Nonlinear Band-Mechanisms.

Similar documents
LSU Historical Dissertations and Theses

c. What is the average rate of change of f on the interval [, ]? Answer: d. What is a local minimum value of f? Answer: 5 e. On what interval(s) is f

A L A BA M A L A W R E V IE W

LU N C H IN C LU D E D

Class Diagrams. CSC 440/540: Software Engineering Slide #1

Grain Reserves, Volatility and the WTO

Form and content. Iowa Research Online. University of Iowa. Ann A Rahim Khan University of Iowa. Theses and Dissertations

MOLINA HEALTHCARE, INC. (Exact name of registrant as specified in its charter)

600 Billy Smith Road, Athens, VT

Functional pottery [slide]

Model Checking. Automated Verification of Computational Systems

THE BANK OF NEW YORK MELLON CORPORATION (Exact name of registrant as specified in its charter)

gender mains treaming in Polis h practice

TTM TECHNOLOGIES, INC. (Exact Name of Registrant as Specified in Charter)

Sodium-Initiated Polymerization of Alpha- Methylstyrene in the Vicinity of Its Reported Ceiling Temperature

UNITED STATES SECURITIES AND EXCHANGE COMMISSION Washington, D.C Form 8-K/A (Amendment No. 2)

The Effects of Apprehension, Conviction and Incarceration on Crime in New York State

B ooks Expans ion on S ciencedirect: 2007:

AGRICULTURE SYLLABUS

Feasibility Analysis, Dynamics, and Control of Distillation Columns With Vapor Recompression.

UNITED STATES SECURITIES AND EXCHANGE COMMISSION FORM 8-K. Farmer Bros. Co.

A Study of Attitude Changes of Selected Student- Teachers During the Student-Teaching Experience.

University Microfilms

C o r p o r a t e l i f e i n A n c i e n t I n d i a e x p r e s s e d i t s e l f

EKOLOGIE EN SYSTEMATIEK. T h is p a p e r n o t to be c i t e d w ith o u t p r i o r r e f e r e n c e to th e a u th o r. PRIMARY PRODUCTIVITY.

UNITED STATES SECURITIES AND EXCHANGE COMMISSION Washington, D.C FORM 8-K

MONTHLY REVIEW. f C r e d i t a n d B u s i n e s s C o n d i t i o n s F E D E R A L R E S E R V E B A N K O F N E W Y O R K MONEY MARKET IN JUNE

OH BOY! Story. N a r r a t iv e a n d o bj e c t s th ea t e r Fo r a l l a g e s, fr o m th e a ge of 9

UNITED STATES SECURITIES AND EXCHANGE COMMISSION WASHINGTON, D.C FORM 8-K

TECHNICAL MANUAL OPTIMA PT/ST/VS

The Ability C ongress held at the Shoreham Hotel Decem ber 29 to 31, was a reco rd breaker for winter C ongresses.

A Comparison of Two Methods of Teaching Computer Programming to Secondary Mathematics Students.

Comparative Analyses of Teacher Verbal and Nonverbal Behavior in a Traditional and an Openspace

Distributive Justice, Injustice and Beyond Justice: The Difference from Principle to Reality between Karl Marx and John Rawls

S ca le M o d e l o f th e S o la r Sy ste m

STEEL PIPE NIPPLE BLACK AND GALVANIZED

Computer Games as a Pedagogical Tool in Education. Ken Maher B.Sc. School of Computer Applications, Dublin City University, Glasnevin, Dublin 9.

THE EFFECT Of SUSPENSION CASTING ON THE HOT WORKABILITY AND MECHANICAL PROPERTIES OF A IS I TYPE STAINLESS STEEL

ANNUAL MONITORING REPORT 2000

The Construction and Testing of a New Empathy Rating Scale

UNITED STATES SECURITIES AND EXCHANGE COMMISSION Washington, DC FORM 8-K. Current Report

Th e E u r o p e a n M ig r a t io n N e t w o r k ( E M N )

Table of C on t en t s Global Campus 21 in N umbe r s R e g ional Capac it y D e v e lopme nt in E-L e ar ning Structure a n d C o m p o n en ts R ea

REFUGEE AND FORCED MIGRATION STUDIES

Joh n L a w r e n c e, w ho is on sta ff at S ain t H ill, w r ite s :

The Measurement of Investment Center Managerial Performance Within Selected Diversified Industrial Firms: an Inquiry.

M a n a g e m e n t o f H y d ra u lic F ra c tu rin g D a ta

Country Report Government (Part I) Due: November 14, 2017

McCormick & Company, Incorporated (Exact name of registrant as specified in its charter)

H STO RY OF TH E SA NT

INFORMATION TO USERS

The Effects of Symbolic Modeling and Parent Training on Noncompliance in Hyperactive Children

NORWEGIAN MARITIME DIRECTORATE

Compulsory Continuing Education for Certified Public Accountants: a Model Program for the State of Louisiana.

T h e C S E T I P r o j e c t

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

Use precise language and domain-specific vocabulary to inform about or explain the topic. CCSS.ELA-LITERACY.WHST D

University Microfilms INFORMATION TO USERS

INCOME TAXES IN ALONG-TERMMACROECONOMETRIC FORECASTING MODEL. Stephen H. Pollock

I zm ir I nstiute of Technology CS Lecture Notes are based on the CS 101 notes at the University of I llinois at Urbana-Cham paign

Algebraic Methods in Plane Geometry

BIRLA ERICSSON OPTICAL LIMITED

Rule-Governed Behavior in Preschool Children

P a g e 5 1 of R e p o r t P B 4 / 0 9

Report Documentation Page

Heider's Five Levels of Causality and Assignment of Responsibility by Actors and Observers.

Imitative Aggression as a Function of Race of Model, Race of Target and Socioeconomic Status of Observer.

@ *?? ^ % ^ J*

A Quantitative and Qualitative Analysis of Racial Employment Discrimination in Louisiana:

A new ThermicSol product

Sub: Filing of Reconciliation of share capital for the quarter ended September 30, 2018

What are S M U s? SMU = Software Maintenance Upgrade Software patch del iv ery u nit wh ich once ins tal l ed and activ ated prov ides a point-fix for

An Historical and Comparative Study of Elementary School Counselor Education Programs; Past-Present-Future

VERITAS L1 trigger Constant Fraction Discriminator. Vladimir Vassiliev Jeremy Smith David Kieda

Applied Tape Techniques for Use With Electronic Music Synthesizers.

IV IS IO N O F B O H OL \ % 1J \

March rort. Bulletin U.S. DEPARTMENT OF LABOR BUREAU OF LABOR STATISTICS

M I E A T? Y A H 0E 3TE S

R e p u b lic o f th e P h ilip p in e s. R e g io n V II, C e n tra l V isa y a s. C ity o f T a g b ila ran

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s

Agenda Rationale for ETG S eek ing I d eas ETG fram ew ork and res u lts 2

A Study of Protein-A of Staphylococcus Aureus of Bovine Origin.

TECH DATA CORPORATION (Exact name of registrant as specified in its charter)

Beechwood Music Department Staff

EXPERIMENTAL STUDY OF BEARING CAPACITY IN LAYERED CLAYS

NUMERICAL SIMULATION OF MHD-PROBLEMS ON THE BASIS OF VARIATIONAL APPROACH

Transverse curvature effects on turbulent boundary layers.

Floor piece suite : a re-examination of three historical visual devices

Lesson Ten. What role does energy play in chemical reactions? Grade 8. Science. 90 minutes ENGLISH LANGUAGE ARTS

Genetic Behavior of Resistance to Lodging in Sugarcane.

Software Process Models there are many process model s in th e li t e ra t u re, s om e a r e prescriptions and some are descriptions you need to mode

Response Rate, Latency, and Resistance to Change

Alles Taylor & Duke, LLC Bob Wright, PE RECORD DRAWINGS. CPOW Mini-Ed Conf er ence Mar ch 27, 2015

Operation Manual for Automatic Leveling Systems

Xerox University Microfilms 300 North Zeeb Road Ann Arbor, Michigan INFORMATION TO USERS

M. H. DALAL & ASSOCIATES C H ARTERED ACCOUNTANTS

UNITED STATES SECURITIES AND EXCHANGE COMMISSION WASHINGTON, DC FORM 8-K CURRENT REPORT

A Comparison of the Early Social Behavior of Twins and Singletons.

Photo. EPRI s Power System and Railroad Electromagnetic Compatibility Handbook

7.2 P rodu c t L oad/u nload Sy stem s

Transcription:

Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1973 Nonlinear Band-Mechanisms. Larry John Havard Jr Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Havard, Larry John Jr, "Nonlinear Band-Mechanisms." (1973). LSU Historical Dissertations and Theses. 2397. https://digitalcommons.lsu.edu/gradschool_disstheses/2397 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact gradetd@lsu.edu.

