Infinite-dimensional methods for path-dependent equations

Similar documents
Infinite-dimensional methods for path-dependent stochastic differential equations

Stochastic Differential Equations.

Viscosity Solutions of Path-dependent Integro-Differential Equations

Infinite-dimensional calculus under weak spatial regularity of the processes

Introduction to numerical simulations for Stochastic ODEs

On continuous time contract theory

Nonlinear representation, backward SDEs, and application to the Principal-Agent problem

An Introduction to Malliavin calculus and its applications

Stochastic Calculus February 11, / 33

The concentration of a drug in blood. Exponential decay. Different realizations. Exponential decay with noise. dc(t) dt.

p 1 ( Y p dp) 1/p ( X p dp) 1 1 p

ENGIN 211, Engineering Math. Laplace Transforms

1 Brownian Local Time

Strong uniqueness for stochastic evolution equations with possibly unbounded measurable drift term

The multidimensional Ito Integral and the multidimensional Ito Formula. Eric Mu ller June 1, 2015 Seminar on Stochastic Geometry and its applications

e st f (t) dt = e st tf(t) dt = L {t f(t)} s

Bernardo D Auria Stochastic Processes /10. Notes. Abril 13 th, 2010

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS

Brownian Motion. An Undergraduate Introduction to Financial Mathematics. J. Robert Buchanan. J. Robert Buchanan Brownian Motion

2.161 Signal Processing: Continuous and Discrete Fall 2008

Mathematical Methods for Neurosciences. ENS - Master MVA Paris 6 - Master Maths-Bio ( )

Weak solutions of mean-field stochastic differential equations

B8.3 Mathematical Models for Financial Derivatives. Hilary Term Solution Sheet 2

Bernardo D Auria Stochastic Processes /12. Notes. March 29 th, 2012

Lecture 4: Ito s Stochastic Calculus and SDE. Seung Yeal Ha Dept of Mathematical Sciences Seoul National University

Fast-slow systems with chaotic noise

Stochastic Integration.

Theoretical Tutorial Session 2

I forgot to mention last time: in the Ito formula for two standard processes, putting

UNCERTAINTY FUNCTIONAL DIFFERENTIAL EQUATIONS FOR FINANCE

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS

MA8109 Stochastic Processes in Systems Theory Autumn 2013

A Concise Course on Stochastic Partial Differential Equations

Lecture 4: Introduction to stochastic processes and stochastic calculus

EXISTENCE OF NEUTRAL STOCHASTIC FUNCTIONAL DIFFERENTIAL EQUATIONS WITH ABSTRACT VOLTERRA OPERATORS

A new approach for investment performance measurement. 3rd WCMF, Santa Barbara November 2009

Prof. Erhan Bayraktar (University of Michigan)

Stochastic calculus without probability: Pathwise integration and functional calculus for functionals of paths with arbitrary Hölder regularity

Brownian Motion. 1 Definition Brownian Motion Wiener measure... 3

NEUTRAL STOCHASTIC FUNCTIONAL DIFFERENTIAL EQUATION DRIVEN BY FRACTIONAL BROWNIAN MOTION AND POISSON POINT PROCESSES

9.5 The Transfer Function

Man Kyu Im*, Un Cig Ji **, and Jae Hee Kim ***

Time Response Analysis (Part II)

Strong Solutions and a Bismut-Elworthy-Li Formula for Mean-F. Formula for Mean-Field SDE s with Irregular Drift

Squared Bessel Process with Delay

On the Multi-Dimensional Controller and Stopper Games

Stochastic optimal control with rough paths

Lecture 5: Linear Systems. Transfer functions. Frequency Domain Analysis. Basic Control Design.

13 The martingale problem

Malliavin Calculus in Finance

Numerical treatment of stochastic delay differential equations

Reflected Brownian Motion

EULER MARUYAMA APPROXIMATION FOR SDES WITH JUMPS AND NON-LIPSCHITZ COEFFICIENTS

9.2 The Input-Output Description of a System

Regularization by noise in infinite dimensions

Controlled Diffusions and Hamilton-Jacobi Bellman Equations

Stochastic Differential Equations

Continuous Time Finance

An Introduction to Malliavin Calculus. Denis Bell University of North Florida

Discussion Section #2, 31 Jan 2014

10 Transfer Matrix Models

LECTURES ON MEAN FIELD GAMES: II. CALCULUS OVER WASSERSTEIN SPACE, CONTROL OF MCKEAN-VLASOV DYNAMICS, AND THE MASTER EQUATION

Introduction to Diffusion Processes.

