Investigation of Free Volume in Polymers by Positron Annihilation Lifetime Spectroscopy (PALS)

Similar documents
Free volume and Phase Transitions of 1-Butyl-3-Methylimidazolium Based Ionic Liquids: Positron Lifetime

Characterisation of mesopores - ortho-positronium lifetime measurement as a porosimetry technique

Study of semiconductors with positrons. Outlook:

Characterisation of Free Volume in Amorphous Materials by PALS in Relation to Relaxation Phenomena

Identification of Getter Defects in high-energy self-implanted Silicon at Rp/2

Outlook: Application of Positron Annihilation for defects investigations in thin films. Introduction to Positron Annihilation Methods

Positronium Chemistry in Liquids - First investigations at the GiPS setup

in Si by means of Positron Annihilation

Vacancy-like defects in SI GaAs: post-growth treatment

Nuclear Instruments and Methods in Physics Research B 142 (1998) 191±202

Defect chemistry in GaAs studied by two-zone annealings under defined As vapor pressure. Outlook:

The MePS System at Helmholtz-Zentrum Dresden-Rossendorf and its special Capability for Positronium Lifetime Spectroscopy

Application of positrons in materials research

Investigation of SiC by Positrons

On Relationship between PVT and Rheological Measurements of Polymer Melts

Unmanageable Defects in Proton- Irradiated Silicon: a Factual Outlook for Positron Probing N. Yu. Arutyunov 1,2, M. Elsayed 1, R.

Positron Annihilation Spectroscopy - A non-destructive method for material testing -

Research Center Dresden Rossendorf

Material Science using Positron Annihilation

Positron Lifetime Spectroscopy of Silicon Nanocontainers for Cancer Theranostic Applications

Positron Annihilation as tool in materials science. R. Krause-Rehberg, Dept. of Physics, University Halle

New Concept of EPOS Progress of the Mono-energetic Positron Beam (MePS) Gamma-induced Positron Spectroscopy (GiPS)

Vacancy generation during Cu diffusion in GaAs M. Elsayed PhD. Student

Defect structure and oxygen diffusion in PZT ceramics

Introduction into Positron Annihilation

The EPOS System (ELBE Positron Source) at Helmholtz Centre Dresden- Rossendorf and first experiments at photovoltaic CIGS layers

Basics and Means of Positron Annihilation

Positron annihilation study of the free volume changes in thermally treated polymers based on acrylate oligomers

PRINCIPLES OF POSITRON ANNIHILATION

Supporting Information for. Intrinsically Hierarchical Nanoporous Polymers via Polymerization-Induced Microphase. Separation

2. Point Defects. R. Krause-Rehberg

The intense, pulsed positron source EPOS at the Research Centre Dresden-Rossendorf

Development status of the positron lifetime beam MePS and the first lifetime measurements of porous ultra-low-k dielectrics with MePS

Positron Annihilation Spectroscopy

Free Volume Structure of Acrylic-Type Dental Nanocomposites Tested with Annihilating Positrons

Positron Annihilation Lifetime Spectroscopy (PALS)

Motivation. g-spectroscopy deals with g-ray detection and is one of the most relevant methods to investigate excited states in nuclei.

Improvement of depth resolution of VEPAS by a sputtering technique

SUPPLEMENTARY INFORMATION

Electronic Supplementary Information

Supporting Information (19 pages)

Measurement and Analysis of the Positron Annihilation Lifetime Spectra for Mesoporous Silica

CHAPTER-II Experimental Techniques and Data Analysis (Positron annihilation spectroscopy)

Positronium Formation at Low Temperatures in Polymers and Other Molecular Solids

positron source EPOS - general concept - timing system - digital lifetime measurement

Triplet state diffusion in organometallic and organic semiconductors

The intense Positron Source EPOS at ELBE Radiation Source of Research Center Rossendorf

Supplementary Information for. Mechanochemical route to the synthesis of nanostructured Aluminium nitride

Positron theoretical prediction

M. Werner, E. Altstadt, M. Jungmann, G. Brauer, K. Noack, A. Rogov, R. Krause-Rehberg. Thermal Analysis of EPOS components

The intense positron source EPOS at Research Center Rossendorf

2. Point Defects. R. Krause-Rehberg

ORTHO-POSITRONIUM LIFETIME AS A DETECTOR OF SPIN-CROSSOVER

Positron Annihilation in Materials Science

Positron Annihilation Spectroscopy on Defects in Semiconductors

A Molecular Modeling Approach to Predicting Thermo-Mechanical Properties of Thermosetting Polymers

Basic Semiconductor Physics

R. Krause-Rehberg. Martin-Luther-Universität Halle-Wittenberg. Positron Lifetime / Doppler Broadening / Angular Correlation / AMOC

Structure Analysis of Bottle-Brush Polymers: Simulation and Experiment

Is Kapton Really That Simple?