INFORMATION TO USERS This material was produced from a microfilm copy of the original document. While the m ost advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original subm itted. The following explanation of techniques is provided to help you understand m arkings or patterns which may appear on this reproduction. 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity. 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image. You will find a good image of the page in the adjacent frame. 3. When a map, drawing or chart, etc., was part of the material being photographed the photographer followed a definite method in "sectioning" the material. It is customary to begin photoing at the upper left hand corner of a large sheet and to continue photoing from left to right in equal sections with a small overlap. If necessary, sectioning is continued again beginning below the first row and continuing on until com plete. 4. The majority of users indicate that the textual content is of greatest value, however, a somewhat higher quality reproduction could be made from "photographs" if essential to the understanding of the dissertation. Silver prints of "photographs" may be ordered at additional charge by writing the Order Department, giving the catalog number, title, author and specific pages you wish reproduced. 5. PLEASE NOTE: Some pages may have indistinct print. Filmed as received. Xerox University Microfilms 300 North Zeeb Road Ann Arbor, Michigan 48106

73-27,839 HAVARD, Jr., Larry John, 1936- NONLINEAR BAND MECHANISMS. The Louisiana State University and Agricultural and Mechanical College, Ph.D., 1973 Engineering, mechanical University Microfilms, A XEROX C om pany, A nn Arbor, M ichigan THIS DISSERTATION HAS BEEN MICROFILMED EXACTLY AS RECEIVED.

NONLINEAR BAND MECHANISMS A D isse rta tio n S ubm itted to the G rad u ate F a c u lty of the L o u isia n a S tate U n iv e rsity and A g ric u ltu ra l and M ech an ical C ollege in p a rtia l fu lfillm en t of the re q u ire m e n ts fo r the d egree of D octor of P hilosophy in The D e p a rtm e n t of M echanical, In d u stria l, and A e ro sp a c e E n g in eerin g by w L a r r y John H avard, J r..s., L o u isia n a S tate U n iv e rsity, 1962 S., L o u isia n a S tate U n iv e rsity, 1965 M ay 1973

ACKNOW LEDGMENT The a u th o r w ish es to e x p re s s his g ra titu d e to P r o f e s s o r A ndrew J. M cp hate fo r su ggesting the topic of th is d is s e rta tio n and fo r his m any helpful su g g estio n s throughout the c o u rs e of its p r e p a r a tion, w ithout w hich th is d is s e rta tio n would not have been p o ssib le. Secondly, the auth o r w ish e s to thank the U.S. A rm y A dvanced B a l lis tic M issile D efense A gency fo r th e ir g e n e ro sity in providing fin an c es, em ploym ent, and in d icatin g th e ir confidence in m e w hile th is c o u rs e of stu d y w as p u rsu e d. T hird, th an k s to W anda Sm ith who not only did an outstanding job of typing, but who a lso did an e x c e lle n t job of c o o rd in atin g w ith the illu s tr a to r s, S an d ra A u stin and D orothy Babb, and w ith th e p r in te r, A rth u r G a rris o n, to w hom thanks a re a lso extended, to a s s u r e th a t th is m a n u s c rip t w as co m p le te d. A p p re c ia tio n is a lso ex tended to H e rs c h e ll M atheny. L ast, but c e rta in ly not le a s t, a s in c e re th an k s to m y w ife and fo u r c h ild re n who h ad to b e a r th e b u rd e n of a g ra d u a te s tu d e n t's fam ily once again; and yet, w ithout m y w ife 's in siste n c e, I w ould n o t have co m p leted th is d e g re e. ii

T A B L E O F CONTENTS P a g e C H A P T E R I. IN T R O D U C T IO N... 1 C H A PT E R II. DERIVATION O F SYNTHESIS EQUATIONS F O R FU N CTIO N A L BAND MECHANISMS.. 5 A. G e n e ra l D e r i v a t i o n s... 6 B. P h y s ic a l R e q u i r e m e n t s... 26 C. E c c e n tric C irc le D e riv a tio n... 55 D. E x a m p le s... 69 C H A PT E R III. VELO CITY C A M S... 79 C H A P T E R IV. E R R O R A N A L Y S IS... 95 C H A P T E R V. P A R A M E T E R V A R I A T I O N... 123 C H A PT E R VI. DYNAMICS O F BAND MECHANISMS.... 150 A. D ynam ics of S ingle B and T r a n s m i s s i o n... 152 B. N o n lin ear V ib ra tio n of a M oving T h r e a d l i n e... 162 C. E n e rg y F o rm u la tio n... 175 C H A PT E R VII. CONCLUSIONS AND RECOM M ENDATIONS. 187 B IB L IO G R A P H Y... 193 A PPE N D IX. FLO W CHARTS AND C O M PU T E R PROGRAMS. 195

LIST O F ILLUSTRATIONS F ig u re T itle P ag e 1-1 T y p ic a l B and M e c h a n is m s... 1 1-2 T y p ic a l B and M e c h a n is m s.... 4 I I - 1 G e o m e tric a l R e p re s e n ta tio n of dz...... 8 II-2 R e p re s e n ta tio n of R adiu s of C u rv a tu re.... 13 I I - 3 R e la tiv e D isp la c e m e n t of a P o in t in P la n e 2 R e la tiv e to P la n e 1 15 II-4 B and M e c h a n ism R e p re s e n ta tio n....... 17 II-5 G e o m e tric a l R e p re s e n ta tio n of d Z... 19 II-6 R adiu s of C u rv a tu re in P la n e 2... 24 II-7 P ic to r ia l Illu s tra tio n of W orkable M e c h a n ism. 28 II-8 S ingle B and M e c h a n is m... 29 II-9 R e p re s e n ta tio n of <J>b' - 0.... 30 11-10 B and In te rfe re n c e w ith E a r l i e r G e n e ra te d P r o f i l e... 32 11-11 A F e a s ib le M e c h a n ism fo r Som e C hanging C u rv a tu re C a s e s... 33 I I - 12 C u rv a tu re D oes n o t C hange Sign, In fe a sib le in A ll C a s e s... 34 11-13 In fe a sib le N on-c hanging C u rv a tu re M e c h a n ism... 35 H -1 4 O s c illa to ry O v e rc o n s tra in e d M ech anism, P r o f ile s I n t e r f e r e... 37 11-15 S c h e m a tic R e p re s e n ta tio n of a W orkable M e c h a n ism w ith a Ju m p... 38 iv

LIST O F ILLUSTRATIONS - C ontinued F ig u re T itle P age 11-16 S ch em atic R e p re se n ta tio n o f a W orkable M e ch a n ism w ith a J u m p... 39 11-17 S ch em atic Illu s tra tio n of In feasib le R egion of M e c h a n i s m... 40 11-18 S ch em atic Illu s tra tio n of G e n e ra l F e a sib le M e c h a n i s m... 41 11-19 S chem atic Illu s tra tio n of G e n e ra l In feasib le M e c h a n i s m... 42 11-20 T riv ia l: In fin ite s m ia l F e a sib le M ech anism.. 44 11-21 T riv ia l: In fin ite sm ia l In feasib le M e ch a n ism.. 45 11-22 F in ite F e a s ib le M e c h a n i s m... 46 11-23 F in ite In feasib le M e c h a n is m. 47 11-24 F in ite C onvex In feasib le M e c h a n i s m... 48 11-25 S chem atic Illu s tra tio n of F e a sib le b Jum ps.. 50 11-26 Two M e m b e rs: R otating A bout F ix e d C e n te rs. 57 11-27 O ffset C irc le in P la n e 2 59 11-28 T y p ic a l R e p re se n ta tio n of Two B ands fo r One P ro file 2... 64 11-29 Two M e m b e rs R otating A bout F ix e d C e n te rs.. 70 11-30 R e p re se n ta tio n of M e ch a n ism U sed fo r A n a ly s is... 71 11-31 B and M e ch a n ism P ro file s fo r C osin e F u n ctio n. 76 11-32 B and M e ch a n ism P ro file s fo r C ubic S y stem.. 77 v

LIST O F ILLUSTRATIONS - C ontinued F ig u re T itle P ag e I I I - l P ro file s fo r L in e a r M otion of C irc u la r D isks... 81 H I-2 D isp la cem e n t P r o f i l e... 82 H I-3 V elocity P r o f i l e... 83 H I-4 O ffset C i r c l e... 86 H I-5 D i s p l a c e m e n t... 87 III-6 V elocity P r o f i l e... 88 III-7 F o u rth -O rd e r F unctio n M ech anism...... 90 III-8 D isp la cem e n t P r o f i l e... 91 III-9 V elocity P r o f i l e... 92 IH -10 A c c e le ra tio n P r o f i l e... 93 IV - 1 R e p re se n ta tio n of P ro file U sed fo r A p p ro x i m ating M anufacturing E r r o r s... 97 IV -2 R e p re se n ta tio n of a i... 99 IV -3 C ontour W ith an In feasib le P o i n t... 100 IV -4 R e p re se n ta tio n of T angent on L in e a r A p p ro x im ated C o n t o u r... 103 IV -5 In e rtia l R e p re se n ta tio n of M e ch a n ism.... 105 IV -6 Illu s tra tio n to D e term in e T a n g e n t... 107 IV -7 B and W rap on P ro file 2... 109 IV -8 A b so lu te and P e rc e n t E r r o r of L in e a r A p p ro x im atio n... 112 vi

