010 1.005 1.005 0.990 0.990 0.980 0.990 0.990 0.980 Ballester et al. in prep. 1.010 1.010 0.990 1.005 1.005 0.990 0.980 0.980 0.975 0.990 0.990 0.975 Normalised Normalised flux flux 0.990 0.990 0.990 0.980 0.980 0.980 10 5 55 0 0-5 -10-5 O-C O-C ( 10 ( 10-4 ) -4 ) G430L G430L G430L G430L G750L 0.980 G750L G750L G430L G430L G750L 10 5 0-5 -10-3 -2-2 -1 0 0 1 22 3-2 0 2 0.990-3 -2-2-1 0 0 1 2 2 3-3 -3-2 -2-2-1-1 00 0 1 1 2 22 3 3-2 0 2-2 0 2 Time Time since since mid-transit (hr) (hr) Time since mid-transit (hr) 0.990 0.990 0.990 0.990 0.980 0.980 0.980 10 0.980 10 5 5 5 5 0 0 0-5 0-5 -5-10 -10-5

Spitzer IRAC Ballester et al. in prep. 3.6 µm 4.5 µm

ANDERSON ET AL. (1) Bloated radius 1.8 W12 attempts at measuring atmospheric signatures have been made A&A 524, A25 (2010) WASP-12 b (e.g., Charbonneau et al. 2002; WASP-17 b al-3.7 Orbital Period ~ Desert et al. 2009). Thus, 1.65 though WASP-17 ismp fainter~ and1.6 has a larger stellar,radius, the Models based on M Rp ~2 Saturn W15 system is a good prospect for transmission spectroscopy. W4 1.48 et al. 2008 u D2 Burrows 1.60 1.4 H1 W6 0.06 0.13 1 H12 0.25 0.8 0.5 1 0.6 X3 1.46 0.03 1.44 J H2 S 2 1.42 D1 4 8 N C7 16 32 ρj We acknowledge a thorough and constructive report from the 2.05 anonymous referee. TheT(4.5 WASP consortium comprises the Uniµm) = 1880+/-50 KDecember 20 1.55 St. Andrews, The Astrophysical Journal, 779:128 (18pp), 2013 versities of Keele, Leicester, the Queen s University Belfast, the Open University and the Isaac Newton Group. T(8 µm) = 1580+/-150 K WASP-South is hosted by the South African Astronomical ObWASP-12 b 1.50 2.00 low albedo; efficient T redistrib.1.65 servatory and we are grateful for their support and assistance. based on Funding for WASP comes Models from consortium universities and from the UK s Science and Technology Facilities Council. 1.48 1.45 Burrows et al. 2008 u Parent star: 1.60 1.95 The Astrophysical Journal, 779:128 (18pp), 2013 December 20 type: F6, V = 11.6 REFERENCES 1.46 Sp 1.38 Solar, no TiO 1.40 1.55 Solar & Isoth., TAgol, = 2500 K J., Sari, R., & Clarkson, W. 2005, MNRAS,Solar & Isoth, T = 2000 K E., Steffen, 359, 567 0.1 10 Na 0 Solar in the atmosphere 1.36 1 Bakos, G. A., et al.(3) 2007, 1.44 ApJ, 656,I 552and H2 WASP-12 b carbon WASP-17 0.1 H O, 10x &b Isoth. + haze 1.40 U C3 d RJupiter ~ 6 % Jupiter density Wood et al. 2011, Zhou et al. 2012 Mandel et al. 2013 1.2 Transit Depth (%) Radius/RJup T4 W17 1.6 0.2 Three facts for WASP-17b 2.4 3.4 times that of HD 189733b, for both of which successful The ratio of projected areas of planetary atmosphere to stellar The Astrophysical Journal, 779:128 (18pp), 2013 December disk of WASP-17b is 1.9 2.720 times that of HD 209458b and 2 0.4 Vol. 709 Anderson et al. 2010, 11 166 (2) Retrograde orbit Transit Depth (%) 2 Triaud et al. 2010 Bayliss et al. al. 2010 Transit Depth (%) Baranne, A., et al. 1996, A&AS, 119, 373 1.90 1.65 1.65 1.50 Bodenheimer, P., Lin, D. N. C., & Mardling, R. A. 2001, ApJ, 548, 466 1.42 based onplanets. Figure 7. Mass radius distribution of the 62 Models known transiting extrasolar Bo hm-vitense, E. 2004, AJ, 128, 2435 The best-fitting values for the three WASP-17b according 1.48 Madhusudhan 2012 Burrows al. 2008 u models areetdepicted Burrows, A., Budaj, J., & Hubeny, I. 2008, ApJ, 678, 1436 1.60 to the key given in Table 4. Other WASP planets are filled, red circles; non1.60 1.45 1.40 Burrows, A., Hubeny, I., Budaj, J., & Hubbard, W. B. 2007, ApJ, 661, 502 WASP planets are open, black circles; Jupiter, Saturn, Neptune, and Uranus are Charbonneau, D., Brown, T. M., Latham, D. W., & Mayor, M. 2000, ApJ, 529, 2.05 2.05 filled, gray diamonds, labeled with1.46 the planets initials. For clarity, error bars are L45 1.38 displayed only for WASP-17b. Some planets discovered by CoRoT, HAT, TrES, 1.55 1.40 Charbonneau, D., Brown, 1.55 T. M., Noyes, R. W., & Gilliland, R. L. 2002, ApJ, WASP, and XO are labeled with the project initial and the system number (e.g., 1.44 Solar & Isoth., T = 2500 K 568, 377 WASP-17b = W17). HD 149026b is labeled D1 and HD 209458b is labeled 1.36 Charbonneau, D., et al. 2005, ApJ, 626, 523 0.1 H2O, 10x carbon D2. The labeled, dashed lines depict a range of density contours in Jovian units. Chatterjee, S., Ford, E. B.,1.50 Matsumura, S., & Rasio, F. A. 2008, ApJ, 686, 580 2.00 1.50 Data are taken from this work and1.42 http://exoplanet.eu. 1.65 Cochran, W. D., et al. 2004, ApJ, 611, L133 Models based on (A color version of this figure is available in the online journal.) Collier Cameron, A., et al. 2006, MNRAS, 373, 799 Madhusudhan 2012 Collier Cameron, A., et al.1.48 2007, MNRAS, 380, 1230 1.45 1.40 1.45 1.60 D Angelo, G., Lubow, S. H., & Bate, M. R. 2006, ApJ, 652, 1698 ets in retrograde orbits. Therefore, we suggest that WASP-17b Desert, J.-M., Lecavelier des Etangs, A., Hebrard, G., Sing, D. K., Ehrenreich, 1.95 1.46 supports the hypothesis that1.38 some short-orbit, giant planets are D., Ferlet, R., & Vidal-Madjar, A. 2009, ApJ, 699, 478 Solar, no TiO 1.40 1.55 produced by a combination of scattering, the Kozai mechanism, Fabrycky, D. C., & Winn, 1.40 J. N. 2009, ApJ, 696, 1230 O-Rich (C/O = 0.5) O-Rich (C/O = 0.5) Solar & Isoth., T = 2500 K Solar & Isoth, T = 2000 K 1.44 Ford, E. B. 2006, ApJ, 642, 505 and tidal circularization. The observation of the RM effect for 1.36 C-Rich (C/O = 1.5) C-Rich H O, 10x carbon 0.1 Ford, E. B., & Rasio, F. A. 2008, ApJ, 686, 621 Solar & Isoth. + (C/O haze = 1.5) more short-orbit planets is required to measure the size 2of the 1.90 Fortney, J. J., Lodders, K.,1.65 Marley, M. S., & Freedman, R. S. 2008, ApJ, 678, 1.50 1.42 contribution. 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.1Models 1.2 based 1.3 on 1.4 1.5 1419 1.6 1.7 1.1 For planet planet or star planet scattering to have influenced Fortney, J. J., Marley, M. S., & Barnes, J. W. 2007, ApJ, 659, 1661 Wavelength (µ m) 2012 1.48 Gaudi, B. S., & Winn, J. N. 2007, ApJ, 655, 550 WASP-17b s orbit in the past, one Madhusudhan or more stellar or planetary 1.40 1.45 1.60 Gillon, M. 2009, arxiv:0906.4904 companions must Figure have been present in the system. Sensitive 18. Transit depths for each of the 19 binsm.,for each target, based ons.,the framework of Burrows etwho? al. (top N. Nikolov From Super-Earths to Brown Dwarfs: Who s Gillon, Pont, F., Moutou, C., with Bouchy,models F., Courbin, F., Sohy, & Magain, 2.05 1.46 imaging could probe for a stellar companion, and further RV 1.38 June 29th - July IAP, Paris b 2006, 459, 249 models from Burrows et al. provide a goodp.fit fora&a, WASP-17 b and a reasonable fit for WASP-12 b,3rd but2015, for 1.40 WASP-19 measurements are necessary to search for stellar or planetary 1.55 Gillon, M., et al. 2009a, A&A, 496, 259 O-Rich (C/O = 0.5) Mass/MJup