State Space Representation of Gaussian Processes

Ordinary Differential Equation Theory

ECEN 420 LINEAR CONTROL SYSTEMS. Lecture 2 Laplace Transform I 1/52

Functional Limit theorems for the quadratic variation of a continuous time random walk and for certain stochastic integrals

Filtrations, Markov Processes and Martingales. Lectures on Lévy Processes and Stochastic Calculus, Braunschweig, Lecture 3: The Lévy-Itô Decomposition

Kolmogorov equations in Hilbert spaces IV

Mean-field SDE driven by a fractional BM. A related stochastic control problem

Kolmogorov Equations and Markov Processes

Systems Analysis and Control

Lecture 3. This operator commutes with translations and it is not hard to evaluate. Ae iξx = ψ(ξ)e iξx. T t I. A = lim

LTI Systems (Continuous & Discrete) - Basics

DISCRETE-TIME STOCHASTIC MODELS, SDEs, AND NUMERICAL METHODS. Ed Allen. NIMBioS Tutorial: Stochastic Models With Biological Applications

MSH7 - APPLIED PROBABILITY AND STOCHASTIC CALCULUS. Contents

Stochastic Integrals and Itô s formula.

Rough paths methods 1: Introduction

Non-Differentiable Embedding of Lagrangian structures

Definitions of the Laplace Transform (1A) Young Won Lim 1/31/15

MA 201, Mathematics III, July-November 2018, Laplace Transform (Contd.)

The Wiener Itô Chaos Expansion

Elliptic Operators with Unbounded Coefficients

Homogenization with stochastic differential equations

Lecture two. January 17, 2019

A TWO PARAMETERS AMBROSETTI PRODI PROBLEM*

MA108 ODE: Picard s Theorem

Simulation of conditional diffusions via forward-reverse stochastic representations

Brownian motion. Samy Tindel. Purdue University. Probability Theory 2 - MA 539

Nested Uncertain Differential Equations and Its Application to Multi-factor Term Structure Model

Lecture 11: Arclength and Line Integrals

Solving Stochastic Partial Differential Equations as Stochastic Differential Equations in Infinite Dimensions - a Review

Question 1. The correct answers are: (a) (2) (b) (1) (c) (2) (d) (3) (e) (2) (f) (1) (g) (2) (h) (1)

Lecture 12: Diffusion Processes and Stochastic Differential Equations

A class of globally solvable systems of BSDE and applications

Some Tools From Stochastic Analysis

Laplace Transforms Chapter 3

12/20/2017. Lectures on Signals & systems Engineering. Designed and Presented by Dr. Ayman Elshenawy Elsefy

A Short Introduction to Diffusion Processes and Ito Calculus

Some Properties of NSFDEs

Transcription:

Infinite-dimensional methods for path-dependent equations (Università di Pisa) 7th General AMaMeF and Swissquote Conference EPFL, Lausanne, 8 September 215

Based on Flandoli F., Zanco G. - An infinite-dimensional approach to path-dependent Kolmogorov equations, to be published on AoP Flandoli F., Russo F., Zanco G. - Infinite-dimensional calculus under weak spatial regularity of the process, in preparation

Motivation Models with general (adapted) dependance on the past Delay in state and/or in control variable Pricing and hedging of path-dependent options Pricing and hedging of options written on stocks described by equations that depend on (at least part of) the previous history of the stocks Analysis of incentives to innovation in firms with an established market, optimal investment strategies depending on knowledge and R&D investment

{ dx(t) = bt (X t ) dt + σ(x t ) dw(t) for t [, T], X() = x

{ dx(t) = bt (X t ) dt + σ(x t ) dw(t) for t [, T], X() = x X t = { X(s) } s [,t],

