Solar Neutrinos: Status and Prospects. Marianne Göger-Neff

Similar documents
Review of Solar Neutrinos. Alan Poon Institute for Nuclear and Particle Astrophysics & Nuclear Science Division Lawrence Berkeley National Laboratory

Neutrinos from the Sun and other sources: Results from the Borexino experiment

Neutrino Experiments: Lecture 2 M. Shaevitz Columbia University

Recent results from Borexino Gemma Testera INFN Genova TAUP 2015 September 7th, 2015

Metallicities in stars - what solar neutrinos can do

Solar spectrum. Nuclear burning in the sun produce Heat, Luminosity and Neutrinos. pp neutrinos < 0.4 MeV

Results from Borexino on solar (and geo-neutrinos) Gemma Testera

Solar Neutrinos in Large Liquid Scintillator Detectors

arxiv: v1 [hep-ex] 22 Jan 2009

Scintillator phase of the SNO+ experiment

Proton decay and neutrino astrophysics with the future LENA detector

UNIT1: Experimental Evidences of Neutrino Oscillation Atmospheric and Solar Neutrinos

1. Neutrino Oscillations

Status of Solar Neutrino Oscillations

Solar Neutrino Oscillations

Detection of MeV scale neutrinos and the solar energy paradigm

Neutrino oscillation experiments: Recent results and implications

Neutrino Physics with SNO+ Freija Descamps for the SNO+ collaboration

Solar Neutrino Road Map. Carlos Pena Garay IAS

LOW ENERGY SOLAR NEUTRINOS WITH BOREXINO. Lea Di Noto on behalf of the Borexino collaboration

14-th Lomonosov conference on elementary particle physics Moscow, August 19-25,2009 BNO INR V.N. Gavrin. The Solar Neutrinos

Solar Neutrinos & MSW Effect. Pouya Bakhti General Seminar Course Nov IPM

4p 4 He + 2e + +2ν e. (1)

Solar and atmospheric ν s

Recent Discoveries in Neutrino Physics

Neutrino Oscillations

Search for Sterile Neutrinos with the Borexino Detector

11 Neutrino astronomy. introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1

WHY DO SOLAR NEUTRINO EXPERIMENTS BELOW 1 MEV? a

Neutrino Oscillations

Past, Present, and Future of Solar Neutrino Physics

KamLAND. Studying Neutrinos from Reactor

Oklahoma State University. Solar Neutrinos and their Detection Techniques. S.A.Saad. Department of Physics

Results from Borexino 26th Rencontres de Blois

Neutrino Physics II. Neutrino Phenomenology. Arcadi Santamaria. TAE 2014, Benasque, September 19, IFIC/Univ. València

Solar Neutrino and Neutrino Physics in Brazil

Borexino and status of the project Aldo Ianni INFN, Gran Sasso Laboratory on behalf of the Borexino collaboration

Results on geoneutrinos at Borexino experiment. Heavy Quarks and Leptons Yamagata Davide Basilico

Low Energy Neutrino Astronomy and Results from BOREXINO

Precision Measurement of the Low Energy Solar Neutrino Spectrum with the LENS Experiment Mark Pitt * Virginia Tech for the LENS Collaboration

ν?? Solar & Atmospheric Oscillation Experiments Greg Sullivan University of Maryland Aspen Winter Conference January 21, 1999 )Past )Present )Future

Aldo Ianni, LNGS for the Borexinocollaboration Sept. 29th, 2011

Li in a WbLS Detector

The LENA Neutrino Observatory

( Some of the ) Lateset results from Super-Kamiokande

Study of solar neutrino energy spectrum above 4.5 MeV in Super Kamiokande I

192 days of Borexino. Neutrino 2008 Christchurch, New Zeland May 26, Cristiano Galbiati on behalf of Borexino Collaboration

Neutrino Sources in the Universe

KamLAND. Introduction Data Analysis First Results Implications Future

Neutrinos and the Stars II

PHYS 5326 Lecture #6. 1. Neutrino Oscillation Formalism 2. Neutrino Oscillation Measurements

Astrophysical Neutrino at HK

Neutrinos: Yesterday, Today and Tomorrow. Stanley Wojcicki SLAC Summer Institute 2010 August 13, 2010

Measuri g the low energy neutrino spectrum with the LENS experiment

Neutrino Oscillation: Non-Accelerator Experiments

Recent Discoveries in Neutrino Oscillation Physics & Prospects for the Future

Rivelazione di neutrini solari - Borexino Lino Miramonti 6 Giugno 2006 Gran Sasso

