Part III Lectures Field-Effect Transistors (FETs) and Circuits

Similar documents
, where. This is a highpass filter. The frequency response is the same as that for P.P.14.1 RC. Thus, the sketches of H and φ are shown below.

CHAPTER 11. Solutions for Exercises. (b) An inverting amplifier has negative gain. Thus L

Introduction to Electronic circuits.

ELG4139: Op Amp-based Active Filters

55:041 Electronic Circuits

Circuits Op-Amp. Interaction of Circuit Elements. Quick Check How does closing the switch affect V o and I o?

Chapter 7. Systems 7.1 INTRODUCTION 7.2 MATHEMATICAL MODELING OF LIQUID LEVEL SYSTEMS. Steady State Flow. A. Bazoune

PHYSICS 536 Experiment 12: Applications of the Golden Rules for Negative Feedback

Design of Analog Integrated Circuits

CHAPTER 3 ANALYSIS OF KY BOOST CONVERTER

Let s start from a first-order low pass filter we already discussed.

CHAPTER 3: FEEDBACK. Dr. Wan Mahani Hafizah binti Wan Mahmud

Feedback Principle :-

The two main types of FETs are the junction field effect transistor (JFET) and the metal oxide field effect transistor (MOSFET).

FYSE400 ANALOG ELECTRONICS

Small signal analysis

EE 215A Fundamentals of Electrical Engineering Lecture Notes Operational Amplifiers (Op Amps) 8/6/01 Reviewed 10/04

EE 204 Lecture 25 More Examples on Power Factor and the Reactive Power

Bipolar-Junction (BJT) transistors

Lecture 13 - Boost DC-DC Converters. Step-Up or Boost converters deliver DC power from a lower voltage DC level (V d ) to a higher load voltage V o.

IGEE 401 Power Electronic Systems. Solution to Midterm Examination Fall 2004

Wp/Lmin. Wn/Lmin 2.5V

CTN 2/23/16. EE 247B/ME 218: Introduction to MEMS Design Lecture 11m2: Mechanics of Materials. Copyright 2016 Regents of the University of California

ELG3336: Op Amp-based Active Filters

EE 221 Practice Problems for the Final Exam

ANALOG ELECTRONICS 1 DR NORLAILI MOHD NOH

SIMULATION OF THREE PHASE THREE LEG TRANSFORMER BEHAVIOR UNDER DIFFERENT VOLTAGE SAG TYPES

The metal-oxide-semiconductor field-effect transistor consists of two p-n junctions either side of a MOS diode which acts as the gate.

FEEDBACK AMPLIFIERS. β f

CIRCUIT ANALYSIS II Chapter 1 Sinusoidal Alternating Waveforms and Phasor Concept. Sinusoidal Alternating Waveforms and

Energy & Work

III. Operational Amplifiers

Problem 1. Refracting Surface (Modified from Pedrotti 2-2)

Averaged Modeling of Non-ideal Boost Converter Operating in DCM

Is current gain generally significant in FET amplifiers? Why or why not? Substitute each capacitor with a

Key component in Operational Amplifiers

Circuit Theorems. Introduction

Lesson 5. Thermomechanical Measurements for Energy Systems (MENR) Measurements for Mechanical Systems and Production (MMER)

Exercises for Frequency Response. ECE 102, Winter 2011, F. Najmabadi

ME2142/ME2142E Feedback Control Systems. Modelling of Physical Systems The Transfer Function

The three major operations done on biological signals using Op-Amp:

ANALOG ELECTRONICS I. Transistor Amplifiers DR NORLAILI MOHD NOH

Section 3: Detailed Solutions of Word Problems Unit 1: Solving Word Problems by Modeling with Formulas

Common Gate Amplifier

Transfer Characteristic

Chapter 3, Solution 1C.

Electric and magnetic field sensor and integrator equations

Name Student ID. A student uses a voltmeter to measure the electric potential difference across the three boxes.

Edexcel GCSE Physics

Department of Electrical and Computer Engineering FEEDBACK AMPLIFIERS

The Operational Amplifier and Application

Ch5 Appendix Q-factor and Smith Chart Matching

Linear Amplifiers and OpAmps

Faculty of Engineering

Conduction Heat Transfer

V. Electrostatics Lecture 27a: Diffuse charge at electrodes

Lecture 12. Heat Exchangers. Heat Exchangers Chee 318 1

OP AMP CHARACTERISTICS

Novel current mode AC/AC converters with high frequency ac link *

Introduction of Two Port Network Negative Feedback (Uni lateral Case) Feedback Topology Analysis of feedback applications

Lecture 2 Feedback Amplifier

Chapter 10 Diodes. 1. Understand diode operation and select diodes for various applications.