{ dx(t) = bt (X t ) dt + σ(x t ) dw(t) for t [, T], X() = x X t = { X(s) } s [,t], b = {b t } t [,T], b t : D([, t]; R d ) R d

{ dx(t) = bt (X t ) dt + σ(x t ) dw(t) for t [t, T], X(t) = γ(t) for t [, t ] X t = { X(s) } s [,t], b = {b t } t [,T], b t : D([, t]; R d ) R d

{ dx(t) = bt (X t ) dt + σ(x t ) dw(t) for t [t, T], X(t) = γ(t) for t [, t ] X t = { X(s) } s [,t], b = {b t } t [,T], b t : D([, t]; R d ) R d SDEs: classical. Tsirelson s example. Calculus&PDEs: very recent, Dupire 9, Cont-Fournié 1& 13, Peng 11, Cosso 12, Ekren-Keller-Touzi-Zhang 13& 14, Di Girolami-Russo 1& 14, Cosso-Russo 15, Cosso-Federico-Gozzi-Rosestolato-Touzi 15...

{ dx(t) = bt (X t ) dt + σ(x t ) dw(t) for t [t, T], X(t) = γ(t) for t [, t ] X t = { X(s) } s [,t], b = {b t } t [,T], b t : D([, t]; R d ) R d SDEs: classical. Tsirelson s example. Calculus&PDEs: very recent, Dupire 9, Cont-Fournié 1& 13, Peng 11, Cosso 12, Ekren-Keller-Touzi-Zhang 13& 14, Di Girolami-Russo 1& 14, Cosso-Russo 15, Cosso-Federico-Gozzi-Rosestolato-Touzi 15...

Example b t (γ t ) = g (γ(t), γ(s)) ds

Example b t (γ t ) = g (γ(t), γ(s)) ds Example b t (γ t ) = h (γ(t), γ(t )) 1 [t,t](t)

Example b t (γ t ) = g (γ(t), γ(s)) ds Example b t (γ t ) = h (γ(t), γ(t )) 1 [t,t](t) Example ( b t (γ t ) = w γ(t), ) p(s) dγ(s)

Example b t (γ t ) = g (γ(t), γ(s)) ds Example b t (γ t ) = h (γ(t), γ(t )) 1 [t,t](t) Example ( b t (γ t ) = w γ(t), ) p(s) dγ(s) Example b t (γ t ) = q (γ(t), γ(t τ))

SDEs and Kolmogorov equation Delay equations framework

SDEs and Kolmogorov equation Delay equations framework L p : = R d L p (( T, ); R d ), p 2, D : = R d D b ([ T, ); R d ), { } C : = R d ϕ C b ([ T, ); R d ) : lim ϕ(s), s { } C : = y = ( ϕ x ) C s.t. x = lim ϕ(s). s

backward extension operator L t : D([, t); R d ) D([ T, ); R d ) L t (γ)(s) = γ()1 [ T, t) (s) + γ(t + s)1 [ t,) (s), s [ T, )

backward extension operator L t : D([, t); R d ) D([ T, ); R d ) L t (γ)(s) = γ()1 [ T, t) (s) + γ(t + s)1 [ t,) (s), s [ T, ) restriction operator M t : D([ T, ); R d ) D([, t); R d ) M t (ϕ)(s) = ϕ(s t), s [, t) { M t ( ϕ x Mt ϕ(s) s [, t) ) (s) = x s = t

backward extension operator L t : D([, t); R d ) D([ T, ); R d ) L t (γ)(s) = γ()1 [ T, t) (s) + γ(t + s)1 [ t,) (s), s [ T, ) restriction operator M t : D([ T, ); R d ) D([, t); R d ) M t (ϕ)(s) = ϕ(s t), s [, t) { M t ( ϕ x Mt ϕ(s) s [, t) ) (s) = x s = t M t L t γ = γ, L t M t ϕ ϕ

( ) ˆb (t, ( ϕ x )) = ˆb(t, x, ϕ) := b t M t ( ϕ x ) ; b t (γ) := ˆb(t, γ(t), L t γ)