Solar Neutrinos and the Borexino experiment

Recent results from Borexino. Sandra Zavatarelli, INFN Genoa (Italy) on behalf of the Borexino Collaboration

Workshop Towards Neutrino Technologies July Prospects and status of LENA

A Large Liquid Scintillator Detector for Neutrino Mass Hierarchy : RENO-50

Neutrino Oscillation Measurements, Past and Present. Art McDonald Queen s University And SNOLAB

Neutrino Oscillations

The Solar Neutrino Problem. There are 6 major and 2 minor neutrino producing reactions in the sun. The major reactions are

Neutrino physics. Evgeny Akhmedov. Max-Planck-Institut für Kernphysik, Heidelberg & Kurchatov Institute, Moscow

Radio-chemical method

Supernova Neutrinos in Future Liquid-Scintillator Detectors

Recent advances in neutrino astrophysics. Cristina VOLPE (AstroParticule et Cosmologie APC, Paris)

Neutrino mixing II. Can ν e ν µ ν τ? If this happens:

The future of neutrino physics (at accelerators)

Purification of Liquid Scintillator and Monte Carlo Simulations of Relevant Internal Backgrounds in SNO+

Astroparticle physics

SOLAR NEUTRINO EXPERIMENTS: STATUS AND PROSPECTS M. C. Chen

Neutrino Experiments with Reactors

arxiv: v1 [hep-ex] 22 Nov 2012

Recent results from Super-Kamiokande

Solar Neutrinos with Borexino at LNGS Current Results/Future Opportunities

Neutrino Oscillations

SOLAR NEUTRINOS REVIEW Revised December 2007 by K. Nakamura (KEK, High Energy Accelerator Research Organization, Japan).

Neutrino Pendulum. A mechanical model for 3-flavor Neutrino Oscillations

Super-Kamiokande ~The Status of n Oscillation ~

KamLAND Data and the Solution to the Solar Neutrino Problem

Hydrogen Burning in More Massive Stars.

USING NEUTRINOS TO STUDY THE EARTH. Nikolai Tolich University of Washington

Solar Neutrinos II: New Physics

Study of Solar Neutrinos at Super Kamiokande

Neutrinos and Supernovae

Where do we stand with solar neutrino oscillations?

What can be learned by measuring the fluxes of the 7 Be and the pep solar neutrino lines?

Neutrino Physics: Lecture 1

Current Results from Reactor Neutrino Experiments

Hydrogen Burning in More Massive Stars and The Sun.

Detectors for astroparticle physics

Solar Neutrinos and The Sun NEUTEL 11 Venice 15/03/11

Outline. (1) Physics motivations. (2) Project status

1. Introduction on Astroparticle Physics Research options

XMASS: a large single-phase liquid-xenon detector

M.Nakahata. Kamioka observatory ICRR/IPMU, Univ. of Tokyo. 2016/11/8 M. Nakahata: Neutrino experiments - 30 years at Kamioka 1

PLAN. Lecture I: Lecture II: Neutrino oscillations and the discovery of neutrino masses and mixings. Lecture III: The quest for leptonic CP violation

Particle Physics: Neutrinos part I

Transcription:

Solar Neutrinos: Status and Prospects Marianne Göger-Neff NIC 2014, Debrecen TU München

Solar Neutrinos Objective of the first solar neutrino experiment: to see into the interior of a star and thus verify directly the hypothesis of nuclear energy generation in stars. (John N. Bahcall, PRL 12, 300, 1964) Astrophysics: use neutrinos as messengers from the solar interior real-time information from the solar core do we understand fusion inside the Sun? Particle physics: use the Sun as a well(?) understood source of electron neutrinos neutrino oscillations non-standard neutrino interactions 2

Nuclear reactions in the solar core hydrogen burning: 4 4p He 2e 2 e 26.7 MeV p + p 2 H + e + + e pp chain ~ 99% of energy p + e + p 2 H + e 99.8% 0.2% 2 H + p 3 He + 85% 10-5 % 15% 3 He + 3 He 4 He + 2p 3 He + p 4 He + e + + e 3 He + 4 He 7 Be + CNO cycle <1% of energy poorly known not directly measured yet 12 C + p 13 N + 13 N 13 C + e + + e 13 C + p 14 N + 14 N + p 15 O + 99.9% 0.1% 15 O 15 N + e + + e 7 Be + e 7 Li + + e 7 Be + p 8 B + 15 N + p 12 C + 4 He 7 Li + p 4 He + 4 He 8 B 2 4 He + e + + e 3