LIST O F ILLUSTRATIONS - C ontinued F ig u re T itle P ag e IV -9 IV -10 A bsolute and P e rc e n t E r r o r s of L in e a r A p p ro x im atio n... 114 R e p re se n ta tio n of E r r o r as a R e su lt of R apidly Changing C u r v a t u r e... 115 IV -11 Single P o in t E r r o r... 116 IV -12 Single P o in t E r r o r... 118 IV -13 V -l V -2 V -3 A bsolute E r r o r B etw een T h eo ry and L in e a r A p p ro x im a tio n... 120 R e p re se n ta tio n of F e a sib le /In fe a sib le R e g i o n s... 128 S ch em atic fo r D eterm in in g N o rm al A c c e le ra tio n of B and.... 130 R e p re se n ta tio n to D eterm in e N o rm a l A c c e le ra tio n Along R eal A x i s... 135 V -4 C o n c en tric C i r c l e s... 138 V -5 D isp la cem e n t P r o f i l e... 139 V -6 V elocity P r o f i l e... 140 V -7 O ptim ized P ro file s fo r E c c e n tric C irc le... 142 V -8 D isp la cem e n t P r o f i l e... 143 V -9 V elocity P r o f i l e... 144 V -10 O p tim ized P ro file s fo r F o u rth O rd e r S y stem. 146 V - l l D isp la cem e n t P r o f i l e... 147 vii

LIST O F ILLUSTRATIONS - C oncluded T itle V elocity P ro file...»... A c c e le ra tio n P r o f i l e... B elt D rive w ith B oth M em b ers C ir c u la r... Two C irc u la r D isk O utput... B elt Driv e w ith One M em b er N ot C irc u la r Two D isks, One Not C irc u la r, Output... C o n tro l V olum e fo r M oving T h read lin e... C o m p ariso n of E x p e rim e n t and N o n lin ear T h eo ry R e su lts... E c c e n tric C irc le s w ith Slack C o m p en sato r S chem atic R e p re se n ta tio n of D ynam ic M ech anism.... E la s tic S tra in E n erg y R e p re se n ta tio n.... R e p re se n ta tio n of L eft H and V a ria b le B oundary C ondition... R e p re se n ta tio n of R ight H and V ariab le B oundary C ondition... P ag e 148 149 151 159 161 163 165 174 177 178 181 184 186

A BSTRACT T h is p a p e r p r e s e n ts a d e riv a tio n of g e n e ra l sy n th e sis equatio n s n e c e s s a r y fo r th e k in e m a tic d e sig n of n o n lin e a r ban d m e c h a n is m s. A lthough th e e q u atio n s p ro v id e a so lu tio n fo r a giv en fu n ctio n al re la tio n, th is does not e n s u re th a t th e m e c h a n ism is w o rk a b le. T h e re a r e p h y sic a l re q u ire m e n ts im p o sed on the m e c h a n ism th a t m u st be s a tis fie d. T h ese re q u ire m e n ts a re id e n tifie d and co d ified. T h o se th a t could b e tr e a te d a n a ly tic a lly a re in c o rp o ra te d as a p a r t of th e a n a ly s is. T h o se th a t could not be tr e a te d a n a ly tic a lly a r e le ft to th e d is c r e tio n of th e d e s ig n e r. In additio n to the g e n e ra l equatio n developm ent, sy n th e sis e q u atio n s a r e d ev elo p ed fo r the c a se of one m e m b e r being an e c c e n t r ic c ir c le. T h ese e q u atio n s p ro v id e fo r a check on th e a c c u ra c y of th e d e riv a tio n s of the g e n e ra l e q u atio n s as w ell a s p ro v id in g a p ro file, d e s c rib a b le a n a ly tic a lly, th a t p e rm its a so lu tio n to the s y n th e s is e q u a tio n s in c lo s e d fo rm.

T he e q u atio n s, a s w e ll a s th e p h y sic a l re q u ire m e n ts, a re show n to b e a p p lic a b le to th e d e sig n of v e lo c ity c am s, i. e., tim e v a ry in g, c y c lic a l m o tio n s y s te m s, A s tr u c tu r a l e r r o r a n a ly sis to s im u la te the e ffe cts of m a n u fa c tu rin g im p e rfe c tio n s on a p ro file is conducted. The effe cts of th e e r r o r s a re p re s e n te d in te r m s of the d iffe re n c e b etw een th e th e o re tic a l k in e m a tic output an g le and the a p p ro x im a te d k in e m a tic output a n g le. The e r r o r s a r e show n to be d ire c tly re la te d to b a n d - len g th e r r o r. " B e s t" m e c h a n ism s a r e o b tain ed b y u tiliz in g th e k in e m a tic s y n th e sis e q u atio n s and a n o n d e riv a tiv e m in im iz a tio n ro u tin e. The " b e s t" m e c h a n is m is e le c te d a s one in w hich the b a n d 's n o rm a l co m p o n en ts of a c c e le ra tio n a r e a m in im u m. T he equatio n s d e sc rib in g th e b a n d 's n o rm a l com p o n en ts of a c c e le ra tio n a re d e riv e d. T his a n a ly s is m a k e s u s e o f a q u a d ra tic p e n a lty function, fro m w hich a v alu e is o b tain ed and a s s e s s e d a g a in st an o b jectiv e function, as c r itic a l p a r a m e te r s a tte m p t to v io la te c o n s tra in ts im p o sed on the d e sig n of th e m e c h a n ism. G e n e ra l eq u atio n s th a t d e s c rib e th e d y n am ics of b an d m e c h a n is m s a r e d evelo p ed. N o n lin ear p a r tia l d iffe re n tia l equatio n s a re o b tain ed fo r the g e n e ra l c a s e. The e q u atio n s a re not solved; how e v e r, tw o o th e r a p p ro a c h e s th a t d e s c rib e to som e ex tent the

d y n am ics a s s o c ia te d w ith th e s e type m e c h a n ism s a r e p re s e n te d along w ith so m e m eth o d s of so lu tio n. The d esig n of band m e c h a n ism s a re b ro u g h t to a sy s te m a tic le v e l including th e d e sig n of v elo city c am s, su ch th a t su ch m e c h a n is m s can b e d esig n ed by th e d ig ita l co m p u ter fo r optim al conditions and p h y sic a l fe a s ib ility. The dynam ics a s s o c ia te d w ith th e s e m e c h a n ism s is quite fo rm a b le and is a field of fu rth e r stu d y in the th e o ry of m ach in e s.

C H A PT ER I INTRODUCTION A b and m e c h a n ism m ay be defined as so m e m e c h a n ic a l contriv a n c e th a t em ploys a fig u ra tiv e ly in e x te n sib le flexible e le m e n t to tr a n s m it fo rc e and m otion fro m one p rin c ip a l m e m b e r to an o th e r, u su a lly w ith w inding and unw inding w ithout slip p ag e being u se d on at le a s t one end of the flex ib le e lem ent, o r band (1). T his type of m e c h a n ism is u se d quite ex te n siv ely fo r the tra n s m is s io n of lin e a r m otion, e. g., s p ro c k e ts and c h ain s. F o r n o n lin e a r o s c illa to ry m otion, th is type of device is a lso ap p licable, y e t not e x te n siv ely u se d. F o r exam p le, in the tr a v e r s e counterw eighting sy s te m s of c e rta in spinning fra m e s (2), a n o n lin e a r com p en satin g s c ro ll p ro v id e s c o n siste n t, u n ifo rm te n sio n a t a ll sta g e s of the tr a v e r s e. The d e sig n equations fo r band m e c h a n ism s c lo se ly re s e m b le th e d e sig n e q u atio n s fo r c am s, and as such th ey a re so lv able fo r a b ro a d c la s s of fu n ctio n al c o n s tra in ts. H ow ever, band m ech an ism s have m o re s e v e r e p h y sic a l co m p a tib ility re q u ire m e n ts th an c am s, and a ll so lu tio n s to th e d esig n equations a re not so lu tio n s to th e d e sig n p ro b le m (1).

