Imaging the Sky Above 30 MeV with GLAST

Similar documents
Gamma Ray Physics in the Fermi era. F.Longo University of Trieste and INFN

The Fermi Gamma-ray Space Telescope

The Large Area Telescope on-board of the Fermi Gamma-Ray Space Telescope Mission

Fermi: Highlights of GeV Gamma-ray Astronomy

Gamma-ray Astrophysics

Astrophysics with GLAST: dark matter, black holes and other astronomical exotica

GLAST Large Area Telescope:

Calibration of the AGILE Gamma Ray Imaging Detector

Science of Compact X-Ray and Gamma-ray Objects: MAXI and GLAST

GLAST Mission: Status and Science Opportunities

GLAST - Exploring the high- energy gamma-ray Universe

Introduction. Technical and Production Status L. Klaisner. Instrument Science Operations Center Plans. Project Status, Cost and Schedule L.

Preliminary results from gamma-ray observations with the CALorimeteric Electron Telescope (CALET)

A New View of the High-Energy γ-ray Sky with the Fermi Telescope

PERSPECTIVES of HIGH ENERGY NEUTRINO ASTRONOMY. Paolo Lipari Vulcano 27 may 2006

Justin Vandenbroucke (KIPAC, Stanford / SLAC) for the Fermi LAT collaboration

Cherenkov Telescope Array ELINA LINDFORS, TUORLA OBSERVATORY ON BEHALF OF CTA CONSORTIUM, TAUP

A-Exam: e + e Cosmic Rays and the Fermi Large Array Telescope

The Gamma Large Area Space Telescope: GLAST

Sources of GeV Photons and the Fermi Results

GLAST. Exploring the Extreme Universe. Kennedy Space Center. The Gamma-ray Large Area Space Telescope

Future Gamma-Ray Observations of Pulsars and their Environments

Diffuse Gamma-Ray Emission

EBL Studies with the Fermi Gamma-ray Space Telescope

VERITAS Design. Vladimir Vassiliev Whipple Observatory Harvard-Smithsonian CfA

The Gamma-ray Albedo of the Moon

1 Introduction STATUS OF THE GLAST LARGE AREA TELESCOPE. SLAC-PUB December Richard Dubois. Abstract

Non-thermal emission from pulsars experimental status and prospects

Recent Observations of Supernova Remnants

HAWC: A Next Generation All-Sky VHE Gamma-Ray Telescope

The Sun and the Solar System in Gamma Rays

Aldo Morselli INFN Roma Tor Vergata 2 Feb 2013

What Can GLAST Say About the Origin of Cosmic Rays in Other Galaxies

Experimental Particle

High Energy Emission. Brenda Dingus, LANL HAWC

A New Look at the Galactic Diffuse GeV Excess

A. Takada (Kyoto Univ.)

The Fermi Gamma-ray Space Telescope

The new event analysis of the Fermi Large Area Telescope

GLAST LAT Overview and Status

Nikolay Topchiev for the GAMMA-400 Collaboration High-energy gamma-ray studying with GAMMA-400

The Extreme Universe Rene A. Ong Univ. of Michigan Colloquium University of California, Los Angeles 23 March 2005

GLAST and beyond GLAST: TeV Astrophysics

GLAST Large Area Telescope:

Detecting New Sources of High-Energy Gamma Rays

Special Topics in Nuclear and Particle Physics

Dark matter searches with GLAST

Particle Acceleration in the Universe

Search for TeV Radiation from Pulsar Tails

Gamma-ray Astrophysics with VERITAS: Exploring the violent Universe

High-energy Gamma Rays detection with the AMS-02 electromagnetic calorimeter. F. Pilo for the AMS-02 ECAL Group INFN Sezione di Pisa, Italy

Gamma-ray Astronomy Missions, and their Use of a Global Telescope Network

TeV Future: APS White Paper

Relativistic jets from XRBs with LOFAR. Stéphane Corbel (University Paris 7 & CEA Saclay)

Hunting for Dark Matter in Anisotropies of Gamma-ray Sky: Theory and First Observational Results from Fermi-LAT