The Standard Solar Model model of a main sequence star with M = 1.989x10 33 g Input parameters: initial chemical composition X in, Y in, Z in, mixing length parameter α MLT nuclear cross sections evolve solar model to the solar age (τ = 4.57 Gyr) S ij present-day constraints: solar luminosity solar radius atmospheric composition L = 3.842x10 33 erg/s R = 6.9598x10 10 cm (Z/X) atmo Output: ν fluxes and spectra density ϱ(r) and sound speed c(r) depth of the convective zone R CZ Experimental data: solar neutrinos helioseismology 4

The Standard Solar Model Predicted solar neutrino spectrum: Serenelli et al. 2011 Total neutrino flux determined by solar luminosity: 6.5 x 10 10 cm -2 s -1 5

The Solar Abundance Problem Significant improvements in the SSM over the past 10 years: improved cross sections 14 N(p, ) 15 O, 3 He(α, ) 7 Be new opacity calculations more accurate determination of solar surface abundancies lower solar metallicity Z reduced 7 Be, 8 B, CNO neutrino fluxes But: low Z solar models are in conflict with helioseismology ( R CZ, Y surf ) low Z high Z high Z low Z Can solar neutrino measurements decide? 6

Prediction of Solar Neutrino Fluxes Source Neutrino Flux [cm -2 s -1 ] SSM-GS98 high Z Neutrino Flux [cm -2 s -1 ] SSM-AGS09 low Z Difference [%] pp 5.98 (1±0.006) 10 10 6.03 (1±0.006) 10 10 +0.8 pep 1.44 (1±0.012) 10 8 1.47 (1±0.012) 10 8 +2.1 7 Be 5.00 (1±0.07) 10 9 4.56 (1±0.07) 10 9-8.8 8 B 5.58 (1±0.13) 10 6 4.59 (1±0.13) 10 6-17.7 13 N 2.96 (1±0.15) 10 8 2.17 (1±0.15) 10 8-26.7 15 O 2.23 (1±0.16) 10 8 1.56 (1±0.16) 10 8-30.0 17 F 5.52 (1±0.18) 10 6 3.40 (1±0.16) 10 6-38.4 CNO total 5.24 x 10 8 3.76 x 10 8-28.3 Serenelli et al.,apj 743 24, 2011 Can solar neutrino measurements decide? 7

Solar neutrino experiments Detector Target mass & material Threshold [MeV] Data taking Homestake 615 t C 2 Cl 4 0.814 1970 1994 Kamiokande 3 kt H 2 O 7.5 1983 1990 SAGE 50 t Ga 0.233 1989 present GALLEX/GNO 30.3 t GaCl 3 0.233 1991 2003 Super- Kamiokande 22.5 kt H 2 O 5 3.5 1996 present SNO 1 kt D 2 O 5 (3.5) 1999 2006 Borexino 300 t C 9 H 12 0.2 2007 present radio-chemical experiments sensitive only to ν e measure integral flux above threshold real-time experiments water-cerenkov or liquid scintillator neutrino spectroscopy 8

History: The Solar neutrino problem over 30 years all solar neutrino experiments measured significantly lower neutrino rates than predicted by the SSM solved by the SNO experiment 2002: CC: ν e + d p + p + e - NC: ν x + d p + n + ν x E>5 MeV ES: ν x + e ν x + e Experiment Threshold Data/ SSM Homestake (ν e + 37 Cl 37 Ar+e) Superkamiokande (ν x +e ν x +e) Sage + Gallex (ν e + 71 Ga 71 Ge+e) 0.814 MeV 0.34 0.03 5 MeV 0.46 0.02 0.233 MeV 0.56 0.04 NC SNO SSM 8B 1.01 0.12 CC SNO NC SNO 2 0.34 sin 12 solar 8 B neutrino flux compatible with SSM proof of neutrino oscillations 9

The MSW LMA oscillation scenario global analysis of solar neutrino data (+KamLAND): θ 12 = (34 ± 1) Δm 2 21 = (7.5 ± 0.2) 10-5 ev 2 survival probability for solar electron neutrinos: before Borexino Schwetz et al. 1103.0734 transition region vacuum-osc. P ee ~1 ½ sin 2 θ 12 matter-enhanced P ee ~ sin 2 θ 12 10