Band m ech an ism s have high th e o re tic a l a c c u ra c y ; how ever, c e rta in re s tric tio n s lim it th e ir a p p licatio n. In th is study, sy n th e sis equations a re developed in d e ta il, and the re s tric tio n s im p o sed on th e m ech an ism a re id en tifie d to the ex tent p o ssib le. A n u m b er of ex am p les a re w orked out. F ig u re s 1-1 and 1-2 illu s tr a te m e c h a n ism s th a t fa ll into the re a lm of n o n lin e a r band m e c h a n ism s.

SPRING M EM BER 1 M EM BER 2 FO R C E RETU RN MECHANISM SINGLE BAND TRANSMISSION FIGURE 1-1. TY PICAL BAND MECHANISMS

M E M B E R 1 M EM BER 2 M EM BER 1 M EM BER 2 TENSION ADJUSTER OSCILLATORY DUAL BAND TRANSM ISSION CYCLICAL MOTION i'1 FIG URE 1-2. TY PICA L BAND MECHANISMS

C H A PTER II DERIVATION O F SYNTHESIS EQUATIONS FO R FUNCTIONAL BAND MECHANISMS S y n th esis equations fo r the d esig n of nonuniform m otion band m e c h a n ism s have been developed by A. J. M cp hate (3). F o r the c a se of tw o m e m b e rs ro tatin g about fixed c e n te rs, of w hich one m e m b e r has a c ir c u la r p ro file, M cp h ate (1) developed the equations in c lo sed fo rm and illu s tra te d th e ir u tility fo r function g e n e ra tio n. The m ethods of (1) and (3) w e re u tiliz e d by Dixon (4) to include the c a se of one m e m b e r having an e llip tic a l p ro file. M olian (5) d e m o n s tra te s a p ro c e d u re to d e s c rib e a p ro file onto w hich a band w ra p s a s a sp e cified fu n ctio n of c a m sh aft ro ta tio n. D e riv a tio n s w hich follow a re an e x te n sio n of M c P h a te 's w ork in th a t the d e sig n eq u atio n s a r e developed in d e ta il fo r (1) the g e n e ra l c a se of one m e m b e r of a band m e c h a n ism t r a n s lating and ro tatin g w ith plane m o tio n and (2) the c a se of two m e m b e rs ro ta tin g about fixed c e n te rs of w hich one m e m b e r is an e c c e n tric c ir c le. The seco n d c a se not only p ro v id e s fo r a check on the a c c u ra c y of the d e riv a tio n of the g e n e ra l equatio n s but a lso p ro v id es a v ery a c c u ra te th e o re tic a l m e m b e r w hich h as a

g r e a te r d e sig n flex ib ility than the c irc le about the c e n te r of r o ta tio n. It fu rth e r p ro v id es fo r a c lo sed fo rm so lu tio n of the sy n th e sis e q u atio n s, w h e reas ite ra tiv e tech n iq u es a r e re q u ire d fo r the g e n e ra l c a se. M uch of M c P h a te 's w ork w ill be re p e a te d fo r c la rity of the d e riv a tio n s. The p ro b lem s h e re in a re p la n a r p ro b le m s and as such c o m plex v a ria b le s can be u se d to d e s c rib e the g e o m e try of the sy ste m. A. GENERAL DERIVATIONS C o n sid e r a sin g le p lan e in w hich a poin t Z lie s. See R e fe r ence (6). L et th is p oint be defined as a function of a r e a l p a ra m e te r t; fo r exam ple, Z(t) = x(t) + ii y(t) w h e re x(t) and y(t) a re independent r e a l functions of the re a l p a ra m e te r t, and ii = n/- 1. As t ch an g es, Z(t) w ill change, and if x(t) and y(t) a re s in g le v alu ed functions of t, th en th e re w ill be a unique point Z(t) fo r e v e ry sp e c ifie d value of t. F u rth e r, if x(t) and y(t) a re continuous functions of t, Z(t) w ill then define a continuous c u rv e in th e p lan e. If the re a l functions u se d above a re d iffe re n tia b le, th en d iffe re n tia tin g Z(t) y ield s

T his can b e w ritte n in p o la r fo rm as dz ds i it w h e r e d s / d t i s th e m a g n it u d e o f t h e d e r i v a t i v e a n d t i s i t s d i r e c t io n. Since Z(t) a c tu a lly g e n e ra te s th e c u rv e, d Z /d t m u st depict a d iffe re n tia l m otion along th e c u rv e. To illu s tr a te th is, c o n sid e r F ig u re I I - 1 and the b a s ic definition of d Z /d t. By definition, dz dt - = l i m i t- A t -* 0 and dz ~7r =.... AZ lim it d t A t -* n 0 A t N ote th at AZ is th e c h o rd len g th of a se c a n t lin e th a t cuts the curve Z a t Z(t) and Z (t + A t). If the c h o rd len g th is denoted by A c, th en A Z = Ac e1x(r w h e re <r is the d ire c tio n of th e se c a n t lin e. T hus, dz A c e 11(r / A c \ ii lim it cr /TT 7 7 = lim it = lim it e (II-2) dt A t \ A t / A t ->0 At -* 0 The lim itin g v alu e of a c h o rd len g th as two p o in ts on a curv e a p p ro a c h one a n o th e r is the a rc len g th. T hus,

Z (t + At) / A s Z(t) FIG U RE E - l. GEOM ETRICAL REPRESEN TA TIO N O F dz oo

A c lim it = d iffe re n tia l a rc. A t - 0 A t T he n am e tra d itio n a lly g iv en to the lim itin g se c a n t line as two p o in ts a p p ro a c h is c a lle d th e tan g ent; th e re fo re, lim it <r can b e c a lle d the ta n g e n t angle. By d ire c t c o m p a riso n of equation (II-1) and (II-2), ds A c = lim it dt., n A t A t -* 0 and T hus, t = lim it <r A t -* 0 dz ds ii t /tt o \ Tt = dt e < n - 3) G e o m e tric a lly speaking, d s /d t, th e m agnitude of d Z /d t, is th e in c re m e n ta l m otion along th e c u rv e Z, and t, th e d ire c tio n of d Z /d t, is th e d ire c tio n of a tan g e n t to Z. A s a m a tte r of convention, allow in c re a s in g t to define the p o sitiv e d ire c tio n of s along Z (t). T hat is, tak e d s /d t to b e p o sitiv e.

10 w hich allow s t to conveniently p o in t the tan g en t in th e d ire c tio n of m otion. Note th a t if th e o th e r d ire c tio n is chosen fo r the tangent, then ds dt A t th is point, we have & dt - Z f = s =( ^ + y ^ dx X ' dt y = dt t = a rc ta n (y/x) (II-4) w h e re th e a rg u m e n t t h a s b een o m itted. diffe re n tia te d, To obtain the seco n d d e riv a tiv e of Z(t), equation (II-3) can be d * d /. ii t \ dt dt ( S 6 ) o r...... 11 T Z = (s + 11 s t ) e

N ote th at ii t ii (t + ir/2) 11 e = e and is ii T * o rth o g o n al to e. T hus, Z h a s one com ponent p a r a lle l to the tan g ent and one com ponent o rth o g o n al to th e tan g e n t. H ow ever, At th is tim e, th e te r m s t m ay not be conceptu ally convenient. _ d-r _ dt ds _ d r. T dt ds dt ds so * *2 s T = s ds The te r m t m e a s u re s the ra te of change of the c u rv e w ith re s p e c t to the p a ra m e te r t w hich does not te ll a lo t, sin ce t is d ire c tly involved. H ow ever, the te r m d-r/ds is the ra te at w hich the tan g en t to the c u rv e changes d ire c tio n as a point m o v es along the c u rv e. T hus, d-r/ds is a p u re ly g e o m e tric p ro p e rty of the curv e and is n o rm a lly c a lle d th e c u rv a tu re. To lo cally d e s c rib e a c u rv e, one can say th a t the curv e ci t is tu rn in g as fa s t as a c irc le w ith ra d iu s l / 'J J» o r it can be a p p ro x im a te d by a c ir c le w ith ra d iu s ds/d-r and c e n te r at

T his l o c a l r a d i u s h a s a m a g n i t u d e o f d s / d T a n d i s c o m m o n l y r e f e r r e d to as th e ra d iu s of c u rv a tu re. A s a n o ta tio n a l convenience,, p w ill b e u sed to denote th e ra d iu s of c u rv a tu re. It can be n o ted th a t d s _ ds_ dt 8 d r d t d r - t (II -5) a n d u n d e r th e p r e v i o u s c o n v e n t io n r e g a r d in g s a n d t, s i s a l w a y s n o n - n e g a tiv e. T hus, p is a sig n ed q uantity, depending upon r fo r its sig n. T h is is illu s tr a te d in F ig u re II-2, the a rro w s in d icatin g m otion fo r in c re a s in g t. To com pute p re q u ire s only its definition, equation (II-5), and p e rfo rm a n c e of the in d ic a te d o p e ra tio n s, i. e., fro m equatio n (II 5), P s T a n d f r o m e q u a t io n (II-4), i s + (x2 + y2 )2 and t = a rc ta n (y/x). T hus T