Linking GLAST Science Prospects with CTA

Status of the MAGIC telescopes

The High-Energy Interstellar Medium

Galactic Variable Sky with EGRET and GLAST. S. W. Digel. Stanford Linear Accelerator Center 2575 Sand Hill Road Menlo Park, CA 94025

High Energy Astrophysics

1. Motivation & Detector concept 2. Performance 3. Confirmation experiments 4. Summary

First Year Fermi Gamma ray Space Telescope Observations of Centaurus A

GLAST, a Gamma-Ray Large Area Space Telescope

Indirect dark matter detection and the Galactic Center GeV Excess

Can we constrain GRB shock parameters using the Gamma Ray Large Area Space Telescope? Eduardo do Couto e Silva SLAC/KIPAC SABER Workshop Mar 15, 2006

Fermi Large Area Telescope:

CTA SKA Synergies. Stefan Wagner Landessternwarte (CTA Project Office) Heidelberg

On the scientific motivation for a wide field-of-view TeV gamma-ray observatory in the Southern Hemisphere

Highlights from the Fermi Symposium

Extreme high-energy variability of Markarian 421

T. J. Brandt. CRISM: 27 Jun On behalf of the Fermi- LAT Collabora:on IRAP/Université Paul Saba:er.

Calibrating Atmospheric Cherenkov Telescopes with the LAT

First results on the high energy cosmic ray electron spectrum with the Fermi-LAT

Expected and unexpected gamma-ray emission from GRBs in light of AGILE and Fermi. Marco Tavani (INAF & University of Rome Tor Vergata)

VERITAS Observations of Starburst Galaxies. The Discovery of VHE Gamma Rays from a Starburst Galaxy

Particle acceleration during the gamma-ray flares of the Crab Nebular

Search for exotic process with space experiments

VERITAS: exploring the high energy Universe

GLAST LAT Multiwavelength Studies Needs and Resources

GLAST Large Area Telescope:

Gamma-ray observations of millisecond pulsars with the Fermi LAT. Lucas Guillemot, MPIfR Bonn. NS2012 in Bonn 27/02/12.

Two recent developments with Gamma Ray Burst Classification. And their implications for GLAST. Eric Charles. Glast Science Lunch Nov.

Sep. 13, JPS meeting

1. Motivation & Detector concept 2. Performance 3. Applications 4. Summary

1. Motivation & Detector concept 2. Performance 3. Confirmation experiments 4. Summary

Resolving the Extragalactic γ-ray Background

Galactic Diffuse Emissions

A NEW GENERATION OF GAMMA-RAY TELESCOPE

Pulsar Astronomy with GLAST Steve Thorsett UC Santa Cruz GLAST

Discovery of a New Gamma-Ray Binary: 1FGL J

Prospects for Observations of Very Extended and Diffuse Sources with VERITAS. Josh Cardenzana

Detectors for astroparticle physics

from Fermi (Higher Energy Astrophysics)

GLAST Large Area Telescope:

Dark Matter Particle Explorer: The First Chinese Cosmic Ray and Hard γ-ray Detector in Space

9.1 Years of All-Sky Hard X-ray Monitoring with BATSE

VERITAS. Tel 3. Tel 4. Tel 1. Tel 2

Laura Barragán. Universidad Complutense de Madrid

Anders W. Borgland. On behalf of the Fermi/LAT Collaboration. Fermi LAT ISOC/SLAC

H.E.S.S. High Energy Stereoscopic System

Transcription:

Imaging the Sky Above 30 MeV with GLAST Spectrum Astro Spectrum Astro Mathematical Challenges in Astronomical Imaging S. W. Digel (HEPL/Stanford) IPAM, UCLA, 29 January 2004 1

Outline Introduction Why bother? Celestial high-energy gamma rays Detecting gamma rays in space GLAST * mission LAT ** instrument design Nature of the data and performance of the LAT Analysis from low to high level Imaging the sky Approaches for source detection & characterization * Gamma-ray Large Area Space Telescope ** Large Area Telescope, the principal instrument on GLAST 2/31