Europass Curriculum Vitae

Chapter 10. Liquids and Solids

Ortho-positronium in liquid alkanes

Highly piezoelectric, thermal stable ferroelectrets from cyclic olefin copolymer. Yan Li, Hui Wang, Changchun Zeng ANTEC 2015, Orlando

Hydrogen-induced defects in bulk niobium

Micelles from self-assembled Double-Hydrophilic PHEMA- Glycopolymer-Diblock Copolymers as multivalent Scaffolds for Lectin Binding

Effect of entropy on the dynamics of supercooled liquids: new results from high pressure data

NMR Studies of Polyethylene: Towards the Organization of Semi Crystalline Polymers

Chapter 6 ELECTRICAL CONDUCTIVITY ANALYSIS

Identification of the 0.95 ev luminescence band in n-type GaAs:Si

FREE VOLUME IN EPDXY-COAL RESINS STUDIED BY POSITRON ANNIHILATION

4.2 Molecular orbitals and atomic orbitals Consider a linear chain of four identical atoms representing a hypothetical molecule.

CHAPTER 4 IMPERFECTIONS IN SOLIDS PROBLEM SOLUTIONS

EE143 Fall 2016 Microfabrication Technologies. Evolution of Devices

National Institute of Materials Physics Bucharest-Magurele. Cristian-Mihail Teodorescu, PhD, S.R.1, Surfaces and Interfaces,

Lecture 5 - Carrier generation and recombination (cont.) September 12, 2001

Supplementary information: Applying Polymer. Blend Dynamics Concepts to a Simplified. Industrial System. A Combined Effort by Dielectric Spectroscopy

Using the thermal electrical fluctuation method to investigate molecular mobility in structurally inhomogeneous polymer systems

Interfacial interaction in PP/EPDM polymer blend studied by positron annihilation

RHEOLOGICAL AND MORPHOLOGICAL INFLUENCES ON THE VISCOELASTIC BEHAVIOUR OF POLYMER COMPOSITES

Aging in laponite water suspensions. P. K. Bhattacharyya Institute for Soldier Nanotechnologies Massachusetts Institute of Technology

Latest Developments in GPC Analysis of Adhesive and Sealant Polymers Mark Pothecary PhD Americas Product Manager Malvern Instruments

QENS in the Energy Domain: Backscattering and Time-of

pn JUNCTION THE SHOCKLEY MODEL

MD Toughness Predictions for Hybrids for Extreme Environments. Logan Ward Summer Intern, JEOM Program Mentor: Dr. Mollenhauer RXBC

plane in a cubic unit cell. Clearly label the axes. (b) Draw two directions in the ( 112)

Antibacterial Properties of Silver-polycarbonate Nanocomposite Synthesized by Gamma Radiation-assisted Diffusion Method

on basis of the Geant4 simulations

Frontiers of Fracture Mechanics. Adhesion and Interfacial Fracture Contact Damage

NMR Dynamics and Relaxation

Mechanical Properties of Monodomain Side Chain Nematic Elastomers

Simple lattice-gas model for water

Electrical Conduction in Ceramic Materials 1 Ref: Barsoum, Fundamentals of Ceramics, Ch7, McGraw-Hill, 2000

In situ Experiments in Material Science:

University Graz / Austria Institut für Chemie Volker Ribitsch

Disordered Materials: Glass physics

A Technical Whitepaper Polymer Technology in the Coating Industry. By Donald J. Keehan Advanced Polymer Coatings Avon, Ohio, USA

of mforma.ton mcluding suggestion, for reducing this burden, to Washington H^^^i ^^t^ '?* "^ ^'^ W a " y 0ther^ of *» c " e <* n

Ion Implantation ECE723

AIIMS,CBSE,AIPMT, AFMC,Bio.Tech & PMT, Contact : , Mail at :- by AKB

Transcription:

Investigation of Free Volume in Polymers by Positron Annihilation Lifetime Spectroscopy (PALS) Master Thesis by M. Qasim Shaikh Under supervision of Prof. Reinhard Krause-Rehberg Martin-Luther-Universität Halle-Wittenberg Fachbereich Physik