P = I / t s > 0 T > 0 p > 0 s < 0 s < 0 T < 0 T > 0 p > 0 p < 0 8 > 0 T < 0 p < 0 FIG U R E I I - 2. R EPRESEN TA TIO N O F RADIUS O F CURVATURE

14 o r x y - x y T = T J ; r j - x2 + yz F in ally, p can be e x p re s s e d by _ (X2 + V 2)7 P M to r x y - x y 3 W ith th is r a th e r b ro a d and b a sic in tro d u c tio n, it is a p p ro p ria te to p ro c e e d to th e d e sc rip tio n of p la n e s m oving re la tiv e to one an o th e r and m o re sp e c ific a lly, th e a n a ly sis of band m e c h a n ism s. If one p lan e m o v es re la tiv e to a n o th e r, the p o sitio n of a point in the seco n d p lan e m ay be lo c a te d re la tiv e to th e f i r s t by (see F ig u re I I-3) Zi ii <j)2 T-> "t Z? e w h ere Z1 = a p o in t in p lan e 1 Z2 = a point in p lan e 2 <}>2 = o rie n ta tio n angle of th e c o o rd in a te sy s te m of p lan e 2 re la tiv e to p lan e 1 T2 = d isp la c e m e n t of the o rig in of p lan e 2 fro m th e o rig in of p lan e 1 e = th e n a tu ra l o r N a p e ria n lo g a rith m b a se ii = \l-l.

15 PL A N E Zi PL A N E 1 FIG U RE I I - 3. R E L A T IV E D ISPLA CEM EN T O F A PO IN T IN PL A N E 2 RELA TIN G TO PLA N E 1

16 F o r th e c a se of a b and m e c h a n ism (se e F ig u re II-4 ), the equation of c o n s tra in t b e co m es Zx + B = T2 + Z2 e 11 (II-6) w h e re B is th e co m p lex n u m b e r th a t r e p r e s e n ts th e band and is m e a s u re d fro m p la n e 1 to p lan e 2. B can b e w ritte n as (II-7) w h ere b is the le n g th o f th e ban d fro m p ro file 1 to p ro file 2 and <j>b is the angle b etw een th e h o riz o n ta l Xj -a x is and B. The angle <j>k is a lso u se d to define th e d ire c tio n in p lan e 1 of the tan g ent to cu rv e Z t, and<j>b - <j>2 is th e d ire c tio n in p lan e 2 of the tan g e n t of the band to th e c u rv e Z2 D iffe re n tia tio n of equation (II-6) y ield s Zj 1 = T2 1 + (Z2 ' + ii <j>2 ' Z2 ) e 11 ^ 2 - B 1 (II-8) w h e re th e p rim e s denote d iffe re n tia tio n w ith re s p e c t to som e m onoto n ic m otion p a r a m e te r. Note th a t th e d iffe re n tia tio n n o tatio n h as changed fro m th e dot to th e p r im e. The dot n o tatio n w ill b e u se d w hen tim e, t, is e x p lic itly th e p a ra m e te r w ith w hich d iffe re n tia tio n is p e rfo rm e d. D iffe re n tia tio n of eq u atio n (IX 7) y ield s B ' = (b1 + ii b <j>k ') e** (II-9)

FIG U RE II-4. BAND MECHANISM R EPR ESEN TA TIO N

The condition th a t b be w inding o r unw inding to o r fro m each c u rv e is given by (11-10) w h e re 1 and s2 1 a re the d iffe re n tia l a rc len g th s of Zi and Z2, re s p e c tiv e ly (see F ig u re H -5) (6). Thus the follow ing can be fo rm u la te d c o n siste n t w ith th e above u sage of Sj 1 and s2 (H-11) B e cau se th e d ire c tio n of th e band is p re s e n tly being u se d to define the tan g e n t d ire c tio n, Sj ' and s2 1 a re sig n ed q u a n titie s a s d epicted e a r lie r in th e te x t. S u b stitu tio n of equations (11-9), (11-10), and (11-11) into equation (II-8) y ie ld s a fte r som e red u ctio n (11-12) M ultiplying th ro u g h by - i i gives (11-13) T hus, th e d e sig n eq u atio n s fo r the b and m e c h a n ism a re given by eq u atio n s (II-6) and (11-13). It is w orthy a t th is p o in t to note th at th is a n a ly sis h a s p ro c e e d e d u n d e r th e a ssu m p tio n th a t th e p a th

19 As TANGENT SECANT Z + AZ FIG U RE I I - 5. GEOM ETRICAL R EPR ESEN TA TIO N O F dz

2 0 tr a v e r s e d by T2 1 is sp e c ifie d and th a t th e o rie n ta tio n of p lan e 2 r e la tiv e to p lan e 1 is a lso sp e c ifie d. B oth q u a n titie s a re know n a s functio n s of so m e com m on p a ra m e te r. T hese q u a n titie s m ay be sp e cified as a s e r ie s of p o in ts as a function of the p a ra m e te r o r as som e functio n a l re la tio n sh ip of th e p a ra m e te r in equation fo rm. In any c ase, th e se q u a n titie s and th e ir d e riv a tiv e s a re a ssu m e d to be know n. Thus, equatio ns (II-6) and (11-13) p ro v id e fo u r com plex equations w ith seven unknow ns, the unknow ns being the th re e com plex n u m b e rs Z1, Z2, and B and the re a l n u m b e r ^ 1. F u rth e r d iffe re n tia tio n of equatio n (11-13) w ill y ie ld m o re re la tio n sh ip s, but the in c re a s e d com plexity of the equations does not en co u rag e th is ap p ro ach (3). H ow ever, if Z2 can b e defined by a known p ro file, a d esig n r e s tric tio n o r any o th e r m ean s, th en it is p o ssib le to develop a technique th a t w ill p ro v id e fo r a so lu tio n of Zj. A ssu m e th at a plane, sin g le -v a lu e d c u rv e Z2 is defined as a function of a p a ra m e te r, p o s s e s s e s a continuous d e riv a tiv e, and does not contain in fle ctio n p o in ts. Then, any point on th a t cu rv e can be lo c a te d by one value of th e p a ra m e te r of th a t c u rv e. T hus, a p o in t on th e cu rv e h a s one d e g re e of fre e d o m. Now if th a t p a ra m e te r is chosen to be th e d ire c tio n of the tan g ent to th e c u rv e ; fo r a g iv en v alu e of th e tan g ent a unique p o in t on the c u rv e is lo c a te d. Since ((j^ - <j>2 h as b e e n show n to be th e d ire c tio n of th e band in p lan e 2, u sin g th e d ire c tio n of the band to define the d ire c tio n of th e tan g en t g iv es

21 Z2 = f (<j> j - <J>2 ) T his concept w ill be u se d to co m p lete th e developm ent of th e k in e m atic d esig n equations fo r band m e c h a n ism s. Now, fro m equatio n (11-13), le t Z3 = <t>2 ' Z 2 e 11^ 2 - ii T2 1. (11-14) S u b stitu tio n of equatio n (11-14) into equatio n (11-13) allow s <j>k to be fo rm u la te d and is given by = a rc ta n ( f - f j ) (H-15) H ow ever, z 3 = g (Z2, (J>2, (j>2 ', T2 ') and Z 2 = f (<j>-b <l>2 ) Then cjj^ = q z 2 (<j) j), <j>2 >4*2 '» T2. w ith q re p re s e n tin g a know n fu nction fo rm. T hus, th e p ro b le m h a s b e e n re d u c e d to a ro o t solving p ro b le m fo r <j>k with4>2, 4>2 '» and T2 1 as p a ra m e te r s affectin g th e lo c a tio n of th e ro o t.

In g e n e ra l, th is eq u atio n is too d iffic u lt to so lv e in c lo sed fo rm, and < >^ m u st be so lv ed by som e ite ra tiv e tech n iq u e. F o r ex am p le, Newton ite ra tio n c an be u se d. be a ssu m e d, Z3 obtained, and th en a new An in itia l value of ^ could c a lc u la te d fro m equation (11-15). If the d ifferen c e b etw een the a ssu m e d value of < >k and the c a lc u la te d value of is n o t w ithin so m e e» th en choose * bi+l = + 6 ^ b calc " 4>bi) w h ere 6 is so m e re la x a tio n p a ra m e te r. u n til the d e s ire d a c c u ra c y is o b tain ed. The p ro c e d u re is ite ra te d T his re la x a tio n m ethod w as u se d by th e a u th o r fo r the n u m e ric a l d e sig n of the exam ple m e c h a n ism s show n in th is w o rk. U nder the a ssu m p tio n th a t h a s b e en obtained, the n u m b er of unknow ns have b e en re d u c e d to one co m p lex and one re a l, Zj and C e rta in ly can be obtain ed by d iffe re n tia tio n of equation (11-15) if <j>k h as a lre a d y b e e n o b tain ed. D iffe re n tia tio n of equation (11-15) y ield s 1 = ( Z 312 ) 1 ( R eal Z 3 Im ag Z 3 1 - Im ag Z 3 R e al Z3 1) (11-16) w h e re Z 3 I2 = (R eal Z 3 )2 + (Im ag Z 3)2.

