EXPERIMENT 2 Reaction Time Objectives Theory

Similar documents
EXPERIMENT: REACTION TIME

Experiment 2. Reaction Time. Make a series of measurements of your reaction time. Use statistics to analyze your reaction time.

PHY 251 Introductory Physics Laboratory I. Summer 2014

Introduction to Computer Tools and Uncertainties

Experiment 1: The Same or Not The Same?

Practical 1 RC Circuits

Experiment 0 ~ Introduction to Statistics and Excel Tutorial. Introduction to Statistics, Error and Measurement

DISCRETE RANDOM VARIABLES EXCEL LAB #3

PHYSICS LAB FREE FALL. Date: GRADE: PHYSICS DEPARTMENT JAMES MADISON UNIVERSITY

Experiment 4 Free Fall

Experiment 2 Random Error and Basic Statistics

Measurements of a Table

Using Microsoft Excel

Experiment 2 Random Error and Basic Statistics

STATISTICAL HANDLING OF RADIOACTIVITY MEASUREMENTS

Linear Motion with Constant Acceleration

Name: Lab Partner: Section: In this experiment error analysis and propagation will be explored.

Statistical Analysis of Data

Electric Fields and Equipotentials

Radioactivity: Experimental Uncertainty

Computer simulation of radioactive decay

EXPERIMENT 3 Analysis of a freely falling body Dependence of speed and position on time Objectives

LAB 2 1. Measurement of 2. Binomial Distribution

Gravity Modelling Forward Modelling Of Synthetic Data

A Scientific Model for Free Fall.

Error Analysis in Experimental Physical Science Mini-Version

Statistics of Radioactive Decay

Conservation of Mechanical Energy Activity Purpose

Chem 7040 Statistical Thermodynamics Problem Set #6 - Computational Due 1 Oct at beginning of class

Purpose: Materials: WARNING! Section: Partner 2: Partner 1:

Purpose: This lab is an experiment to verify Malus Law for polarized light in both a two and three polarizer system.

Introduction to Uncertainty and Treatment of Data

Introduction to the General Physics Laboratories

Physics E-1ax, Fall 2014 Experiment 3. Experiment 3: Force. 2. Find your center of mass by balancing yourself on two force plates.

Introduction to Measurements of Physical Quantities

Conservation of Mechanical Energy Activity Purpose

Lab 1: Measurement and Uncertainty

1. AN INTRODUCTION TO DESCRIPTIVE STATISTICS. No great deed, private or public, has ever been undertaken in a bliss of certainty.

LAB 2 - ONE DIMENSIONAL MOTION

Lab 1 Uniform Motion - Graphing and Analyzing Motion

What are the mean, median, and mode for the data set below? Step 1

Falling Bodies (last

ECE 220 Laboratory 4 Volt Meter, Comparators, and Timer

Experiment 2. F r e e F a l l

LAB 01 Electrostatic Charge

Chapter 2: Tools for Exploring Univariate Data

ALGEBRA 1 KEYSTONE. Module 1 and Module 2 both have 23 multiple choice questions and 4 CRQ questions.

Data Acquisition And Analysis

LABORATORY 4 ELECTRIC CIRCUITS I. Objectives

Graphs. 1. Graph paper 2. Ruler

Lab 2 Worksheet. Problems. Problem 1: Geometry and Linear Equations

Data Analysis and Statistical Methods Statistics 651

PHY 123 Lab 1 - Error and Uncertainty and the Simple Pendulum

THE CRYSTAL BALL FORECAST CHART

PHY221 Lab 2 - Experiencing Acceleration: Motion with constant acceleration; Logger Pro fits to displacement-time graphs

Further Mathematics 2018 CORE: Data analysis Chapter 2 Summarising numerical data

Dynamics. Newton s First Two Laws of Motion. A Core Learning Goals Activity for Science and Mathematics

appstats27.notebook April 06, 2017

2018 Arizona State University Page 1 of 16

PHY191 Experiment 1: Introduction 1/19/2009 Page 1

appstats8.notebook October 11, 2016

DIFFUSION PURPOSE THEORY

PHYSICS LAB Experiment 7 Fall 2004 CONSERVATION OF MOMENTUM & COLLISIONS

Volume vs. Diameter. Teacher Lab Discussion. Overview. Picture, Data Table, and Graph

Significant Figures and an Introduction to the Normal Distribution

Newton s Cooling Model in Matlab and the Cooling Project!