Structure of the free volume free volume due to structural, static or dynamic, disorder important for several macroscopic properties of these materials, viscosity, molecular transport, structural relaxation, and physical aging Page 02 of 25 Schematic representaion of a single Poly (Propylene) microstructure (X=76) (Simulation, Theodoru et al. 1985)

Experimental Ways to determine Free Volume in Polymers Positron Annihilation Lifetime Spectroscopy (PALS) Detection of subnanometric local free volumes (holes): Size distribution (mean hole volume <v h > and mean dispersion σ h ) Pressure-Volume-Temperature-Experiments (PVT) Analysis by Simha-Somcynsky lattice-hole model EOS Fraction of vacancies h, specific hole free. = hv, and occupied volumes, V occ = (1-h)V Correlation of PALS and PVT allows estimation of PALS hole density = N h <v h > All parameters of the structure of hole free volume can be obtained from PALS and PVT Page 03 of 25

Basics of PALS Thermalization Diffusion Annihilation Page 04 of 25

Basic Principles and Theories of Positron Annihilation in Polymers Page 05 of 25

Ps Formation in Polymers β + source e + - - - - - - - - - Ps - - Page 06 of 25

Pick-Off Annihilation 0.5 nm Ps τ= 2-4 ns Ps localization in a hole of the (excess) free volume Ps τ = 1 ns Page 07 of 25 Ps localization in interstitial free volume gives the packing coefficient C of the crystals

Theory of Tau-Eldrup (TE) Model τ The height of the potential is infinity, and δr empirical parameter o Ps pickoff = 1 r Sources of Positron δr = 0.166 nm h rh + δ r o-ps lifetime τ po (ns) 0.5ns 1 2π r h + Sin 2π rh + δ r Page 08 of 25 10 9 8 Tao-Eldrup Standard Model 7 6 5 4 3 2 threshold 1 0 0 1 2 3 4 5 6 7 hole radius r h (Å) mean hole volume v h (τ 3 ) = (4/3)πr h3 (τ 3 )

The Positron Lifetime Measurement Page 09 of 25

Positron Laboratory at MLU Sources of Positron Page 10 of 25

Typical PALS Spectrum 1 2 3 PC Sources of Positron p-ps... τ 1 = 0,125 ns Free Annihilation τ 2 = 0,4 ns o-ps (Pick-off annihilation) τ 3 0,5 ns n(t) = I 1 exp(-t/τ 1 ) + I 2 exp(-t/τ 2 )+ I 3 exp(-t/τ 3 )

Typical Lifetimes in Holes of: Sources of Positron Page 12 of 25

Analysis of COC and PC Cyclo Olefin Copolymer (COC) Poly Carbonate (PC) Un-treated, Pressure Densified, and Gas Exposed. Page 13 of 25

V and V occ vs T (K) [PVT] V occ (cm 3 /g) V (cm 3 /g) 1.10 1.05 1.00 0.95 0.90 0.85 COC 0.1 V 40 80 (0) 120 160 200 (P) V occ 0.1 300 350 400 450 500 550 600 T (K) 200 V occ (cm 3 /g) V (cm 3 /g) 0.95 0.90 0.85 0.80 0.75 PC (0) (P) 300 350 400 450 500 550 600 T (K) V V occ 0.1 40 80 120 160 200 0.1 200 The specific total, V, (black open symbols), and occupied, V occ = (1 h)v (blue symbols) volume as a function of temperature T and as selection of isobars (P in MPa) for COC and PC. Page 14 of 25

vs T(K) (cm 3 /g) 0.18 0.16 0.14 0.12 0.10 0.08 0.06 0.04 0.02 COC T 0 (0) (P) 0.00 250 300 350 400 450 500 550 600 T (K) 0.1 40 80 120 160 200 (cm 3 /g) 0.16 0.14 0.12 0.10 0.08 0.06 0.04 0.02 T 0 PC (0) (P) 0.00 250 300 350 400 450 500 550 600 T (K) 0.1 40 80 120 160 200 The specific hole free volume = hv as a function of temperature T and as selection of isobars (P in MPa) for COC and PC. Page 15 of 25

τ 3 and σ 3 vs T (K) [PALS] τ 3 (ns) 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 untreated gas-exposed densified τ 3 COC σ 3 300 350 400 450 500 T (K) 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 σ 3 (ns) τ 3 (ns) 300 350 400 450 500 The mean, τ 3, and the mean dispersion, σ 3, of o-ps lifetimes as a function of temperature T for densified at 200 MPa (blue), gas-exposed (read) and untreated (black) COC and PC. 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 untreated gas-exposed densified τ 3 T (K) PC σ 3 T k 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 σ 3 (ns) Page 16 of 25