To u tiliz e eq u atio n (11-16) f o r ^ 1, Z3 1 is obviously needed. T his is obtained fro m d iffe re n tia tio n of eq u atio n (11-14). T hat is, Z3 ' = < >2 " Z 2 e 11* 2 + <j>2 ' Z2 * ell(t>2 + ii(<,2 ') Z 2 e11<l>2 - i i T 2 " (11-17) F ro m equation (11-17), Z2 ' e n te rs into the developm ent; howe v e r, Z2 1 h as b e en defined by equation (11-11) as Z2 ' = s2 * e 11 (({>b (*>2 ). U sing the chain ru le of d iffe re n tia tio n, Z2' cam b e w ritte n as Z 1 - i i\ ^ b ^ Zz - d(4,b - ^ ) >e But d s2 d (<t>b " $z ) = P2 by defin itio n th e ra d iu s of c u rv a tu re of p ro file 2. (See F ig u re I I - 6.) Thus Z2 ' = p2 ( V - *2 ) e a H ' ** (I1-18) To sim p lify the a lg e b ra, equation (11-16) is w ritte n as 4>b' (I z 3 I2 ) = R eal z 3 Im a g z 3 1 Im ag Z 3 R e a l Z 3 1. (11-19)

> 0 IN DIRECTION OF INCREASING (< >b - <J>2 ) s PL A N E 2 4*2 FIG URE I I - 6. RADIUS O F CURVATURE IN PLA N E 2 tvj

S u b stitu tio n of equations (11-14), (11-17), and (11-18) in to eq u a tio n (11-19) y ie ld s cj>b '( Z 3 2) = Real(Z3)<i>2 ' p2 (<j>b- - <j,2 ') Imag (eu 4*) + Real Z3 " Imag (Z2 e11^2) + (< >2 ')2 Im ag (ii Z2 e*1 ^ 2 ) - Im ag (ii T2 " ) J - Im ag (Z 3)<j>2 ' p2 ((j,b ' - <J,2 ') R e al ( e ^ b ) - Im ag (Z3)[^<,2 " R e a l (Z2 eu * 2 ) + ((j>2 ')2 R e a l (ii Z2 eu ) - Real (ii T2 " )J (11-20) F r o m equatio n (11-20), it can be se e n th a t the le ft han d sid e of th e e q u atio n is a lin e a r function of <j>b '. T hus can be obtained e x p lic itly and h a s th e fo rm of «>b ' = ^R eal(z 3)j <j)2 " Im ag ^ e *2) - (4>2 ')2 [p 2 Im ag (e11(^b ) - Im ag (ii Z2 e ll(^2 )J - Im ag (ii T2 ") j - Im ag (Z3) j <f>2 " R eal (Z2 e11 * z ) - (< >2 ')2 [ p2 R e a l ( e * * ^ ). R e a l (ii Z2 e 11* 2 )] - R e a l (ii T2 " ) J J [ Z 3 z- R eal(z 3 ) ' p2 Im ag (e11^ ) + Im ag (Z 3) <J>2 ' P 2 R e al (e11^ ) ] " 1 (11-20)

W ith th is the p ro b le m h a s b e e n re d u c e d to tw o re a l unknow ns, the com ponents of th e com p lex n u m b e r Z x. F ro m equation (11-13) and by u se of eq u atio n (11-14) Z1 can now be o b tain ed fro m equation (II-6), w ritte n in the follow ing fo rm (11-22) E q u atio n (11-22) c o m p le te s th e c o n stru c tio n of a d e sig n co m - p u ta tio n p ro c e d u re. W ith d efin itio n of th e d e s ire d re la tiv e m otion and one o f th e p ro file s (Z2 ), th e m atin g o r conjugate p ro file Zj can be c o m p u ted in a s tra ig h tfo rw a rd m a n n e r. A lthough equatio n (11-22) p ro v id e s Zx e x p licitly, th is does not a s s u r e th a t a w o rk a b le m e c h a n ism h a s b e e n a tta in e d. T h ere a re p h y s ic a l re q u ir e m e n ts. B. PH Y SICAL REQ U IREM EN TS To co m p lete th e a n a ly s is, it is n e c e s s a r y to d e te rm in e w hat c o n d itio n s m u s t be im p o sed on -< >2 (<f>j ) and T 2 (<j>j) to e n s u re a w o rk able m e c h a n ism.

B a se d on the a n a ly sis p re s e n te d th u s fa r, one su ch w o rk able m e c h a n ism is d e lin e a te d in F ig u re (II-7). T his illu s tr a tio n d e p ic ts a c o n to u r w hich is re p re s e n te d by a s e r ie s of,rp in s r'. As m e m b e r 2 ro ta te s in th e in d ic a te d d ire c tio n, th e b an d w ill re m a in ta u t and unw ind fro m m e m b e r 1 unto m e m b e r 2. The p in s denote in s ta n tan e o u s tan g e n t p o in ts and c o rre s p o n d to th e tan g e n t p o in ts of m e m b e r 1 and to th e in c re m e n ta l m o tio n, A<J>j, thus defining the p ro file of m e m b e r 1 fo r a g iven <J>2 = Gfcjjj ). W ith th is r a th e r b ro a d d efin itio n of a w o rk ab le m echan ism, it is now p e rm is s ib le to tr y and define q u a n tita tiv e ly as m an y of the p h y s ic a l re q u ire m e n ts im p o sed on the m e c h a n ism as p o s s ib le. F i r s t, th e b and m u s t b e unique, i. e., one b an d m u st be w ra p p e d onto one Zt p ro file fo r th e e n tire ran g e of o p e ra tio n. F ig u re (II 8) gives a v io la tio n of th is c o n s tra in t. T h is condition is c h a r a c te riz e d by th e re b ein g two d is tin c t v a lu e s of ({j^ fo r som e value of the input cj>x. The r e s tr ic tio n th is condition im p o ses on <j)2 and T2 is th a t th e ir d e riv a tiv e s be sin g le valued, no ju m p s. Second, it is obvious fro m equation (11-22) th a t (jj-j-,' cannot go to z e ro in g e n e ra l w ithout Zj a p p ro a ch in g oo. T his condition is d e p ic te d in F ig u re (II-9) and illu s tr a te s th a t the band m u st re m a in so m e fin ite and re a so n a b le len g th. T h ird, th e b an d in la te r p o sitio n s m u st not in te r f e r e w ith th e p ro file s of e a r l i e r p o s itio n s, and v ice v e r s a. T his situ a tio n is

PINS FIG U R E II-7. PICTO RIA L ILLUSTRATION OF WORKABLE MECHANISM

P R O F IL E 1 P R O F IL E 2 FIGURE I I - 8. SINGLE BAND REQUIREM ENT tsj O

P R O FIL E 2 P R O F IL E 1 FIG U RE I I - 9. REPRESEN TA TIO N OF $h ' 0

d e p ic te d in F ig u re (11-10). F o r th is c a se th e band is show n to be in a p o sitio n th a t re q u ir e s it to p a s s th ro u g h an e a r l ie r g e n e ra te d p o rtio n of th e p ro file of m e m b e r 1. The c e n te r of c u rv a tu re of m e m b e r 1 h a s sh ifte d fro m one sid e o f the tan g ent v e c to r to the o th e r. obvious fro m th is illu s tr a tio n th a t th is condition cannot e x is t. It is T his in te rfe re n c e is c a u se d by d st changing sign, i. e., the ra d iu s of c u rv a tu re of Z1 h a s changed sign. T h e re a r e c a s e s in w hich the c u rv a tu re can change sign w ith out being d e s tru c tiv e to th e m e c h a n ism, as w ell as c a s e s in w hich the c u rv a tu re does n o t change sig n y et th e m e c h a n ism is not fe a sib le. F ig u re (11-11) illu s tr a te s a situ a tio n in w hich th e c u rv a tu re changes sig n, y et is fe a sib le fo r so m e m e c h a n ism s. F ig u re (11-12) illu s tr a te s a c a s e w hen th e c u rv a tu re does not change sig n y e t th is situ a tio n is n o t fe a s ib le fo r any b an d m e c h a n ism. F ig u re (11-13) show s a seco n d c a se fo r a non-ch an g in g c u rv a tu re y et an in fe a sib le m e c h a n ism e x is t in th is c a s e. F ig u re (11-10) d e p ic ts a c a se in w hich d sx / d ^ changed sig n ed fo r an in fe a sib le m e c h a n ism. F o u rth, fo r an o v e rc o n s tra in e d m e c h a n ism th a t re q u ire s two b a n d s, b id ire c tio n a l o r o s c illa to ry m e c h a n ism s, th e two p ro file s m u st n o t in te r f e r e. O bviously, th is d iffe rs fro m th e p re c e d in g situ atio n, i. e., in th is c a s e in te rfe re n c e of th e two p ro file s a r e involved w h e re a s in th e p re v io u s c a se th e in te rfe re n c e w as b e tw een th e band