Solar Neutrinos: what next? real-time spectroscopy of low energy neutrinos: 7 Be, pep, CNO, pp SuperK, SNO Borexino Cerenkov-experiments (SNO, SuperK) measure < 10-4 of the total solar neutrino flux in real-time 11

1 Solar Neutrinos: what next? real-time spectroscopy of low energy neutrinos: 7 Be, pep, CNO, pp neutrino physics: test transition region MSW to vacuum oscillations (1 4 MeV) precision measurement θ 12, Δm 2 21 Non-Standard Interactions solar physics: determination of CNO flux discriminate high/ low Z SSM test luminosity constraint L ν = L

17 m Borexino Borexino @ LNGS, Italy, 3500 mwe, taking data since May 2007 Target: 270 t liquid scintillator (PC+PPO) in Ø 8.5m nylon vessel (0.1 mm thick) 2200 8 PMTs detection reaction: ν x + e ν x + e no signature no directional information extreme radiopurity required c( 238 U, 232 Th) < 10-16 g/g reached: c ( 238 U) < 10-19 g/g c ( 232 Th) < 10-18 g/g 13

Precision measurement of 7 Be neutrino rate monoenergetic, E ν = 862 kev R 46 1.5 (stat) 1.5 (syst) Be 1.6 cpd/100t Phys. Rev. Lett. 107, (2011) 141302 740 live days R no osc 74 5.2 cpd/100t Φ Be = (4.84 ± 0.24) 10 9 cm -2 s -1 P ee = 0.51 ± 0.07 @ 0.862MeV f Be = Φ Be /Φ SSM = 0.97 ±0.07 no oscillation excluded @ 5.0 s absence of day-night-asymmetry in agreement with LMA A DN = 0.001 ± 0.012(stat) ± 0.007(syst)

pep and CNO neutrinos pep neutrinos: E ν = 1.44 MeV Phys. Rev. Lett. 108 (2012) 051302 reduce 11 C background by 3-fold coincidence R pep = 3.1 ± 0.6(stat) ± 0.3(sys) cpd/100 t Φpep = (1.6 ± 0.3) x 10 8 cm -2 s -1 P ee = 0.62 ± 0.17 f pep = Φpep /Φ SSM = 1.1 ± 0.2 210 Bi pep 11 C CNO neutrinos: only limits, strong correlation with 210 Bi CNO limit obtained assuming pep @ SSM R CNO < 7.1 cpd/100 t (95% c.l.) ΦCNO < 7.7 10 8 cm -2 s -1 (95% C.L.) f CNO < 1.4 the strongest limit to date 15

Low threshold measurement of the 8 B solar ν 8 B flux measured with 3.0 MeV threshold: R B = (0.22±0.04±0.01) cpd/100 t Phys. Rev. D82 (2010) 033006 ΦB ES = (2.4 ± 0.4 ± 0.1) x 10 6 cm -2 s -1 345 live days f B = ΦB /Φ SSM = 0.88 ± 0.19 no hint for up-turn, but low statistics In agreement with other measurements: Kamland coll., PRC 84, 035804 (2011)

The Sudbury Neutrino Observatory @ Sudbury, Canada, 6000 mwe 1 kton D 2 O as target, 9500 PMTs data taking 1999-2006 Detection channels CC: ν e + d p + p + e - NC: ν x + d p + n + ν x ES: ν x + e - ν x + e - Low Energy Threshold Analysis E > 3.5 MeV no significant distortion observed CC Phys.Rev.C81:055504, 2010 17

SuperKamiokande @ Kamioka, Japan, 2700 mwe 50 (22.5) ktons H 2 O 11000 PMTs (20 ) taking data since 1996 Real-time-detection of 8 B ν via ν-electron-scattering: ν x + e ν x + e Cherenkov-effect direction information 18

SuperKamiokande latest results detection of low energy 8 B neutrinos: search for upturn in the energy spectrum = solar matter effect SK IV: threshold 3.5 MeV 8 B flux: (2.344 ±0.034) 10 6 /cm 2 s no significant distortion observed observation of day-night asymmetry = earth-matter-effect A DN (3.2 1.1 0.5)% in agreement with LMA solution PRL 112, 091805 (2014) 19

Physics implications of the latest results LMA solution confirmed by Borexino 7 Be and pep measurement, SuperKamiokande Day-Night-Asymmetry upturn in low energy 8 B spectrum not yet observed NSI or sterile neutrinos still an option Holanda, Smirnov: Phys.Rev.D83:113011,2011 Bonventre et al, PRD 88, 053010, 2013 20