ELECTRONIC DEVICES. Assist. prof. Laura-Nicoleta IVANCIU, Ph.D. C13 MOSFET operation

University of Southern California School Of Engineering Department Of Electrical Engineering

Week 11: Differential Amplifiers

BME 5742 Biosystems Modeling and Control

Lecture 10: Small Signal Device Parameters

FE REVIEW OPERATIONAL AMPLIFIERS (OP-AMPS)( ) 8/25/2010

A New Method for Solving Integer Linear. Programming Problems with Fuzzy Variables

1.4 Small-signal models of BJT

CHAPTER 3 QUASI-RESONANT BUCK CONVERTER

Diode. Current HmAL Voltage HVL Simplified equivalent circuit. V γ. Reverse bias. Forward bias. Designation: Symbol:

T-model: - + v o. v i. i o. v e. R i

Waveshapping Circuits and Data Converters. Lesson #17 Comparators and Schmitt Triggers Section BME 373 Electronics II J.

Schedule. ECEN 301 Discussion #17 Operational Amplifiers 1. Date Day Class No. Lab Due date. Exam

Thermodynamics of Materials

Lesson #15. Section BME 373 Electronics II J.Schesser

II. PASSIVE FILTERS. H(j ω) Pass. Stop

POWER AMPLIFIERS. 1. Explain what are classes A, B, AB and C amplifiers in terms of DC biasing using a MOSFET drain characteristic.

Microwave Noise and LNA Design

Physic 231 Lecture 33

FE REVIEW OPERATIONAL AMPLIFIERS (OP-AMPS)

Chapter 9 Compressible Flow 667

Modeling and Analysis of a High-Voltage DC-DC Converter with Vin/3-Voltage Stress on the Primary s Switches

Module B3. VLoad = = V S V LN

Physics 107 HOMEWORK ASSIGNMENT #20

lecture 5: Nucleophilic Substitution Reactions

PT326 PROCESS TRAINER

Microelectronics Circuit Analysis and Design. NMOS Common-Source Circuit. NMOS Common-Source Circuit 10/15/2013. In this chapter, we will:

Chapter 6. Operational Amplifier. inputs can be defined as the average of the sum of the two signals.

(b) i(t) for t 0. (c) υ 1 (t) and υ 2 (t) for t 0. Solution: υ 2 (0 ) = I 0 R 1 = = 10 V. υ 1 (0 ) = 0. (Given).

Lab 11 LRC Circuits, Damped Forced Harmonic Motion

General Amplifiers. Analog Electronics Circuits Nagamani A N. Lecturer, PESIT, Bangalore 85. Cascade connection - FET & BJT

Bicycle Generator Dump Load Control Circuit: An Op Amp Comparator with Hysteresis

Lecture 8: Small signal parameters and hybrid-π model Lecture 9, High Speed Devices 2016

LOW FREQUENCY NOISE IN JUNCTION FIELD EFFECT TRANSISTORS

Prof. Paolo Colantonio a.a

ELECTRONICS. EE 42/100 Lecture 4: Resistive Networks and Nodal Analysis. Rev B 1/25/2012 (9:49PM) Prof. Ali M. Niknejad

Chapter II Circuit Analysis Fundamentals

ZVS Boost Converter. (a) (b) Fig 6.29 (a) Quasi-resonant boost converter with M-type switch. (b) Equivalent circuit.

Transcription:

Part III Lecture 5-8 Feld-Effect Trantr (FET) and Crcut

Unverty f Technlgy Feld-Effect Trantr (FET) Electrcal and Electrnc Engneerng epartment Lecture Ffteen - Page f 8 ecnd Year, Electrnc I, 2009-200 r Ahmed aadn Ezzulddn Feld-Effect Trantr (FET) Bac efntn: The FET a emcnductr devce whe peratn cnt f cntrllng the flw f current thrugh a emcnductr channel by applcatn f an electrc feld (vltage) There are tw categre f FET: the junctn feld-effect trantr (JFET) and the metal-xde-emcnductr feld-effect trantr (MOFET) The MOFET categry further brken-dwn nt: depletn and enhancement type A Cmparn between FET and BJT: FET a unplar devce It perate a a vltage-cntrlled devce wth ether electrn current n an n-channel FET r hle current n a p-channel FET BJT made a npn r a pnp a current-cntrlled devce n whch bth electrn current and hle current are nvlved The FET maller than a BJT and thu fr mre ppular n ntegrated crcut (IC) FET exhbt much hgher nput mpedance than BJT FET are mre temperature table than BJT BJT have large vltage gan than FET when perated a an amplfer The BJT ha a much hgher entvty t change n the appled gnal (fater repne) than a FET Junctn Feld-Effect Trantr (JFET): The bac cntructn f n-channel (p-channel) JFET hwn n Fg 5-a (b) Nte that the majr part f the tructure n-type (p-type) materal that frm the channel between the embedded layer f p-type (n-type) materal The tp f the n-type (p-type) channel cnnected thrugh an hmc cntact t a termnal referred t a the dran "", whle the lwer end f the ame materal cnnected thrugh an hmc cntact t a termnal referred t a the urce "" The tw p-type materal are cnnected tgether and t the gate "" termnal ran () ate () p n-channel p n p-channel n urce () (a) Fg 5- (b)