This term refers to the physical quantity that is the result of the measurement activity.

Lab 1: Measurement, Uncertainty, and Uncertainty Propagation

VELA. Getting started with the VELA Versatile Laboratory Aid. Paul Vernon

Newton's 2 nd Law. . Your end results should only be interms of m

Measurement: The Basics

PICKET FENCE FREE FALL

experiment3 Introduction to Data Analysis

1 Measurement Uncertainties

(Directions for Excel Mac: 2011) Most of the global average warming over the past 50 years is very likely due to anthropogenic GHG increases

Experiment 1 Introduction to 191 Lab

Multiple Representations: Equations to Tables and Graphs Transcript

Using Scientific Measurements

Statistics for Managers using Microsoft Excel 6 th Edition

How to Write a Good Lab Report

1 Introduction to Minitab

Linear Regression. Linear Regression. Linear Regression. Did You Mean Association Or Correlation?

Experiment 4. Newton s Second Law. Measure the frictional force on a body on a low-friction air track.

Picket Fence Free Fall

How many states. Record high temperature

Algebra 2. Outliers. Measures of Central Tendency (Mean, Median, Mode) Standard Deviation Normal Distribution (Bell Curves)

Introduction to Statistics, Error and Measurement

PHY 111L Activity 2 Introduction to Kinematics

LAB 3 - VELOCITY AND ACCELERATION

Physics 2020 Laboratory Manual

Boyle s Law and Charles Law Activity

3.1 Measure of Center

Sampling Distributions of the Sample Mean Pocket Pennies

Introduction to Statistics for Traffic Crash Reconstruction

PROBLEMS FOR EXPERIMENT ES: ESTIMATING A SECOND Solutions

Chapter 5: Ordinary Least Squares Estimation Procedure The Mechanics Chapter 5 Outline Best Fitting Line Clint s Assignment Simple Regression Model o

Introduction to Special Relativity

Chapter 4. Displaying and Summarizing. Quantitative Data

Probabilities, Uncertainties & Units Used to Quantify Climate Change

Week 8 Cookbook: Review and Reflection

Transcription:

EXPERIMENT Reaction Time Objectives to make a series of measurements of your reaction time to make a histogram, or distribution curve, of your measured reaction times to calculate the "average" or mean of these reaction measurements as a "best value" to calculate the "standard deviation" or uncertainty associated with an individual measurement to calculate the "standard deviation" associated with the mean value to compare your calculations with the data displayed on the histogram, and with the prediction from the "normal" or Gaussian distribution to discuss the significance of data comparison when the spread in values is large Theory Two of the main purposes of this experiment are to familiarize you with the taking of experimental data and with the reduction of such data into a useful and quantitative form. In any experiment, one is concerned with the measurement of some physical quantity. In this particular experiment it will be your reaction time. When you make repeated measurements of a quantity you will find that your measurements are not all the same, but vary over some range of values. As the spread of the measurements increases, the reliability or precision of the measured quantity becomes poorer. If the measured quantity is to be of any use in further work, or to other people, it must be capable of being described in simple terms. One method of picturing measured values of a single quantity is to create a histogram. The histogram is a diagram drawn by dividing the original set of measurements into intervals or bins of predetermined size, and counting the number of measurements within each bin. One then plots the frequency (the number of times each value occurs) versus the values themselves. The histogram has the advantage of visually presenting the distribution of readings or measurements. Figure 1 shows a typical histogram for a set of observations. When placing the values into bins, one systematically puts values that occur on the bin limits into the next higher bin. 1

Figure 1 Typical histogram (bin size = 10) When analyzing data with a histogram, the distribution often times suggests that there is a "best" or most likely value, around which the individual measurements are grouped. From an intuitive approach one might say that the best value is somehow related to the middle of the distribution, while the uncertainty is related to the spread of the distribution. The following formulas, which we will define, will in general only have significance for symmetrical distributions. Using mathematical statistical theory it turns out that the best value is nothing more than the arithmetic average or mean of our measurements, which we will denote with the symbol: x. xi Best value = average = mean = x = N where x i = x 1 + x + x 3 +...+ x N N is the total number of measurements x i are the values of individual measurements (i.e. x 1, x, x 3 etc) We now need to define a quantity that is connected with the width of the distribution curve. We use a quantity that quantifies the deviations of the individual readings from the central (mean) value of the distribution. This is called "variance" and is defined as follows: ( x i x) Variance = N 1 where ( x) = ( x x) + ( x x) +... x i 1 The quantity that we will associate with the uncertainty of a single measurement is called the "standard deviation" (denoted by "s") and is simply the square root of the variance.