Solar neutrinos and metallicity HighZ Low Z central value of 7 Be is right in the middle between predictions 7 Be measurement cannot discriminate btw. high/low Z solar models more accurate measurement & prediction needed present CNO limit not strong enough to discriminate btw. models 21

Solar neutrinos what next? measure CNO: solar models (high/low Z) high precision pep: Non Standard Interactions (NSI), precision test of LMA 8 B spectrum at low energies: NSI, sterile neutrinos direct measurement of pp neutrinos: test Solar luminosity improve precision on 7 Be (measurement and prediction): solar models Future Experiments ongoing: Borexino, Super-Kamiokande, SAGE liquid scintillator: SNO+, LENS, LENA liquid noble gas: XMASS, CLEAN 22

Borexino: phase 2 (2012 2015) Purification effort in 2010-2011: reduced 210 Bi background by water extraction (50 20 cpd/100t) removed 85 Kr by nitrogen stripping (30 <7 cpd/100t) 3 years of undisturbed data taking 2012-2014, calibration 2015 Goals for solar neutrinos: direct detection of pp neutrinos (reduced 85 Kr and 210 Bi background) solar luminosity in neutrinos improve limit on CNO neutrinos (reduced 210 Bi background) probe metallicity reach 3σ significance of pep signal (reduced 210 Bi background) measure 7 Be neutrinos to 3% (reduced 85 Kr and 210 Bi background) improve 8 B measurement to 10% (higher statistics) precision test of LMA 23

SuperKamiokande future from Y. Koshio s talk @ Nu2014 wide band intelligent trigger system with 100 % efficiency > 2.5 MeV installed 24

location: Sudbury, Canada, 6000 mwe fill SNO with liquid scintillator 780 tons LAB+PPO, 9000 PMTs reduced 11 C background due to the depth 70 µ/day@sno+ (10 4 µ/day@borexino) 210 Bi, 85 Kr dominating background for solar ν Schedule: start scintillator filling: early 2015 background studies add 130 Te end 2015 ( bb decay ) solar phase postponed 25

LENA: Low Energy Neutrino Astronomy physics program: proton decay, solar neutrinos, Supernova neutrinos, DSNB, geoneutrinos, etc. scaling up Borexino (~ 100): 26

Solar neutrinos with LENA ~ 18 kton fiducial volume for solar neutrinos detection via: neutrino-electron-scattering (ES) e - e - CC-interaction on 13 C: 13 C + e 13 N + e - 7 Be: ~ 5400 events per day search for fluctuations on short time scale CNO & pep: ~ 360 events per day sensitive test of MSW, solar metallicity CC and NC measurement of 8 B: ~ 60 events per day (ES)/1 event per day (CC) search for spectral deformation 27

JUNO Jianmen Underground Neutrino Observatory (formerly Daya Bay II) 20 kt liquid scintillator, 700 mwe determination of mass ordering with reactor neutrinos also good for low-energy neutrino astronomy (solar neutrinos?) 28

LENS: Low energy neutrino spectroscopy In-loaded liquid scintillator clear signature of ν e -events (CC-reaction): R. Raghavan, Phys. Rev. Lett. 37, 259 (1976) C. Grieb et al.,physrevd 75 0903006 (2007) prompt: e 115 In e 115 Sn * t=4.6 ms delayed: 115 Sn * 115 Sn ' s (116 kev, 497 kev) Q= 114 kev sensitivity to pp, 7 Be, pep, CNO, 8 B Background from β-decay of 115 In: 400 pp/year 8 10 13 In-decays/year µ-lens: 130 l prototype running in Kimballton mine 29 simulated spectrum: 5 years, 10 t In

Cryogenic liquid noble gas scintillators 100 t liquid noble gas as scintillator main goal: dark matter 1 pp-event per day and ton XMASS phase-1 detector with 835 kg liquid Xe, 642 PMTs, running @ Kamioka CLEAN prototype with 500 kg liquid Ne, 92 PMTs running @ SNOLAB arxiv 1301.2815 arxiv 1111.3260 30

Conclusions Lessons learned from Solar Neutrinos: evidence of hydrogen burning in the sun neutrino oscillations and matter-effect precise measurement of θ 12 What the future may bring: direct measurement of pp neutrinos detection of CNO neutrinos solar abundance problem search for new physics in solar neutrino interactions Solar neutrino detectors are also good for: Supernova neutrinos geo neutrinos search for sterile neutrinos with artificial sources dark matter neutrinoless double beta decay 31