Unverty f Technlgy Feld-Effect Trantr (FET) Electrcal and Electrnc Engneerng epartment Lecture Ffteen - Page 2 f 8 ecnd Year, Electrnc I, 2009-200 r Ahmed aadn Ezzulddn Bac Operatn f JFET: Ba vltage are hwn, n Fg 5-2, appled t an n-channel JFET deve prvde a dran-t-urce vltage,, (dran ptve relatve t urce) and upple current frm dran t urce, I, (electrn mve frm urce t dran) et the revere-ba vltage between the gate and the urce,, (gate baed negatve relatve t the urce) Input mpedance at the gate very hgh, thu the gate current I 0 A evere bang f the gate-urce junctn prduce a depletn regn n the n-channel and thu ncreae t retance The channel wdth can be cntrlled by varyng the gate vltage, and thereby, I can al be cntrlled The depletn regn are wder tward the dran end f the channel becaue the revere-ba vltage between the gate and the dran grater than that between the gate and the urce epletn regn I I 0A p p n Electrn flw Fg 5-2 JFET Charactertc: When 0 and < P (pnch-ff vltage)*: I re lnearly wth (hmc regn, n-channel retance cntant), a hwn n Fg 5-3 When ncreaed t a level where t appear that the tw depletn regn wuld "tuch", a cndtn referred t a pnch-ff wll reult The level f that etablhe th cndtn referred t a the pnch-ff vltage and dented by P

Unverty f Technlgy Feld-Effect Trantr (FET) Electrcal and Electrnc Engneerng epartment Lecture Ffteen - Page 3 f 8 ecnd Year, Electrnc I, 2009-200 r Ahmed aadn Ezzulddn 0 _ p n p I < P _ Fg 5-3 I 0 I (ma) P Increang retance due t narrwng channel n-channel retance ( ) When 0 and P : I reman at t aturatn value I beynd P, a hwn n Fg 5-4 0 _ p n p I P _ I 0 I (ma) P aturatn level 0 ( ) Fg 5-4 When < 0 and me ptve value: The effect f the appled negatve-ba t etablh depletn regn mlar t the btaned wth 0 but at lwer level f Therefre, the reult f applyng a negatve ba t the gate t reach the aturatn level at lwer level f, a hwn n Fg 5-5 Fg 5-5

Unverty f Technlgy Feld-Effect Trantr (FET) Electrcal and Electrnc Engneerng epartment Lecture Ffteen - Page 4 f 8 ecnd Year, Electrnc I, 2009-200 r Ahmed aadn Ezzulddn ummary: Fr n-channel JFET: The maxmum current defned a I and ccur when 0 and P a hwn n Fg 5-6a 2 Fr gate-t-urce vltage le than (mre negatve than) the pnch-ff level, the dran current 0 A (I 0 A) a appearng n Fg 5-6b 3 Fr all level f between 0 and the pnch-ff level, the current I wll range between I and 0 A, repectvely, a hwn n Fg 5-6c (a) (b) (c) Fg 5-6 Fr p-channel JFET a mlar lt can be develped (ee Fg 5-7) Fg 5-7

Unverty f Technlgy Feld-Effect Trantr (FET) Electrcal and Electrnc Engneerng epartment Lecture Ffteen - Page 5 f 8 ecnd Year, Electrnc I, 2009-200 r Ahmed aadn Ezzulddn hckley' Equatn: Fr the BJT the utput current I C and nput cntrllng current I B were related by β, whch wa cndered cntant fr the analy t be perfrmed In equatn frm: I cntrl varable β C I B cntant In the abve equatn a lnear relatnhp ext between I C and I B Unfrtunately, th lnear relatnhp de nt ext between the utput (I ) and nput ( ) quantte f a JFET The relatnhp between I and defned by hckley' equatn: cntrl varable 2 I I [5] P cntant The quared term f the equatn wll reult n a nnlnear relatnhp between I and, prducng a curve that grw expnentally wth decreang magntude f Tranfer Charactertc: Tranfer charactertc are plt f I veru fr a fxed value f The tranfer curve can be btaned frm the utput charactertc a hwn n Fg 5-8, r t can be ketched t a atfactry level f accuracy (ee Fg 5-9) mply ung hckley' equatn wth the fur plt pnt defned n Table 5- Fg 5-8