s = var iance We are also interested in the uncertainty of x. That is, by how much x, calculated for different sets of data, are likely to deviate from each other. This uncertainty is characterized by sm, the width of the experimental distribution of values of x or "Standard Deviation of the Mean" which is calculated by s s m = N Note: the larger the number of measurements made of a quantity by an experimenter the smaller the random uncertainty associated with the mean value. If the number of readings is very high and the bins are small, the histogram approaches a continuous curve and is called a distribution curve. Many theoretical distribution curves have been defined and their properties evaluated, but the one that is most significant in the theory of measurement is the Gaussian or "Normal" distribution. If all of the experimental data that you have obtained correspond to one and the same physical quantity, then for very large number of measurements they will be described by the Gaussian distribution with its peak at the average value x. Figure Gaussian distribution curve Some of the properties of this continuous distribution are that it is symmetric around a peak value and that it falls to zero on either side of the peak, giving it a bell shaped" appearance (see Figure above). We use the Greek letter σ to represent the standard deviation when referring to a Gaussian distribution and "s" for the standard deviation calculated from FINITE sets of observations ("s" is the best estimate of σ for a finite set of observations). When considering Gaussian distributions, the area enclosed by the range ±σ around the peak 3

will contain 68% of the area of the curve (or 68% of the measurements). This means that an individual measurement has a 68% chance of falling within a region ±σ around the peak, or "mean" value, of the distribution. An area bounded by the range ±σ will contain 95% of the area of the curve and therefore represent a 95% chance that an individual measurement will fall within this region of the distribution. This is illustrated in Figure. Procedure One member of the group will "secretly" start the digital timer with a remote switch. The subject will use the stop switch to halt the timer as fast as his or her reflexes permit. Record the reaction time and reset the timer for the next run. MAKE AT LEAST 10 PRACTICE RUNS BEFORE RECORDING ANY DATA. Record the 5 measurements of the reaction time in the.xls spreadsheet in the Reaction time folder, in the Time column. You will first be calculating X, s, s m for ONLY your first five measurements, or N=5. Do these calculations by hand first on a sheet of paper to be handed in with rest of your work at the end of the lab session. Be sure to show all your work. Now redo the calculations using the spreadsheet and compare the results: First you will have to calculate the mean value for the first 5 measurements. DO NOT JUST TYPE IN THE VALUE YOU CALCULATED BY HAND. Use the techniques learned in the first lab to enter the formula for the mean for the first 5 values. In order to do this you should use the Excel function SUM to automatically find the sum of a group of numbers. The basic form the function takes is SUM(First coordinate: Last coordinate). Therefore, typing the equation =SUM(B1:B16)/5 in the appropriate yellow Mean for N=5 cell will result in Excel calculating the mean of the quantities entered in cells B1, B13, B14, B15 and B16. Press return to activate the formula. Compare the Excel-calculated mean to the one you figured out by hand. If they don t match up, check your work and your Excel formula! The second and third columns in the spreadsheet, which are grey, are used to help you calculate the standard deviation for N=5. Look at the formula for standard deviation and make sure you understand how these two columns are steps on the way to calculating that quantity. You will type the appropriate formula into the first cell of each column and use your fill-down skills to complete them. NOTE: Since you will be filling down, you can NOT use the cell coordinate of the N=5 mean in your formulas to complete columns C and D. If you do, the fill-down function will continue to use values down the column from the mean as it completes the fill-down command. Excel assumes you want to increment the cell containing the mean value by one for each subsequent calculation unless you tell it otherwise! There are three ways to let Excel know that you do not want this cell incremented as it calculates each new value: 1. You can just type the value of the mean itself into your formula, or. You use the procedure from lab 1 to rename the cell, or 3. You can explicitly reference the cell using the $ command in Excel. To explicitly reference cell C19, enter $C$19 into your formula. 4