Motivation: Wealth of Astro- and Astroparticle Physics Extragalactic Blazars most of their luminosity is in gamma rays Other active galaxies Centaurus A Normal galaxies Large Magellanic Cloud + starburst Galaxy clusters Isotropic emission Gamma-ray bursts In the Milky Way Pulsars,, binary pulsars, millisecond pulsars, plerions Supernova remnants, OB/WR associations, black holes? Microquasars, microblazars? Diffuse cosmic rays interacting with interstellar gas and photons WIMP annihilation? Solar flares Common theme (except for WIMPS): Moon Nonthermal emission, particle acceleration (e.g., in jets and shocks); γ-ray emission from Bremsstrahlung, inverse Compton, pion decay, curvature radiation M87 jet (STScI) Crab pulsar & nebula (CXC) 3/31

More About Classes of Sources: Blazars Active galaxies with beamed jets associated with accreting massive BHs in active galaxies EGRET discovery: Tremendous γ-ray luminosities (beamed) 10 48-49 49 erg s -1 Bulk Lorentz factors Γ ~>5-10 Strongly variable, timescale of <hours ~70 strong IDs from EGRET, ~30 suspected z ~ 0-2.5 Potential probe of extragalactic background light Synchrotron peak M. Catanese/A. Wehrle D. Bertsch 4/31

More: Rotation-Powered Pulsars Geminga Rapidly rotating magnetized neutron stars (and B not parallel to Ω) ~8 detected pulsating by EGRET Steady (averaged over a period) sources, and not necessarily seen pulsating at other wavelengths Acceleration mechanisms are well understood (Polar Cap and Outer Gap models) ~10 35-36 36 erg s - 1 luminosities means can see them for a few kpc Geminga Sreekumar 0.24 s D. Thompson Harding 5/31

More: Gamma-ray bursts Something bad (hypernova?) happens at cosmological distances Internal shocks and external shocks pulses and afterglows Primarily hard X-ray, X although several have been seen at high energies (~100 MeV) with EGRET Recent result shows high-energy component may trace a different particle population, or indicate a proton component GRB940217 González et al. (2003) 6/31

More: Particle Dark Matter Some N-body N simulations of dark matter in the halo of the Milky Way predict a very cuspy distribution (e.g., Navarro et al. 1996) If the dark matter is the Lightest Supersymmetric Particle, χ,, the mass range currently allowed is 30 GeV-10 TeV. Annihilation processes χχ γγ and χχ γz are potentially detectable by GLAST (e.g., Bergström & Ullio 1998) LAT observations can apparently cover an interesting range of the 7-dimensional 7 parameter space for MSSM. EGRET apparently didn t see a source coincident with the Galactic center, but also is not very sensitive in the >10 GeV range D. Engovatov 7/31

Important Points About Detecting High-Energy Gamma Rays In the range up to ~50 GeV, the detector must be in space Charged-particle background is intense Background rejection is vital Earth s limb and the nadir are an intense source of albedo gamma rays So albedo suppression is important, too Trigger rates in LAT Bright γ pt. src. 1/minute Avg. γ, entire FOV Cosmic Rays Albedo γ rate* 2 Hz ~3 khz ~100 Hz * If pointed at the horizon Average intensity of celestial gamma rays (EGRET) 8/31

Important points (2) Above ~few MeV pair conversion is the dominant interaction process with matter Can t focus these γ-rays Schematic pair con- version telescope PSF is poor FOV is enormous from Rev. Particle Prop. PSF Chandra LAT (100 MeV) LAT (10 GeV) FOV Chandra LAT 10-4 sr 2.2 sr ~1" 12000" 360" 9/31

Important points (3) Celestial fluxes are low (except for GRBs, which are impulsive) Photon number fluxes typically ~E~ -2 The Milky Way is a relatively bright, structured, foreground ~10% of flux at low latitudes is from point sources γ-ray rates in LAT Bright pt. src. Avg., entire FOV 1/minute 2 Hz 10/31