Unverty f Technlgy Feld-Effect Trantr (FET) Electrcal and Electrnc Engneerng epartment Lecture Ffteen - Page 6 f 8 ecnd Year, Electrnc I, 2009-200 r Ahmed aadn Ezzulddn Table 5- I I P () I (ma) 0 I 03 P I / 2 05 P I / 4 P 0 2 I (ma) I I / 2 0 I P 05 P 03 P Fg 5-9 / 4 ( ) Imprtant elatnhp: A number f mprtant equatn and peratng charactertc have ntrduced n the lat few ectn that are f partcular mprtance fr the analy t fllw fr the dc and ac cnfguratn In an effrt t late and emphaze ther mprtance, they are repeated belw next t a crrepndng equatn fr the BJT The JFET equatn are defned fr the cnfguratn f Fg 5-0a, whle the BJT equatn relate t Fg 5-0b (a) Fg 5-0 (b) JFET BJT 2 I I P IC βi B I I IC I E I 0A BE 0 7

Unverty f Technlgy Feld-Effect Trantr (FET) Electrcal and Electrnc Engneerng epartment Lecture Ffteen - Page 7 f 8 ecnd Year, Electrnc I, 2009-200 r Ahmed aadn Ezzulddn Trancnductance Factr: The change n dran current that wll reult frm a change n gate-t-urce vltage can be determned ung the trancnductance factr g m n the fllwng manner: Δ I g Δ m The trancnductance factr, g m, (n pecfcatn heet, g m prvded a y f ) the lp f the charactertc at the pnt f peratn, a hwn n Fg 5- That, ΔI gm y f Δ cnt Fg 5- An equatn fr g m can be derved a fllw: g m 2 2 di d d I I d d Q pt P d P gm d 2 I 2I 0 P d P P P gm 2I P P [52] and 2I gm P [53] where g m the value f g m at 0 Equatn [52] then becme: gm gm P [54] JFET Output Impedance: The utput mpedance (r d ) defned n the dran (utput) charactertc f Fg 5-2 a the lpe f the hrzntal charactertc curve at the pnt f peratn In equatn frm: Δ rd [55] y ΔI cnt

Unverty f Technlgy Feld-Effect Trantr (FET) Electrcal and Electrnc Engneerng epartment Lecture Ffteen - Page 8 f 8 ecnd Year, Electrnc I, 2009-200 r Ahmed aadn Ezzulddn where y the utput admttance, wth the unt f μ, a appear n JFET pecfcatn heet JFET AC Equvalent Crcut: Fg 5-2 The cntrl f I d by g nclude a a current urce g m g cnnected frm dran t urce a hwn n Fg 5-3 The current urce ha t arrw pntng frm dran t urce t etablh a 80 phae hft between utput and nput vltage a wll a ccur n actual peratn The nput mpedance repreented by the pen crcut at the nput termnal and the utput mpedance by the retr r d frm dran t urce g I d d g _ g m g r d d Fg 5-3 Exerce: ketch the tranfer curve defned by I 2 ma and P 6 2 Fr a JFET wth I 8 ma and P 4, determne: a the maxmum value f g m (that, g m ), and b the value f g m at the fllwng dc ba pnt: 05, 5, and 25 3 ven y f 38 m and y 20 μ, ketch the JFET ac equvalent mdel

Unverty f Technlgy C Bang Crcut f JET Electrcal and Electrnc Engneerng epartment Lecture xteen - Page f 8 ecnd Year, Electrnc I, 2009-200 r Ahmed aadn Ezzulddn C Bang Crcut f JFET Fxed-Ba Cnfguratn: Fr the crcut f Fg 6-, I 0A, and I 0 Fr the nput crcut, 0, and Frm hckley' equatn: I I P 2 Fg 6- Fr the utput crcut, I and I 0, A graphcal analy hwn n Fg 6-2 Example 6-: Fg 6-2 Fr the crcut f Fg 6- wth the fllwng parameter: I 0 ma, P 8, 6, 2, MΩ, and 2 kω, determne the fllwng: Q, I Q,,,, and lutn: Frm Fg 6-3:, and I Q 5 6mA Q 2 I 6 (56m)(2k) 4 8 4 8 2 0 Fg 6-3