In the last experiment you renamed the cells to avoid this problem. In the experiment, try explicitly referencing the cell containing the mean value. You want the second column to contain ( x i x). To do this enter =B1-$C$19 in cell C1 and then use the fill down technique to have Excel calculate the value for the other four measurements (in cells C13, C14, C15 and C16). The third column should contain ( x x) i. To calculate this value, enter =C1^ in cell D1 and then use the fill down technique to have Excel calculate the other four measurements. Next, use your values in column D to create your formula for the yellow N = 5 standard deviation cell. The formula for the standard deviation is: s = variance = ( x) N 1 Notice the numerator of the ratio under the square root is just the sum of the values in column D and the denominator is just N-1 = 5-1 = 4. To enter this formula in Excel type =SQRT(SUM(D1:D16)/4) into cell C1. You can now use this cell to calculate the standard deviation of the mean for N = 5. Recall, s s m = so type =C1/SQRT(5) into cell C3 to calculate the standard deviation of the N mean. Now repeat the calculations in your spreadsheet to find the mean, s and s m for N = 10 and N = 5. You do not need to do any hand calculations for N=10 or N=5! Don t forget to change for formulae to reflect new number of measurements. Also, as the number of measurements you use changes, so will your values for the mean and standard deviation of your data. In addition, your values for the standard deviation of the mean should get smaller as N gets larger. Use Kaleidagraph to plot a histogram of your 5 measurements. To do this, go to Gallery, select Stat and then choose Histogram. You should now set your bin sizes on the histogram. The bin size should not be smaller than 5% of your standard deviation value. To set the bin size, go to the Plot menu and select Plot Options. A Plot Options window should open. Click on Histogram, choose Specifying the Bin Size and click OK. Next, go back to the Plot menu and select Axis Options. An Axis Options window should open. Click on Limits, enter your bin size in the space provided and click OK. Now, make sure your graph is properly labeled. Print out your histogram. On your printout, clearly and neatly mark the values or ranges x, x ± s and x ± sm by hand. x i 5

Questions 1) Calculate the actual percentage of all your 5 measurements which lie between X ± s (show these calculations). Does your result differ from those expected for a pure Gaussian distribution? ) Suppose your lab partner was talking to the students at an adjacent lab table when you started the timer. As a result, the time registered on the timer when it was stopped was 10 seconds. How many standard deviations (s) does this represent? Should you include this data point with the rest of your data? Why or why not? 3) If you have already taken 5 measurements, how many more measurements of reaction time would you have to take to reduce s m by a factor of two? Justify your response. 6

4) It is often necessary to compare two different pieces of data or results of two different calculations and determine if they are compatible (or consistent). In just about every experiment in this course you will be asked if two quantities are compatible or consistent. The following describes how to determine if two pieces of data are consistent (or compatible). Use this procedure to answer the question at the end and use it as a reference whenever you are asked if two pieces of data are compatible or consistent. Let s denote the pieces of data by d 1 and d. If d 1 = d or d 1 - d = 0, clearly they are compatible. We often use Δ (pronounced Delta ) to denote the difference between two quantities: Δ = d 1 d (1) This comparison must take into account the uncertainties in the observation of both measurements. So our comparison becomes, is zero within the uncertainty of the difference Δ? Which is the same thing as asking if: Δ δδ () To perform the comparison, we need to find δδ. The data values are d 1 ± δd 1 and d ± δd. The addition/subtraction rule for uncertainties is: δδ = δd 1 + δ d (3) Equation () and (3) express in algebra the statement d 1 and d are compatible if their error bars touch or overlap. The combined length of the error bars is given by (3). Δ is the separation of d 1 and d. The error bars will overlap if d 1 and d are separated by less than the combined length of their error bars, which is what () says. For more information on using uncertainties to compare data, see section 4 of Appendix A 6 cells 6 cells Two red blood cell counts are (4.53 ± 0.14) 10 and (4.84 ± 0.8) 10. 3 3 cm cm Is the probability reasonably good or very bad (choose one) that these measurements are from the same human? Evaluate the difference and comment. 7

Checklist Your lab report should include the following four items: 1) the filled spreadsheet ) the histogram 3) your calculations sheet 4) your answers to the questions 8