( ) ˆb (t, ( ϕ x )) = ˆb(t, x, ϕ) := b t M t ( ϕ x ) ; b t (γ) := ˆb(t, γ(t), L t γ) ( ) ( ) X(t) X(t) Y(t) = = {X(t + s)} s [ T,] X [t T,t]

( ) ˆb (t, ( ϕ x )) = ˆb(t, x, ϕ) := b t M t ( ϕ x ) ; b t (γ) := ˆb(t, γ(t), L t γ) dy(t) dt ( ) ( ) X(t) X(t) Y(t) = = {X(t + s)} s [ T,] ( ) ( ) Ẋ(t) = = {Ẋ(t } + + s) Ẋ [t T,t] s X [t T,t] ( ) bt (X t ) + ( ) σt (X t )Ẇ(t)

A ( ) ˆb (t, ( ϕ x )) = ˆb(t, x, ϕ) := b t M t ( ϕ x ) ; b t (γ) := ˆb(t, γ(t), L t γ) ( ) ( ) X(t) X(t) Y(t) = = {X(t + s)} s [ T,] ( ) ( ) dy(t) Ẋ(t) = = {Ẋ(t } + dt Ẋ [t T,t] + s) s ) ( ) ( ( )) x (ˆb (t, ( ϕ x )) :=, B t, := ϕ ϕ ( x ϕ X [t T,t] ( ) bt (X t ) + ), Σ ( t, ( ) σt (X t )Ẇ(t) ( )) x (ˆσ (t, ( x ) := ϕ )) ϕ

A ( ) ˆb (t, ( ϕ x )) = ˆb(t, x, ϕ) := b t M t ( ϕ x ) ; b t (γ) := ˆb(t, γ(t), L t γ) ( ) ( ) X(t) X(t) Y(t) = = {X(t + s)} s [ T,] ( ) ( ) dy(t) Ẋ(t) = = {Ẋ(t } + dt Ẋ [t T,t] + s) s ) ( ) ( ( )) x (ˆb (t, ( ϕ x )) :=, B t, := ϕ ϕ ( x ϕ Dom(A) = X [t T,t] ( ) bt (X t ) + ), Σ ( t, ( ) σt (X t )Ẇ(t) ( )) x (ˆσ (t, ( x ) := ϕ )) ϕ { ( x ϕ ) C s.t. ϕ C 1 ( [ T, ); R d)} Y(t) / Dom(A)

A ( ) ˆb (t, ( ϕ x )) = ˆb(t, x, ϕ) := b t M t ( ϕ x ) ; b t (γ) := ˆb(t, γ(t), L t γ) ( ) ( ) X(t) X(t) Y(t) = = {X(t + s)} s [ T,] ( ) ( ) dy(t) Ẋ(t) = = {Ẋ(t } + dt Ẋ [t T,t] + s) s ) ( ) ( ( )) x (ˆb (t, ( ϕ x )) :=, B t, := ϕ ϕ ( x ϕ Dom(A) = X [t T,t] ( ) bt (X t ) + ), Σ ( t, ( ) σt (X t )Ẇ(t) ( )) x (ˆσ (t, ( x ) := ϕ )) ϕ { ( x ϕ ) C s.t. ϕ C 1 ( [ T, ); R d)} Y(t) / Dom(A) A generates semigroup e ta, C in L p (with the right domain) and in C, not C in C and in D

Assumption ( ) B L, T; C 2,α b (E, E), Σ constant

Assumption ( ) B L, T; C 2,α b (E, E), Σ constant { dy(t) = AY(t) dt + B(t, Y(t)) dt + Σ dβ(t), t [t, T], Y(t ) = y

Assumption ( ) B L, T; C 2,α b (E, E), Σ constant Y t,y (ω, t) = e (t t)a y + e (t s)a B(s, Y t,y (ω, s)) ds + t e (t s)a Σ dβ(ω, s) t

Assumption ( ) B L, T; C 2,α b (E, E), Σ constant Y t,y (ω, t) = e (t t)a y + e (t s)a B(s, Y t,y (ω, s)) ds + t e (t s)a Σ dβ(ω, s) t Existence and uniqueness of solutions