Unverty f Technlgy C Bang Crcut f JET Electrcal and Electrnc Engneerng epartment Lecture xteen - Page 2 f 8 ecnd Year, Electrnc I, 2009-200 r Ahmed aadn Ezzulddn 2 elf-ba Cnfguratn: Fr the crcut f Fg 6-4, I 0A, and I 0 I I, and I Fr the nput crcut, 0, and I Fg 6-4 Frm hckley' equatn: I I P 2 elf-ba lne Fr the utput crcut, 0, ( and I ) A graphcal analy hwn n Fg 6-5 Example 6-2: Fg 6-5 Fr the crcut f Fg 6-4 wth the fllwng parameter: I 8 ma, P 6, 20, MΩ, kω, and 33 kω, determne the fllwng: Q, I Q,,,, and lutn: Chng I 4mA, we btan I ( 4m)(k ) 4 At the Q-pnt (ee Fg 6-6): Q 2 6, and I Q 2 6mA I ( ) 20 (26m)(k 33k) 8 82 0, and I ( 26m)(k ) 2 6 I 20 (26m)(33k) 42, Fg 6-6 r 882 26 42

Unverty f Technlgy C Bang Crcut f JET Electrcal and Electrnc Engneerng epartment Lecture xteen - Page 3 f 8 ecnd Year, Electrnc I, 2009-200 r Ahmed aadn Ezzulddn Example 6-3 (Cmmn-ate Cnfguratn): Fr the cmmn-gate cnfguratn f Fg 6-7, determne the fllwng: Q, I Q,,,, and C 2 C Fg 6-7 lutn: Chng I 6mA, we btan At the Q-pnt (ee Fg 6-8): I ( 6m)(680) 408 2, and I Q 3 8mA Q 6 I 2 (38m)(5k ) 6 3 0 I ( 38m)(680) 2 58 6 3 258 3 72 Fg 6-8

Unverty f Technlgy C Bang Crcut f JET Electrcal and Electrnc Engneerng epartment Lecture xteen - Page 4 f 8 ecnd Year, Electrnc I, 2009-200 r Ahmed aadn Ezzulddn Example 6-4 (egn): Fr the crcut f Fg 6-9, the level f Q and I Q are pecfed etermne the requred value f and lutn: Fg 6-9 Q 20 2 3 2kΩ I I 25m Q Q Plttng the tranfer curve a hwn n Fg 6-0 and drawng a hrzntal lne at I Q 25 ma wll reult n Q, and applyng I wll etablh the level f : Q ( ) 0 kω I 25m 4 Q Fg 6-0

Unverty f Technlgy C Bang Crcut f JET Electrcal and Electrnc Engneerng epartment Lecture xteen - Page 5 f 8 ecnd Year, Electrnc I, 2009-200 r Ahmed aadn Ezzulddn 3 ltage-vder Ba Cnfguratn: Fr the crcut f Fg 6-, I 0A I I, and 2 2 Fr the nput crcut, and I I 2 0,, I Fg 6- Frm hckley' equatn: I I P 2 ltage-dvder ba lne Fr the utput crcut, 0, ( and I ) A graphcal analy hwn n Fg 6-2 Example 6-5: Fg 6-2 Fr the crcut f Fg 6- wth the fllwng parameter: I 8 ma, P 4, 6, 2 MΩ, 2 270 kω, 24 kω, and 5 kω, determne the fllwng: Q, I Q,,,, and lutn: 2 (6)(270k) 82 2 2M 270k I 82 I (5k ), when I 0mA : 82, and when 0 : I 82 ma 5k 2 At the Q-pnt (ee Fg 6-3): Q 8, and I Q 2 4mA Fg 6-3

Unverty f Technlgy C Bang Crcut f JET Electrcal and Electrnc Engneerng epartment Lecture xteen - Page 6 f 8 ecnd Year, Electrnc I, 2009-200 r Ahmed aadn Ezzulddn I 6 (24m)(24k) 0 24 I ( 24m)(5k ) 3 6 I ( ) 6 (24m)(24k 5k) 6 r 0 24 36 6 64 0 24 82 8 64 42, Example 6-6 (Tw upple): etermne the fllwng fr the crcut f Fg 6-4; Q, I Q,,, and lutn: Fg 6-4 Fr the nput crcut f Fg 6-4, I 0 (KL) and I 0A I I, I 0 I (5k ), fr I 0mA ; 0, and fr 0 ; I 0 6 ma 5k 67 At the Q-pnt (ee Fg 6-5): Q 0 35, and I Q 6 9mA Fr the utput crcut f Fg 6-4, I I 0, I ( ) Fg 6-5 20 0 (69m)(8k 5k) 7 23 I 20 (69m)(8k ) 7 58 7 58 723 0 35