Brief History of Detectors 1967-1968, 1968, OSO-3 detected Milky Way as an extended γ- ray source 1972-1973, 1973, SAS-2,, isotropic extragalactic emission 1975-1982, 1982, COS-B,, ~25 point sources, 1 st extragalactic point source. 1991-2000, EGRET,, large effective area, good PSF, long mission life, excellent background rejection, ~300 point sources OSO-3 EGRET SAS-2 COS-B 11/31

History cont. EGRET OSO-3 ~1.4 Mγ, M, ~60% interstellar emission from the MW ~10% are cataloged (3EG) point sources 12/31

Future Missions AGILE (Astro-rivelatore rivelatore Gamma a Immagini LEggero) ASI small mission, mid 2005 launch, good PSF, large FOV, short deadtime, very limited energy resolution AMS (Alpha Magnetic Spectrometer) International, cosmic-ray experiment for ISS, will have sensitivity to >1 GeV gamma rays, scheduled for 16 th shuttle launch once launches resume GLAST 13/31

Design of the LAT for gamma-ray Tracker 18 18 XY tracking planes with interleaved W conversion foils. Single-sided silicon strip detectors (228 µm pitch). Measure the photon direction; gamma ID. 12 Front (3.5% RL), 4 Back (25% RL) Calorimeter 1536 1536 CsI(Tl) crystals in 8 layers (8.5 RL); PIN photodiode readouts. Image the shower to measure the photon energy. Anticoincidence Detector (ACD) 89 plastic scintillator scintillator tiles. Signals passage of cosmic rays; segmentation limits self-veto at high energy. detection ACD γ e + e 1.8 m Tracker 3000 kg Calorimeter Electronics System Includes flexible, robust hardware trigger and software filters. ~800k channels, 600 W 14/31

LAT in perspective Within its first few weeks,, the LAT will double the number of celestial gamma rays ever detected Instrument Years Ang. Res. (100 MeV) Ang. Res. (10 GeV) Energy Range (GeV) A eff Ω (cm 2 sr) # Gamma Rays OSO-3 1967 68 18 >0.05 1.9 621 SAS-2 1972 73 7 0.03 10 40 ~10,000 COS-B 1975 82 7 0.03 10 40 ~2 10 5 EGRET 1991 00 5.8 0.5 0.03 10 750 1.4 10 6 AGILE 2005 4.7 0.2 0.03 50 1500 4 10 6 /yr AMS 2005+ 0.1 1 300 500 ~2 10 5 /yr GLAST LAT 2007 3.5 0.1 0.02 300 25,000 1 10 8 /yr 15/31

The Gamma-Ray Sky EGRET Simulated LAT (>1 GeV, 1 yr) (>100 MeV, 16/31 1 yr) (>100 MeV)

Maximizing Return GLAST is the last large high-energy gamma-ray telescope that can be expected for a decade or more, depending on what it discovers Even for GLAST, the cost per celestial gamma ray will remain fairly high, ~40 each 17/31

Analysis Levels Reconstruction and classification of events Charged particles vs. gamma-rays Quality of reconstruction of energy, direction Detection and characterization of celestial sources of gamma rays Locations, spectra, variability & transient alerts, angular extents Identification of sources & population studies Counterparts and correlations Imaging Imaging Increasing level 18/31

Nature of the LAT Data Events are readouts of TKR hits, TOT, ACD tiles, and CAL crystal energy depositions, along with time, position, and orientation of the LAT Limited bandwidth for telemetry data are extremely filtered ~3 khz trigger rate ~100 Hz filtered event rate, ~10 Gbyte/day raw data, ~2 10 5 γ-rays/day Reconstruction finds tracks and energies; classification distinguishes γ-rays from cosmic rays all before the astronomy T. Usher 19/31

LAT Response Functions LAT response functions depend on incident direction, energy, plane of conversion, quality, etc. Derived from detailed instrument simulation supported by beam tests PSF 95%/68% containment ratio ~2.5-3 3 (vs. 1.6 for Gaussian) PRELIMINARY Angular Diameter (deg) Angular Diameter (deg) 10.0 1.0 0.1 5 4 3 2 1 PSF PSF vs. vs. Energy Energy 68% 68% 10 2 10 3 10 4 10 5 Energy (MeV) 0 0 20 40 60 Inclination Angle (deg) Front Back 95% 95% PSF vs. Inclination PRELIMINARY 20/31