Assumption ( ) B L, T; C 2,α b (E, E), Σ constant Y t,y (ω, t) = e (t t)a y + e (t s)a B(s, Y t,y (ω, s)) ds + t e (t s)a Σ dβ(ω, s) t Existence and uniqueness of solutions Continuous if E = L p, L if E = D

Assumption ( ) B L, T; C 2,α b (E, E), Σ constant Y t,y (ω, t) = e (t t)a y + e (t s)a B(s, Y t,y (ω, s)) ds + t e (t s)a Σ dβ(ω, s) t Existence and uniqueness of solutions Continuous if E = L p, L if E = D Two times Fréchet differentiable w.r.t. initial data with α-hölder second differential

Assumption ( ) B L, T; C 2,α b (E, E), Σ constant Y t,y (ω, t) = e (t t)a y + e (t s)a B(s, Y t,y (ω, s)) ds + t e (t s)a Σ dβ(ω, s) t Existence and uniqueness of solutions Continuous if E = L p, L if E = D Two times Fréchet differentiable w.r.t. initial data with α-hölder second differential Continuous = Markov

u t (t, y)+ Du(t, y), Ay + B (t, y) +1 2 Tr ( ΣΣ D 2 u(t, y) ) =, u(t, ) = Φ,

u t (t, y)+ Du(t, y), Ay + B (t, y) +1 2 Tr ( ΣΣ D 2 u(t, y) ) =, u(t, ) = Φ, u(t, y) = E [Φ (Y t,y (T))]

u t (t, y)+ Du(t, y), Ay + B (t, y) +1 2 Tr ( ΣΣ D 2 u(t, y) ) =, u(t, ) = Φ, Tr ( ΣΣ D 2 u(t, y) ) = σj 2 D 2 u(t, y)(e j, e j ) j=1

u t (t, y)+ Du(t, y), Ay + B (t, y) +1 2 Tr ( ΣΣ D 2 u(t, y) ) =, u(t, ) = Φ, Tr ( ΣΣ D 2 u(t, y) ) = d σj 2 D 2 u(t, y)(e j, e j ) j=1

u (t, y) Φ (y) = T t Du (s, y), Ay + B (s, y) ds+ + 1 2 T d t j=1 σ 2 j D 2 u(s, y)(e j, e j ) ds

u (t, y) Φ (y) = T t Du (s, y), Ay + B (s, y) ds+ + 1 2 T d t j=1 σ 2 j D 2 u(s, y)(e j, e j ) ds Definition Given Φ C 2,α b (D, R), we say that u : [, T] D R is a classical solution of the Kolmogorov equation with final condition Φ if ( ) u L, T; C 2,α b (D, R) C ([, T] D, R) for some α (, 1), and satisfies the above identity for every t [, T] and y Dom (A), with the duality terms understood with respect to the topology of D.

Theorem ( ) Let Φ C 2,α (D, R) be given and let B L, T; C 2,α b (D, D). The function u : [, T] D R given by u(t, y) = E [Φ (Y t,y (T))], is a solution of the Kolmogorov equation with final condition Φ under the assumption that for any s [ T, ], any r s, any y C and for almost every a [ T, ] the following hold: ( ( 1 1 DΦ(y), J n 1 [a,] ) DΦ(y), 1 [a,] ) ; and idem for B. ( ( ) D 2 1 Φ(y) J n 1 [a,] ( ( D 2 1 Φ(y) ( ( ) D 2 1 Φ(y) J n 1 [a,] 1 [a,] ) ( ) 1 1 [a,], J n ( 1 1 [a,] ) ( ) 1 1 [a,] ( 1, 1 [a,] ) ) ; ( 1, J n ( 1 1 [a,] ) 1 [a,] ) ) ; ( 1 1 [a,] ) ) ;

Theorem ( ) If Φ : L p R is C 2,α b and B L, T; C 2,α b (L p, L p ) u (t, y) := E [Φ (Y t,y (T))], (t, y) [, T] L p, then the function is a solution of the Kolmogorov equation in L p with final condition Φ.

Theorem ( ) If Φ : L p R is C 2,α b and B L, T; C 2,α b (L p, L p ) u (t, y) := E [Φ (Y t,y (T))], (t, y) [, T] L p, then the function is a solution of the Kolmogorov equation in L p with final condition Φ. + approximating procedure using smoothing only of the past

Change of variables formula What about uniqueness?