Unverty f Technlgy C Bang Crcut f JET Electrcal and Electrnc Engneerng epartment Lecture xteen - Page 7 f 8 ecnd Year, Electrnc I, 2009-200 r Ahmed aadn Ezzulddn Example 6-7 (p-channel JFET): etermne Q, I Q, and fr the p-channel JFET f Fg 6-6 lutn: Fg 6-6 2 ( 20)(20k) 4 55 2 20k 68k I 455 I (8k), when I 0mA : 4 55, and when 0 : I ( 455) 2 ma 8k 53 At the Q-pnt (ee Fg 6-7): Q 4, and I Q 3 4mA I ( ) 20 (34m)(27k 8) 4 7 Fg 6-7

Unverty f Technlgy C Bang Crcut f JET Electrcal and Electrnc Engneerng epartment Lecture xteen - Page 8 f 8 ecnd Year, Electrnc I, 2009-200 r Ahmed aadn Ezzulddn Exerce: Fr the cmmn-dran (urce-fllwer) cnfguratn f Fg 6-8, determne the fllwng: Q, I Q,,,,, and C 9 I 6mA P 4 C 2 MΩ 22kΩ Fg 6-8 2 Fr the vltage-dvder ba cnfguratn f Fg 6-9, f 2 and 2, determne the value f Fg 6-9

Unverty f Technlgy JFET mall-gnal Analy Electrcal and Electrnc Engneerng epartment Lecture eventeen - Page f 7 ecnd Year, Electrnc I, 2009-200 r Ahmed aadn Ezzulddn JFET mall-gnal Analy Cmmn-urce Cnfguratn: The cmmn-urce cnfguratn crcut f Fg 7- nclude a urce retr ( ) that may r may nt be bypaed by a urce capactr (C ) n the ac dman g I C Z C C Z I C L Z Fg 7- Bypaed (abence f ): Fr the ac equvalent crcut f Fg 7-2, g I g d I Z g g m g rd Z Z L Fg 7-2 Input mpedance: Z Output mpedance: Apprxmate (neglectng r d ); Exact (ncludng r d ); Z (fr r 0 ) Z r d d L Z L Z L rd Z

Unverty f Technlgy JFET mall-gnal Analy Electrcal and Electrnc Engneerng epartment Lecture eventeen - Page 2 f 7 ecnd Year, Electrnc I, 2009-200 r Ahmed aadn Ezzulddn ltage gan: Apprxmate (neglectng r d ); Exact (ncludng r d ); g ( ), A g r ) g m, g L Av gm ( L ) A Z v Av Z Current gan: I A A I v Z L g v m ( L d Phae relatnhp: The negatve gn n the reultng equatn fr A v reveal that a 80 phae hft ccur between the nput and utput gnal Unbypaed (nclude f ): Fr the apprxmate ac equvalent crcut ( r Ω ) f Fg 7-3, d I g d I g Z g g m g r d Z L Fg 7-3 Output mpedance: Fr 0, I I g, wth that m g g ( I I ) 0 I I g m ( I I ), r I ( g m ) I ( g m ) and I nce I I, Then I ) I Z I, (, and,

Unverty f Technlgy JFET mall-gnal Analy Electrcal and Electrnc Engneerng epartment Lecture eventeen - Page 3 f 7 ecnd Year, Electrnc I, 2009-200 r Ahmed aadn Ezzulddn ltage gan: g ( ) m g L g g gmg > ( g m ) g A v gm ( L g m ) Cmmn-ran (urce-fllwer) Cnfguratn: The cmmn-dran (urce-fllwer) cnfguratn crcut hwn n Fg 7-4 I C g Z Z C C I L Fr the ac equvalent crcut f Fg 7-5, Fg 7-4 I g d g Z g g m g Z r d I L Fg 7-5 Input mpedance: Z [hgh] Output mpedance: Fr 0, I gmg I r I rd d > I, wth > I ( r g ), ( rd ) gmg g 0 d m

Unverty f Technlgy JFET mall-gnal Analy Electrcal and Electrnc Engneerng epartment Lecture eventeen - Page 4 f 7 ecnd Year, Electrnc I, 2009-200 r Ahmed aadn Ezzulddn and Z I [ r ( g )] d > Z r / g [lw] Z m d / gm (fr d gm ltage gan: g r ), A A g v v m g ( L d m r 0 ) g gmg ( L rd ) > [ gm ( L rd )] g, gm ( L rd ) [le than ] g ( r ) m L d gm ( L ) (fr rd 0 ) g ( ) Phae elatnhp: and are n-phae m L Cmmn-ate Cnfguratn: The cmmn-gate cnfguratn crcut hwn n Fg 7-6 I C C C I g Z Z L Fg 7-6 Fr the apprxmate ac equvalent crcut ( r Ω ) f Fg 7-7, d r d g I g m g d I Z g g Z L Fg 7-7