CHANGES SIGN 2 P R O F IL E 1 P R O F IL E 2 FIG U R E I I - 10. BAND IN TER FEREN C E WITH EA RLIER GENERATED PR O FIL E

P R O F IL E 1 PR O FIL E 2 FIG U RE 11-11. A FEA SIB LE MECHANISM FO R SOME CHANGING CURVATURE CASES

P R O F IL E 1 PR O FIL E 2 FIG U R E 11-12. CURVATURE DOES NOT CHANGE SIGN, IN FEA SIBLE IN A LL CASES

Ii Y1 N O TE: NOT FEA SIB LE FIG U R E 11-13. IN FEA SIBLE NON-CHANGING CURVATURE MECHANISM w Ul

and one p ro file. F ig u re (11-14) illu s tr a te s a situ a tio n in w hich two p ro f ile s in te r f e r e. T his condition can u su a lly b e avoided by a x ia lly o ffse ttin g th e two p ro file s and b a n d s. An e x am p le p r e s e n te d a t the end of th is c h a p te r illu s tr a te s an a x ia lly o ffse t m e c h a n ism. U ntil now sp e c ific ex am p le s have illu s tr a te d w hat c o n stitu te a fe a s ib le m e c h a n ism. It is ad v an tag eo u s, h o w e v er, to g e n e ra liz e as m u ch as p o ssib le and to e s ta b lis h th e conditions th a t enable one to d e te rm in e w h e th er a m e c h a n ism is a c c e p ta b le o r n ot. F o r e x am p le, F ig u re (11-15), d e p ic ts a situ a tio n in w hich a "ju m p " o c c u rs, y e t th is could be an a c c e p ta b le m e c h a n ism to so m e ex ten t, in co n t r a s t to the f i r s t r e s tr ic tio n d isc u sse d, i. e., d e riv a tiv e s be sin g le v alu ed, F ig u re (II 8). F ig u re (11-16) illu s tr a te s a s im ila r situ a tio n. F ig u re (11-17) d e lin e a te s a c a s e in w hich a "ju m p " o c c u rs, s im ila r to th e m e c h a n ism p ic to ra lly d e s c rib e d in F ig u re s (11-15) and (11-16). T h is illu s tra tio n, h o w ev er, d e p ic ts an u n a c c e p ta b le situ a tio n in w hich the b an d ju m p s fro m one sid e of th e c u rv e to the o th e r sid e. In g e n e ra l, it can be s ta te d th a t any g iven se c tio n o r se g m e n t of Zj is p h y sic a lly p o ssib le if th e end p o in ts of th a t se g m en t can be c o n n e c te d by a convex c u rv e th a t does not c ro s s th e band o r en clo se Z 2 in any p o s itio n. R e fe r to F ig u re s (11-18) and (11-19). C o n v e rse ly, fo r any se g m e n t of Zj to be fe a sib le, a convex c u rv e connecting the in itia l and fin al p o in ts of the se g m e n t m u s t e x is t th a t does n o t c ro s s

P R O F IL E 1 \ PR O FIL E 2 FIG U R E H -14. OSCILLATORY OVERCONSTRAINED MECHANISM, PR O FIL E S IN T E R FE R E -4

PR O FIL E 2 \ JU M P \ \ W w P R O F IL E 1 Xi FIG U R E 11-15. SCHEMATIC REPRESEN TA TIO N O F A WORKABLE MECHANISM W ITH A JU M P oj 00

Yi POSITION 2 POSITION 1 POSITION 3 JU M P C O X, FIG U R E -1 6. SCHEMATIC REPRESEN TA TIO N O F A WORKABLE MECHANISM WITH A JU M P

CURVE 2 CANNOT BE GENERATED W ITHOUT Z2 JUM PING FROM ONE SIDE O F THE CURVE TO THE OTHER SIDE. FIG U RE H -17. SCHEM ATIC ILLUSTRATIO N O F IN FEA SIB LE REGION O F MECHANISM o

M EM BER 2 JU M P FEA SIB LE M EM BER 1 FIG U R E n -1 8. SCHEMATIC ILLUSTRATION OF GENERAL FEA SIBLE MECHANISM

CONVEX CURVE CROSSES BAND CONVEX CURVE ENCLOSES Z, FIG U R E H -19. SCHEM ATIC ILLUSTRATION O F GENERAL INFEASIB LE M ECHAN ISM

th e b a n d o r e n c lo se m e m b e r Z2. Thus the com plete curv e c o n sistin g of Zj and th e clo sin g c u rv e m u s t be convex. T his ru le ap p lies to b o th fin ite and in fin ite s im a l length se g m en ts. F o r exam p le, F ig u re s (11-20) and (11-21) d epicts in fin ite sim a l t r iv ia l c a s e s. F ig u re (11-20) illu s tr a te s a convex fe a sib le solution. F ig u re (11-21) illu s tr a te s an in feasib le concave c a se (c u rv a tu re ch anged sign) and d e p ic ts in the g e n e ra l se n se the convex curve " c u ttin g " th e band. F ig u re s (11-22), (11-23), and (11-24) illu s tr a te fin ite situ a tio n s. In F ig u re (11-22), a fe a sib le condition, convex e v ery w h e re, e x is ts. T h is c a se is re p re s e n ta tiv e of th e situ a tio n in w hich the c u rv a tu re c h an g e s sig n yet a w o rk a b le accep tab le m e c h a n ism could s till e x ist in g e n e ra l (see F ig u re (11-11) a lso ). F ig u re (11-23) d ep icts an in fe a s i b le condition th a t illu s tr a te s the closing curv e and Z x seg m en t not b e in g convex e v e ry w h e re. T his condition w as d ep icted in (11-12), a c a s e th a t illu s tr a te d a non-changing sig n of c u rv a tu re y et the m e c h a n ism w as in fe a sib le. F ig u re (11-24) illu s tr a te s an in fe a sib le, convex clo sin g c u rv e. The in feasib le condition e x ists b e c a u se of Z2 b e in g e n c lo se d by th e cu rv e ; a condition a s s e s s e d e a r lie r in the g e n e ra l ru le. T his condition re s u lts fro m the band "jum ping" fro m one sid e of th e c u rv e to the o th e r sid e.

^ Y x M EM BER 1 M EM BER 2 CONVEX *1 FIG U R E H -20. TRIVIAL: INFINITESM IAL FEA SIB LE MECHANISM >

CONCAVE 0 CEN TER OF CURVATURE CUTS BAND M EM BER 1 M EM BER 2 I «CEN TER O F CURVATURE X, FIG U RE 11-21. TRIVIAL: INFINITESM IAL IN FEA SIBLE MECHANISM

M EM BER 2 CONVEX EVERYW HERE M EM BER 1 FIG U RE H -22. FIN IT E FEA SIB LE MECHANISM

Y1 NOT CONVEX EV ERY W HERE / \ \ M EM BER 2* M EM BER 1 NOT CONVEX FIG U RE 11-23. FIN ITE IN FEA SIBLE MECHANISM

CONVEX CURVE CROSSES BAND CONVEX CURVE EN CLO SES Z, X, FIG U RE 11-24. FIN IT E CONVEX IN FEA SIB LE MECHANISM oo

In g e n e ra l, it a p p e a rs th a t if th e re a re any "ju m p s" encounte r e d in the d esig n, it is n e c e s s a ry to ev alu ate only th e "jum p" its e lf to d e te rm in e if it c re a te s an in fe a sib le condition. T hus, it can b e s ta te d th a t any se g m en t of the p ro file m u st be convex and c ap a b le of being fo rm ed fro m a convex body w ith the b an d to ta lly o u tsid e th e body. T his p e rm its up to one and only one "ju m p " w h e re th e ra d iu s of c u rv a tu re ch an g es sign but w ill allow an infinite n u m b e r of jum ps in b, F ig u re (11-25). O th er conditions e x is t th a t im p o se r e s tric tio n s on the m e c h a n is m. F o r one, the b and m u st p o s s e s s a fin ite th ic k n e ss, thus d sj /d ^ b = 0 m u st be avoided. O ther re s tric tio n s m ay e x ist; how e v e r, th e ones th u s f a r c o n sid e re d a p p e a r to be the p rin c ip a l ones c a u se d by th e function being g e n e ra te d. The f i r s t condition th a t the band be a fin ite length is e a sily re s o lv e d by the d e sig n e r. The seco n d co n d itio n, 4>"bf z e ro can be v e rifie d as the m e c h a n ism is ro ta te d th ro u g h its ran g e of d e s ire d o p e ra tio n. The th ird condition re q u ire s the d e te rm in a tio n of th e c u rv a tu re, d<j>b/dsj. F ro m equatio n (11-11) Z,' = and by th e u se of th e ch ain ru le o f d iffe re n tia tio n