Change of variables formula What about uniqueness? Need Ito formula

Change of variables formula What about uniqueness? Need Ito formula dy(t) = AY(t) dt+b(t, Y(t)) dt+σ(t, Y(t)) dβ(t) C,

Change of variables formula What about uniqueness? Need Ito formula dy(t) = AY(t) dt+b(t, Y(t)) dt+σ(t, Y(t)) dβ(t) C, F : [, T] C R

Change of variables formula What about uniqueness? Need Ito formula dy(t) = AY(t) dt+b(t, Y(t)) dt+σ(t, Y(t)) dβ(t) C, F : [, T] C R + F(t, Y(t)) F(, Y()) = t F(s, Y(s)) ds AY(s) + B(s, Y(s), DF(s, Y(s)) ds + + DF(s, Y(s)), Σ(s, Y(s)) dβ(s) 1 2 Tr R d [ Σ(s, Y(s))Σ(s, Y(s)) D 2 F(s, Y(s)) ] ds

Change of variables formula What about uniqueness? Need Ito formula dy(t) = AY(t) dt+b(t, Y(t)) dt+σ(t, Y(t)) dβ(t) C, F : [, T] C R F(t, Y(t)) F(, Y()) = t F(s, Y(s)) ds + AY(s) + B(s, Y(s), DF(s, Y(s)) ds+ DF(s, Y(s)), Σ(s, Y(s)) dβ(s) 1 + 2 Tr [ R d Σ(s, Y(s))Σ(s, Y(s)) D 2 F(s, Y(s)) ] ds Problems: Y(t) / Dom(A) and usually also t F(t, ) makes sense only on Dom(A)

Theorem Let F C ([, T] C) be such that DF C ([, T] C; C ), D 2 F C ([, T] C; L (C; C )), t F C([, T] Dom(A); R). Assume that there exists a continuous function G : [, T] C R such that G(t, y) = t F(t, y) + Ay, DF(t, y) on [, T] Dom(A). Then F(t, Y(t)) = F(, Y()) + + G(s, Y(s)) ds B(s, Y(s)), DF(s, Y(s)) ds + + DF(s, Y(s)), Σ(s, Y(s)) dβ(s) 1 2 Tr R d [ Σ(s, Y(s))Σ(s, Y(s)) D 2 F(s, Y(s)) ] ds

Theorem Let F C ([, T] C) be such that DF C ([, T] C; C ), D 2 F C ([, T] C; L (C; C )), t F exists on T Dom(A), λ(t ) = T and T does not depend on y. Assume that there exists a continuous function G : [, T] C R such that Then G(t, y) = t F(t, y) + Ay, DF(t, y) on T Dom(A). F(t, Y(t)) = F(, Y()) + + G(s, Y(s)) ds B(s, Y(s)), DF(s, Y(s)) ds + + DF(s, Y(s)), Σ(s, Y(s)) dβ(s) 1 2 Tr R d [ Σ(s, Y(s))Σ(s, Y(s)) D 2 F(s, Y(s)) ] ds

Theorem If F, DF, D 2 F are piecewise continuous, i.e. t 1,..., t n s.t. F C ([t j, t j+1 ) E), y t F(t, y) is càdlàg, t y F(t, y) is continuous, t F exists on T Dom(A), then F(t, Y(t)) = F(, Y()) + + B(s, Y(s)), DF(s, Y(s)) ds + + Ĝ(s, Y(s)) ds + F(Y; t 1,..., t n ) DF(s, Y(s)), Σ(s, Y(s)) dβ(s) 1 2 Tr R d [ Σ(s, Y(s))Σ(s, Y(s)) D 2 F(s, Y(s)) ] ds

Example but f t (γ t ) = g (γ(t), γ(s)) ds F ( ) t (t, y) = g y (1), y (2) ( t) F ( t (t, y) + Ay, DF(t, y) = g y (1), y (1))