Unverty f Technlgy JFET mall-gnal Analy Electrcal and Electrnc Engneerng epartment Lecture eventeen - Page 5 f 7 ecnd Year, Electrnc I, 2009-200 r Ahmed aadn Ezzulddn Input mpedance: Z g / m [lw] (erve) gm Output mpedance: Z ltage gan: gmg ( L ), and g > A v gm ( L ) Phae elatnhp: and are n-phae Example 7- (Analy): Fr the JFET amplfer crcut f Fg 7-8 wth parameter g m 22 m, determne: Z, Z, Z, A v /, A I /I, Av / and Aume rd > 0 6 C I 2MΩ 24kΩ Z C C 20μF I L Z 47kΩ g 0μF kω 200m Z 2 270kΩ 2 03kΩ 2kΩ 20μF C Fg 7-8 lutn: Z 2M 027M 239kΩ Z A 2 4kΩ, Z L 2 4 7k 24k 59kΩ gm ( L ) (22m)(59k) 2 g (22m)(03k) v m

Unverty f Technlgy JFET mall-gnal Analy Electrcal and Electrnc Engneerng epartment Lecture eventeen - Page 6 f 7 ecnd Year, Electrnc I, 2009-200 r Ahmed aadn Ezzulddn Z ( 2)(239k) A Av 07 L 47k Z k Av ( 2)(239 ) Av 2 Z 239k k 0 A v g 2 0(200m) 420m A v Example 7-2 (egn): Cmplete the degn f the JFET amplfer crcut hwn n Fg 7-9 t have a vltage gan magntude f 75 db, ung a relatvely hgh level f g m fr th devce defned at Q P /4 Aume r > 0 d 20 C C g C 0μF kω 00m 0MΩ 0μF I 0mA P 4 C L 40μF 6kΩ Fg 7-9 lutn: Q P / 4 4/ 4, 2I 2(0m) gm 3 75m P, P 4 4 db) 20lg A 75 20lg A A 75, I ( 0 v 0 v v v gm L ) 75 375m(6k ) 3 2 2 Q Q I 0m 5 625mA P 4 Q I Q 5625m( ) 78Ω A ( kω,

Unverty f Technlgy JFET mall-gnal Analy Electrcal and Electrnc Engneerng epartment Lecture eventeen - Page 7 f 7 ecnd Year, Electrnc I, 2009-200 r Ahmed aadn Ezzulddn Exerce: Fr each ne f the crcut hwn n Fg 7-0, determne: (a), and g m (b) Z, and Z (c) Av /, and A I / I 8 g I C 82μF 05kΩ Z 2MΩ 2 I 6mA P 6 Z C C I 82μF 33kΩ 22kΩ L g I C 56μF kω Z I 5mA P 4 33kΩ C C 56μF Z 2kΩ I L 47kΩ (a) Fg 7-0 (b) 2 Che the value f,, and L fr the JFET amplfer crcut f Fg 7- that wll reult n a gan f 8062 db Aume that I 8 ma, P 4, r d Ω, Q / 0375, and I Q /I 025 Calculate A /, and ketch v 6 C C C μf L g 0μF kω 3 50n (2π 0 )t m Fg 7-

Unverty f Technlgy Frequency epne f JFET Amplfer Electrcal and Electrnc Engneerng epartment Lecture Eghteen - Page f 5 ecnd Year, Electrnc I, 2009-200 r Ahmed aadn Ezzulddn Frequency epne f JFET Amplfer Lw-Frequency epne f JFET Amplfer: The Capactr C, C C, and C wll determne the lwer-cutff frequency (f L ) f the cmmn-urce JFET amplfer hwn n Fg 8-, but the reult can be appled t any JFET amplfer Fr the cutff-frequency f C, X > g C C C f L 2 π ( g ) where C Fr the cutff-frequency f C C, X > L C C g C C L Fg 8- π C f L C 2 ( L ) C eq where Fr the cutff-frequency f C, > eq X C C f L 2πeq where / g eq m The lwer-cutff frequency, f Max[ f L L, f L C, f L ]