LAT Response Functions (2) Effective Area Front + Back shown combined here Rolloff at low energies Energy resolution Adequate Actually improves at large inclinations PRELIMINARY E/E cos(inclination) Effective Area Energy (MeV) Energy Resolution (on Axis) vs. Energy PRELIMINARY C. Cecchi (INFN) 21/31

Summing up the Analysis Issues So we want to do astronomy with Low celestial fluxes, intense backgrounds from cosmic-ray and albedo γ-rays Bright celestial foreground emission from Milky Way Broad PSFs and overlapping PSFs of many sources in even a small field Response functions that vary strongly across the FOV, and several event classes Continuous scanning and rocking as the standard observing mode Extra credit: Lunar and solar cuts, sky is not flat, 22/31

Analysis Issues (2) Standard observing mode will be scanning the sky Increases the data taking efficiency vs. inertial pointing Covers the whole sky every 3 hours Keep the earth (and albedo gamma rays) out of the FOV High-level data include the pointing & livetime history 23/31

Analysis Issues (3) We d also like source detection fast and robust (objective, with understood statistical properties, like upper limits) ~4-5 5 downlinks per day to monitor One day s worth of simulated gamma rays, color coded by energy 24/31

EGRET: Detection & Characterization Many point sources are transient and detected over ~1 week only 3EG catalog has 271 sources, almost all of them real (~170 unidentified) 3EG catalog (Hartman et al. 1999) Blazar Unidentified Pulsar Solar flare LMC EGRET (>100 MeV) 25/31

Strategies for Source Detection Do what EGRET did Maximum likelihood analysis model fitting, first used for COS-B Or do what EGRET did, but better Unbinned likelihood analysis, EM Nonparametric analyses Wavelets (CWT, DWT), Independent Component Analysis, Bayesian Blocks, Cross Correlation Monte Carlo the sky J. Scargle s talk 26/31

Review of Likelihood Analysis Models are straightforward to define radiative transfer is simple I x, y, E = I x, y, E + F E δ x x, y y ( ) ( ) ( ) ( ) MW i i i Data-space version not as simple, of course i [Extended] Maximum Likelihood analysis is widely used in γ-ray astronomy & we plan to use it for the standard high-level analysis tool for LAT data Introduced by Pollock et al. (1981) for analysis of COS-B data, also used extensively for EGRET analysis. P. Nolan (SU) 27/31

Likelihood Analysis (2) Why use the EGRET approach? Low fluxes, pervasive structured diffuse emission, & poor angular resolution Why not use likelihood analysis? Doesn t answer any question that you aren t asking Don t want to bin in inclination angle Not everything we want to study is a point source Requires a good model for the difffuse γ-ray emission of the Milky Way. Not easy. Protassov et al. (2002) point out that the principal application, source testing, violates the conditions of Wilks theorem 28/31

Likelihood Analysis (3) Why use unbinned likelihood analysis? In principle, uses all of the information in the data Why not use it? All of the above, plus Computationally tough multidimensional integration & optimization 29/31

Other Approaches Initial investigations underway of alternatives for all or part of the source detection problem WT (Damiani et al. 1997) implemented by F. Marcucci & C. Cecchi (INFN) WT at scale 3 Thresholding at scale 3 Thresholding at scale 5 Simulated LAT data in Galactic anticenter 30/31

Extended Sources Orion simulation as an example for LAT resolving extended sources Probably ideal case - Nearest giant molecular cloud complex, and have a good template for the emission Study of the diffuse emission could permit detailed calibration of molecular content & propagation of cosmic rays & maybe gamma-ray point sources Maddalena et al. (1986) Digel et al. (1999) >100 MeV >300 MeV >1 GeV 31/31

Conclusions Gamma-ray sky has diverse source populations Exciting science will derive from the great capabilities of the LAT EGRET Phases 1-5 LAT The challenges for source detection, for maximizing the return are a understood and approaches are being investigated Look forward to the LAT 32/31