Example but f t (γ t ) = Example g (γ(t), γ(s)) ds F ( ) t (t, y) = g y (1), y (2) ( t) F ( t (t, y) + Ay, DF(t, y) = g y (1), y (1)) f t (γ t ) = h (γ(t), γ(t )) F ( ) t (t, y) = 2h y (1), y (2) (t t) but F (t, y) + Ay, DF(t, y) = t y (2) (t t)

Example ( F t (t, y) = 2w y (1), ( f t (γ t ) = w γ(t), = Ay, DF(t, y) ) p(s) dγ(s) ) p(s) dy (2) (s t) ṗ(s) dẏ (2) (s t)

Example ( F t (t, y) = 2w y (1), ( f t (γ t ) = w γ(t), = Ay, DF(t, y) ) p(s) dγ(s) ) p(s) dy (2) (s t) ṗ(s) dẏ (2) (s t) For the Kolmogorov equation the equation itself provides the extension: G(t, y) = B(t, y), DF(t, y) 1 2 Tr R d [ ΣΣ D 2 F(t, y) ] therefore uniqueness follows by standard arguments.

Example For f t (γ t ) = q (γ(t), γ(t τ)) we have f t (W t ) q(, ) = + 1 2 + τ 1 q (W(s), W(s τ)) 2 11 q (W(s), W(s τ)) ds + 1 2 2 q (W(s + τ), W(s)) δw(s) + τ 2 22 q (W(s), W(s τ)) ds 2 12 q (W(s), W(s τ)) ds

Comparison with functional Ito calculus ν t i ν t (γ t ) = lim h ( γ he i t ) ν t (γ t ) h D t ν (γ t ) = lim h + ν t+h (γ t,h ) ν t (γ t ) h

Comparison with functional Ito calculus ν t i ν t (γ t ) = lim h ( γ he i t ) ν t (γ t ) h D t ν (γ t ) = lim h + ν t+h (γ t,h ) ν t (γ t ) h { D t ν(γ t ) + b t (γ t ) ν t (γ t ) + 1 2 Tr [ σσ 2 ν t (γ t ) ] =, ν T (γ T ) = f (γ T )

Comparison with functional Ito calculus ν t i ν t (γ t ) = lim h ( γ he i t ) ν t (γ t ) h D t ν (γ t ) = lim h + ν t+h (γ t,h ) ν t (γ t ) h { D t ν(γ t ) + b t (γ t ) ν t (γ t ) + 1 2 Tr [ σσ 2 ν t (γ t ) ] =, ν T (γ T ) = f (γ T ) Theorem (Dupire - 29; Cont, Fournié - 213) (Under suitable assumptions) ν t (X t ) ν (X ) = D s ν s (X s ) ds + + 1 2 ν s (X s ) dx(s) + Tr 2 ν s (X s ) d [X] (s)

Theorem ( ) If ν t (γ): = u(t, γ(t), L t γ) or u(t, x, ϕ): = ν t M t ( ϕ x ) then D i ν t (γ) = x i u(t, x, L t γ), i = 1,..., d. If ν t (γ): = u(t, γ(t), L t γ) and Du and t u exists on Dom(A), then D t ν exists on Dom(A) and D t ν(γ t ) = u t (t, γ(t), L tγ t ) + Du(t, γ(t), L t γ t ), A(L t γ t ). ( ) If u(t, x, ϕ): = ν t M t ( ϕ x ), D t ν exists everywhere and Du, t u exist on Dom(A) then D t ν is the extension.

Theorem If the infinite dimensional liftings B and Φ of b t and f satisfy the assumptions of the previous theorems, then, for almost every t, the function ν t (γ t ) = E [f (X γt (T))] is a solution of the path dependent Kolmogorov equation.

Theorem If the infinite dimensional liftings B and Φ of b t and f satisfy the assumptions of the previous theorems, then, for almost every t, the function ν t (γ t ) = E [f (X γt (T))] is a solution of the path dependent Kolmogorov equation. Proof: set y = (γ(t), L t γ t ) C ; ν t (γ t ) : = u(t, γ(t), L t γ t ) = u(t, y) = E [Φ (Y t,y (T))] [ ( = E f M (Y (T)))] t,y = E [f (X γt (T))]

Thank you for your kind attention