Unverty f Technlgy Frequency epne f JFET Amplfer Electrcal and Electrnc Engneerng epartment Lecture Eghteen - Page 2 f 5 ecnd Year, Electrnc I, 2009-200 r Ahmed aadn Ezzulddn Hgh-Frequency epne f JFET Amplfer: The analy f the hgh-frequency repne f the JFET amplfer mlar t that encuntered fr the BJT amplfer A hwn n Fg 8-2, there are nterelectrde and wrng capactance that wll determne the hgh-frequency charactertc f the amplfer The capactr C g and C gd typcally vary frm t 0 pf, whle the capactance C d uually qute a bt maller, rangng frm 0 t pf C gd C C C C d g C W L C g C W C Fg 8-2 nce the crcut f Fg 8-2 an nvertng amplfer, a Mller effect capactance wll appear n the hgh-frequency ac equvalent crcut appearng n Fg 8-3 The cutff frequence defned by the nput and utput crcut can be btaned by frt fndng the Thevenn equvalent crcut fr each ectn a hwn n Fg 8-3 g Th C g g m g L Th C C C C C C CW C g CM W d M Th Th E Th C E Th C Fg 8-3

Unverty f Technlgy Frequency epne f JFET Amplfer Electrcal and Electrnc Engneerng epartment Lecture Eghteen - Page 3 f 5 ecnd Year, Electrnc I, 2009-200 r Ahmed aadn Ezzulddn Fr the nput crcut, f H 2π Th C and wth C Th W g C C C C C ( A ) C g M W g v gd Fr the utput crcut, f H 2π Th C and wth C Th W L C C C C C ( / A ) C d M W d v gd The hgher-cutff frequency, f Mn[ f H, f H H ] Example 8-: Fr the JFET amplfer crcut hwn n Fg 8-4, wth the fllwng parameter: I 8 ma, P 4, r d > 0, C gd 2 pf, C g 4 pf, C d 05 pf, C W 5 pf, and C W 6 pf a etermne f L, f H, and BW b ketch the frequency repne 20 47kΩ C C g C 00μF 0kΩ MΩ kω 05μF C L 2μF 22kΩ Fg 8-4

Unverty f Technlgy Frequency epne f JFET Amplfer Electrcal and Electrnc Engneerng epartment Lecture Eghteen - Page 4 f 5 ecnd Year, Electrnc I, 2009-200 r Ahmed aadn Ezzulddn lutn: Frm dc analy (ee Fg 8-5): Q 2, and I Q 2mA, g 2I Q 2(8m) 2 m P, P 4 4 m 2 Av g m ( L ) 2m(22k 47k) 3 elf-ba lne (k ) I Q-pnt -4-3 -2 - ( P ) f L Hz 2π ( g ) C 2π (0k M )(00μ) 6, Fg 8-5 f L Hz C 2π ( L ) CC 2π (22k 47k)(05μ) 46, eq / gm k 05k 333 3Ω, f L Hz 2 eqc 239, π 2π (3333)(2μ) The lwer-cutff frequency, f L Max[ f L, f, ] L f C L Max[ 6,46,239] 239Hz I (ma) 8 6 4 2 0 ( I ) I Q 2mA ( ) Q 2 C f C f 0 k M 9 kω, Th g 9 H C W C 2π Th g C ( A ) C 5 p 4 p ( 3)(2 p) 7 pf, v gd 94566kHz, 2π (99k)(7 p) 2 2k 47k kω, Th L 5 H C W C 2π Th d C ( / A ) C 6 p 05p ( /3)(2 p) 97 pf, v gd 57MHz, 2π (5k )(97 p) The hgher-cutff frequency, f Mn[ f, f ] H H H Mn[ 94566k,57M ] 945 66kHz The bandwdth, BW f H f L 94566k 239 945 42kHz

Unverty f Technlgy Frequency epne f JFET Amplfer Electrcal and Electrnc Engneerng epartment Lecture Eghteen - Page 5 f 5 ecnd Year, Electrnc I, 2009-200 r Ahmed aadn Ezzulddn The frequency repne fr the lw- and hgh-frequency regn and bandwdth are hwn n Fg 8-6 Av Av md db f LC f L - 3 db - 5-0 0 f L 0 00 k 0k 00k M 0M f L BW f H f H 00M f H f (lg cale) - 5 Fg 8-6 Exerce: Fr the JFET amplfer crcut f Fg 8-7, determne the lwer- and hgher-cutff frequence and ketch the frequency repne CW 3 CW 5 pf pf 20 g C dg 4 pf C g 6 pf C d pf C μf 5kΩ 2 220kΩ 68kΩ 39kΩ C C 68μF I 0mA P 6 C L 22kΩ 0μF 56kΩ Fg 8-7