Probability density function (pdf) [COC] hole radius pdf n(r h ) COC hole volume pdf g n (v h ) COC 2.0 2.5 3.0 3.5 4.0 4.5 r h (Å) 0 100 200 300 v h (Å 3 ) Probability density function (pdf) of the hole radius, n(r h ), and hole volume, g n (v h ), for COC. Blue: densified, red: gas-exposed, black: untreated samples at 300 K (lower curve) and 480 K (upper curve). Page 17 of 25

V h and σ h vs T(K) <v h > (Å 3 ) 160 140 120 100 80 60 40 COC <v h > 300 350 400 450 500 T (K) σ h 90 80 70 60 50 40 30 20 σ h (Å 3 ) <v h > (Å 3 ) 300 350 400 450 500 The mean, <v h >, and the mean dispersion, σ h, of the hole volume as a function of temperature T for densified at 200 MPa (blue), gas-exposed (red) and untreated (black) COC and PC. 180 160 140 120 100 80 60 PC <v h > T (K) σ h 90 80 70 60 50 40 30 20 σ h (Å 3 ) Page 18 of 25

Hole density N h 0.11 0.10 COC 0.11 0.10 PC = <v h >N h ' (cm 3 /g) 0.09 0.08 0.07 0.06 0.05 = <v h >N h ' (cm 3 /g) 0.09 0.08 0.07 0.06 0.05 0.04 300 350 400 450 500 T (K) 300 350 400 450 500 T (K) The specific free volume = <v h >N h from PALS at 10-5 Pa as a function of temperature for untreated (black filled circles), densified at 200 MPa (blue squares), and gas-exposed (read diamonds) COC and PC. The black empty circles show 0.1 MPa isobars from PVT experiments for the untreated polymers, = hv. 0.04 Page 19 of 25

( and V) vs V h (cm 3 /g) 0.14 0.13 0.12 0.11 0.10 0.09 0.08 0.07 0.06 0.05 0.04 COC 80 100 120 140 160 <v h > (Å 3 ) V = free volume V = total volume 1.06 1.04 1.02 1.00 0.98 V (cm 3 /g) Plots of the specific free, (T) (red), and total, V(T) (blue) volume vs. the mean hole volume <v h (T)> for COC and PC. Data from above are shown by filled symbols, those from below by empty symbols. (cm 3 /g) Page 20 of 25 0.12 0.10 0.08 0.06 0.04 = hv = N h <v h > V = V occ + N h <v h > PC 0.92 0.90 0.88 0.86 0.84 0.02 = free volume 0.82 V = total volume 0.00 80 100 120 140 160 0.80 180 <v h > (Å 3 ) V V (cm 3 /g)

Epoxy Resin (DGEBA) H 2 C O HC H 2 C O CH 3 OH CH 3 O C O CH 2 CH CH 2 O C O CH 2 CH CH 2 CH 3 n CH 3 Resin of diglycidyl ether of bisphenol-a (DGEBA) = free volume V = total volume Page 21 of 25

Epoxy Resin (DGEBA) σ h (Å 3 ) <v h > (Å 3 ) 160 140 120 100 80 60 40 20 DGEBA <v h > σ h T 0 ' ER1 0 50 100 150 200 250 300 350 400 T (K) The mean hole volume, <v h >, and the mean hole volume dispersion, σ h, as a function of the temperature T for ER6 (filled symbols) and ER1 (empty symbols). ER6 Page 22 of 25 ER1 - monomer of DGEBA (n 0.18 = 1 unit) ER6 - oligomer of DGEBA (n 5 = 6 units)

Polymethylphenylsiloxane (PMPS) σ h (Å 3 ) <v h > (Å 3 ) 160 140 120 100 80 60 40 20 0 <v h > σ h T k 100 150 200 250 300 350 T (K) The mean, <v h >, and the mean dispersion, σ h as a function of the temperature T for PMPS. Page 23 of 25

Acknowledgement Emeritus Prof. Günter Dlubek, ITA Institut für innovative Technologien GmbH, Halle, Germany. Prof. Reinhard Krause-Rehberg, Fachbereich Physik, Martin-Luther University, Halle, Germany. Dr. Jürgen Pionteck, Leibniz Institut für Polymerforschung, e.v., Dresden, Germany. Dr. Doz. Dr. habil. Marian Paluch, Institute of Physics, Silesian University, Katowice, Poland, Dr. Jerzy Kansy Institute of Physics and Chemistry of Metals, Silesian University, Katowice, Poland. Page 24 of 25