WASP-17b Ballester et al. in prep.

Aligned orbit Anderson et al. 2010 Quick facts for WASP-31b Orbital Period ~ 3.4 d Mp ~ 0.5 MJupiter Rp = 1.5 RJupiter 13 % Jupiter density Teq = 1600 K, H~1200 km Parent star Sp type: F6, V = 11.7

WASP-31b Sing et al. 2015 (i) sub-solar Na/K ratio; (ii) H2O dominated atmosphere ruled out at 9σ; (iii) two-particle regimes for <0.52 and 0.52µm

(1) Prograde orbit Gillon et al. 2009 Two facts for WASP-6b Orbital Period ~ 3.4 d Mp ~ 0.5 MJupiter Rp ~ 1.2 RJupiter Teq = 1145 K Parent star Sp type: G8, [Fe/H]=-0.2 V = 11.9 Planet radius (RJ) 1.35 1.3 1.25 1.2 (2) Scattering in the atmosphere Fortney et al. (2010), T = 1500 K Fortney et al. (2010), T = 1000 K Scattering 0.155 0.15 0.145 0.14 0.135 Planet-to-star radius ratio (Rpl/R ) Jordan et al. 2013 1.15 5000 6000 7000 8000 Wavelength (Å)

Na I K I WASP-6b Nikolov et al. 2015 (i) Cloud-free atmosphere ruled out with high confidence; (ii) Rayleigh and Mie scattering models highly preferred with MgSiO3, KCl, Mg2SiO4 and Na2S condensates; STIS G430L STIS G750L IRAC

WASP-6b Nikolov et al. (2015) H2O H 2O H2O CO WASP-17b Ballester et al. (in prep.)

Conclusions: (1) WASP-17b, -31b and -6b show evidence for cloud-free, cloudy and hazy atmosphere, i.e. an emerging diversity of exoplanet atmospheres; (2) We find a significant variation in both the Na and K frequency and the Na/K abundance ratio across the targets; (3) Cloudy and hazy atmospheres can provide important atmospheric constraints, i.g. particle sizes, temperatures, etc.; (4) More planets must be studied in transmission to establish correlations between atmospheric and planetary physical properties, e.g. atmospheric type and planet evolutionary history.