FEA SIB LE AT A L L JUM PS IN b * X! FIGURE H -25. SCHEMATIC ILLUSTRATION OF FEA SIB LE b JUM PS

51 z > ' = e < i + b ( I I ' 2 3 ) o r dsi d«t*b <j>b' e " 11. (11-24) Zj 1 h a s b e e n given p re v io u s ly by equation (II-8) as Zj 1 = T2 + (Z2 1 + ii «j)2» Z2 ) e11 ^ - B> and B h as b een defined by equatio n (II-9) as B = b e11 f 1. Then B' = b 1 e11 + ii <j)b ' b e 11^ 13. (11-25) Now fro m equatio n (11-13) b is given by b = (4,2 1 Z2 e11 ^ - ii T2 ) / 4>b ' e 11 and by d iffe re n tia tio n y ield s b ' = ( e 4>b 'j[<t>2 z 2 + <!»2 ' Z2 + ii(<(»2 ) Z2] el i,h - U T,"J - (< >2 ' Z 2 e11* 2 - H I, ' ) [< >b " + ii(.)>b ')2] e 11^ b )/('l>b, e 11'l>b)2 (11-26)

52 4>b " h a s now b een b ro u g h t into th e a n a ly s is. To d e te rm in e <j>km, eq u atio n (11-16) ^ b ' = ( Z 3!2 ) 1 ( R e a l Z3 Im ag Z3 ' - Im ag Z3 R eal Z 3 1) is d iffe re n tia te d and y ie ld s $ b " = I Z 3 1 2 (R eal Z3 Im ag Z3 " - Im ag Z3 R eal Z 3 ") - (R eal Z 3 Im ag Z3 1 - Im ag Z3 R e al Z 3 ') - 2 (R eal Z 3 R e al Z3 ' + Im ag Z3 Im ag Z3 ')] /(! Z3 2 )2 (11-27) F o r convenience th is can b e w ritte n as Z 3 2 )2 - Z3 2 (R eal Z 3 Im ag Z 3 " - Im ag Z 3 R eal Z3 ")=RHS (11-28) w h e re RHS = -2 (R eal Z3 R eal Z3 1 + Im ag Z3 Im ag Z 3 ') - (R eal Z 3 Im ag Z3 ' - Im ag Z3 R eal Z3 ') (11-29) Z3 " m u st now b e d e te rm in e d. T h e re fo re, equation (11-17) Z3 ' = 4>2 " z2 eii4>2-4,2 z2- eii, >2 + ii (4*2 ) Z2 eu+2 - ii T:

d iffe re n tia te d y ie ld s z 3 " = 4>2» Z2 + 2<j>2 " Z2 «+ <J>2 ' Z2» - (<J>2 ')3 z2 + ii [3<»2 '4»2» Z 2 + 2 (c >2 )2 Z2 *] I e11 (11-30) Since Z2 ' is given by equation (11-18) as Z2 ' = p2 (4>b ' -<i>2 ' ) e ii(< J,b" <,,2) th e n Z2 Mcan be o b tain ed by d iffe re n tia tio n of equation (11-18). Thus z 2 = [pj <+b -«* ) + H PJ <+b - ')2 - PS <h "] e il (,i,b +! + P2 <l>b" «<4>b " l>2) (11-31) S u b stitu tin g equation (11-31) into equation (11-30), Z 3 " is given by Z3 " = j«j)2n, Z2 +2<j)2'»Z2 ' [p2 '(<j,b '-<j,2») + ii p2 (<j>b ' - 4,2 ')2 - p2 4>2 "] eu (<5>b - +*} - f a «)3 Z2 + ii [3 4. 2 ' fc " Z2 + 2 (<j>2 ')2 Z2 '] J e +2 + 4>z ' Pz «j>b" e il ^ - 11 T2 (11-32) L et Z4 b e a com plex num b e r th a t re p re s e n ts

54 z4 = 14*2 "* Z2 + 2(j,2» z2»+ «j>2 [P2 '(+b - +2 ) + ii p2 «,b ' - <j>2 )2 - p2 <j>2 " ] e11 (+* " +2 } - (<j>2 ')3 Z2 + i i [3<J,2 '<j,2 l'z 2 +2(«j,2 ')2 Z 2 *J eia<*>2 - ii T2 (11-33) th e n Z3 " = Z4 + ' p2 <J>b " e{i *b. (11-34) S u b stitu tio n of E quation (11-34) into equatio n (11-28) y ield s <H>" (!Z3 I 2 )2 - ( Z 3! 2 ) R e a l Z 3 (Im ag Z4 + $ 2 ' P 2 4>b " Im ag (e11 * b) - Im ag Z 3 [(R eal Z4 ) + 4>2 P2 <l>bn R e al (e11 ^ b )] = RHS (H-35) T hus <j>b " can b e o b tain ed ex p licitly, th a t is 4>b " = [R H S + ( Z 3 2 )(R eal Z3 Im ag Z4 - Im ag Z3 R e al Z4)] % j[( Z 3!2 )2] [ Z 3 2 - pz 4»z ' (R e a l Z 3 Im ag e +b - Im ag Z 3 R eal e** ^b)jj. (11-36) By u se of e q u atio n s (11-25), (11-26), and (11-36), Zj ' can now be d e te rm in e d. T he c u rv a tu re d< >b /d s i can be o b tain ed fro m equation (11-24), re p e a te d <Is i _ Z t 1 ^>b d+b ' V 6

N ote th a t th is r e s u lt p re s u p p o s e s th a t (j)^ is th e d ire c tio n of th e ta n g e n t a s w as illu s tr a te d in fig u re (II-4). H ow ever, sin c e th e c u rv a tu re is a r e a l q u antity, only th e r e a l p a r t of equatio n (11-24) is re q u ire d, th a t is, th e c u rv a tu re b ein g th e in v e rs e T hus, w ith th e d e te rm in a tio n of Zt w hile sim u lta n e o u sly t e s t ing (1) th e c u rv a tu re to a s s u r e th a t it does n o t change sig n and (2) 4*-^' to a s s u r e th a t it does not go to z e ro, a b and m e c h a n ism fo rm e d u sin g th e tw o c u rv e s Zt and Z2 w ill p ro v id e a fu n ctio n al re la tio n sh ip b e tw e e n T2 and < >2. A c o m p u te r p ro g ra m, G E N P L T, h a s b e e n w ritte n th a t in c o r p o r a te s th e s e e q u atio n s and is in clu d ed in th e A ppendix, F low C h a rts and C o m p u te r P r o g r a m s. C. EC C EN TR IC C IR C L E DERIVATION As s ta te d e a r lie r, th e d e sig n eq u atio n s have b e e n dev elo p ed in d e ta il by A. J. M c P h a te fo r th e c a s e of tw o m e m b e rs ro ta tin g about fix ed c e n te r s, of w hich one m e m b e r h a s a c ir c u la r p ro file (1). The d e v e lo p m e n t of th e e q u atio n s fo r one m e m b e r b e in g an e c c e n tric c ir c le w ill p ro v id e a sim p le th e o re tic a l m e m b e r w ith m o re d e sig n

56 fle x ib ility th an th e c ir c le. T his developm ent p ro v id e s a solution in c lo s e d fo rm, as does the c ir c le. A gain, th e eq u atio n of c o n s tra in t is Zx + B = Tz + Z2 e 11 * 2. (II-6) Since it is a ssu m e d th a t th e two m e m b e rs a r e ro ta tin g about fix ed c e n te rs, fig u re (11-26), T2 can be id e n tifie d b y T2 = e11*! w hich is tan tam o u n t to n o rm a liz in g a ll lengths b y th e c e n te r-to - c e n te r d ista n c e of the p a ra lle l sh a fts. T his can be done w ithout any lo s s of g e n e ra lity. D iffe re n tia tio n of equation (II-6) w ith re s p e c t to a m otion p a r a m e te r <j>j y ie ld s Zj ' + B* = T2 * + (Z2 + ii 4>2 1 Z2 ) e 11 * 2 (II-8) Now, su b stitu tin g eq u atio n s (II-9), (11-10), and (11-11), re p e a te d fo r conven ien ce, (II-9) b 1 = s2 ' - s x» (11-10) (11-11)