Solar Neutrinos and The Sun NEUTEL 11 Venice 15/03/11

Similar documents
The Standard Solar Model. PHYSUN L'Aquila

Open Questions in Solar Neutrinos

Neutrinos and Solar Metalicity

Detection of MeV scale neutrinos and the solar energy paradigm

Metallicities in stars - what solar neutrinos can do

CNO abundances in the Sun and Solar Twins

arxiv: v1 [astro-ph.sr] 26 Jan 2016

Review Article Solar Neutrinos

CN Neutrinos and the Sun s Primordial Core Metalicity

The new solar abundances - Part II: the crisis and possible solutions

Solar Neutrino Road Map. Carlos Pena Garay IAS

arxiv:astro-ph/ v2 16 May 2005

Neutrinos and the Stars II

Solar Neutrinos: Status and Prospects. Marianne Göger-Neff

Solar Interior. Sources of energy for Sun Nuclear fusion Solar neutrino problem Helioseismology

Experimental study of the 14 N(p,γ) 15 O reaction

arxiv:astro-ph/ v1 10 Nov 2005

Pre Main-Sequence Evolution

Solar Seismic Model and the Neutrino Fluxes

The impact of solar surface dynamo magnetic fields on the chemical abundance determination

Review of Solar Neutrinos. Alan Poon Institute for Nuclear and Particle Astrophysics & Nuclear Science Division Lawrence Berkeley National Laboratory

The Sun. The Sun. Bhishek Manek UM-DAE Centre for Excellence in Basic Sciences. May 7, 2016

LOW ENERGY SOLAR NEUTRINOS WITH BOREXINO. Lea Di Noto on behalf of the Borexino collaboration

Crab Nebula Neutrinos in Astrophysics and Cosmology

Recent results from Borexino Gemma Testera INFN Genova TAUP 2015 September 7th, 2015

A Semi-Analytical Computation of the Theoretical Uncertainties of the Solar Neutrino Flux

Past, Present, and Future of Solar Neutrino Physics

Diffusion and helioseismology

Ay 1 Lecture 8. Stellar Structure and the Sun

Results from Borexino on solar (and geo-neutrinos) Gemma Testera

Neutrino Oscillations

arxiv: v1 [astro-ph.sr] 18 Jul 2018

arxiv: v2 [astro-ph.sr] 1 Aug 2016

arxiv: v1 [astro-ph.sr] 28 Aug 2012

Stellar Structure. Observationally, we can determine: Can we explain all these observations?

SOLAR NEUTRINOS REVIEW Revised December 2007 by K. Nakamura (KEK, High Energy Accelerator Research Organization, Japan).

arxiv:astro-ph/ v1 4 Jul 2004

Nuclear Astrophysics

Stellar Interiors Nuclear Energy ASTR 2110 Sarazin. Fusion the Key to the Stars

Light Asymmetric Dark Matter

Solar Abundances N Grevesse, A J Sauval. Encyclopedia of Astronomy & Astrophysics P. Murdin

The Sun. Basic Properties. Radius: Mass: Luminosity: Effective Temperature:

Helioseismology and screening of nuclear reactions in the Sun. Abstract

arxiv:hep-ph/ v1 24 Jun 1998

4p 4 He + 2e + +2ν e. (1)

Stellar Interiors - Hydrostatic Equilibrium and Ignition on the Main Sequence.

UNIT1: Experimental Evidences of Neutrino Oscillation Atmospheric and Solar Neutrinos

Thermonuclear Reactions

192 days of Borexino. Neutrino 2008 Christchurch, New Zeland May 26, Cristiano Galbiati on behalf of Borexino Collaboration

9-1 The Sun s energy is generated by thermonuclear reactions in its core The Sun s luminosity is the amount of energy emitted each second and is

14-th Lomonosov conference on elementary particle physics Moscow, August 19-25,2009 BNO INR V.N. Gavrin. The Solar Neutrinos

A first look at the Sun

Lifetime measurement of the MeV state in 15O with the AGATA Demonstrator

An Overview of the Details

The Sun - Size and Mass. Masses. Note: Most of solar system mass is in. Radii } } Densities

Scintillator phase of the SNO+ experiment

arxiv:astro-ph/ v2 24 May 1998

The Sun. The Sun Is Just a Normal Star 11/5/2018. Phys1411 Introductory Astronomy. Topics. Star Party

Precision Measurement of the Low Energy Solar Neutrino Spectrum with the LENS Experiment Mark Pitt * Virginia Tech for the LENS Collaboration

Nuclear Reactions and Solar Neutrinos ASTR 2110 Sarazin. Davis Solar Neutrino Experiment

Solar Neutrinos & MSW Effect. Pouya Bakhti General Seminar Course Nov IPM

Supernovae. Supernova basics Supernova types Light Curves SN Spectra after explosion Supernova Remnants (SNRs) Collisional Ionization

The Solar Neutrino Problem. There are 6 major and 2 minor neutrino producing reactions in the sun. The major reactions are

Solar spectrum. Nuclear burning in the sun produce Heat, Luminosity and Neutrinos. pp neutrinos < 0.4 MeV

Lecture 1. Overview Time Scales, Temperature-density Scalings, Critical Masses

Lecture 1. Overview Time Scales, Temperature-density Scalings, Critical Masses. I. Preliminaries

Name: Cristina Protasio Esparó. From: UAB Universitat Autònoma de Barcelona. martes 25 de marzo de 14

Overview of Astronomical Concepts III. Stellar Atmospheres; Spectroscopy. PHY 688, Lecture 5 Stanimir Metchev

Neutrino oscillation experiments: Recent results and implications

Recent results from Borexino. Sandra Zavatarelli, INFN Genoa (Italy) on behalf of the Borexino Collaboration

Core Collapse Supernovae An Emerging Picture Stephen W. Bruenn

Solar Neutrinos and the Borexino experiment

KamLAND. Studying Neutrinos from Reactor

Solar Neutrinos with Borexino at LNGS Current Results/Future Opportunities

The Sun Our Extraordinary Ordinary Star

An Overview of the Details

1. Introduction on Astroparticle Physics Research options

Non-Standard Interaction of Solar Neutrinos in Dark Matter Detectors

COX & GIULI'S PRINCIPLES OF STELLAR STRUCTURE

Li in a WbLS Detector

Homologous Stellar Models and Polytropes

ON USING THE COLOR MAGNITUDE DIAGRAM MORPHOLOGY OF M67 TO TEST SOLAR ABUNDANCES

Chapter 8 The Sun Our Star

Stellar Evolution II: Overview of Stellar Models

Neutrinos and Supernovae

Standard Solar Models

Nuclear Systematics: I. Solar Abundance of the Elements O. Manuel* and Cynthia Bolon Introduction

Solar Neutrinos: Solved and Unsolved Problems

Survey of the Solar System. The Sun Giant Planets Terrestrial Planets Minor Planets Satellite/Ring Systems

AN INTRODUCTION TO SOLAR NEUTRINO RESEARCH

Seismology of the Solar Convection Zone. Sarbani Basu & Η. Μ. Antia Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay

The LENA Neutrino Observatory

Recent advances in neutrino astrophysics. Cristina VOLPE (AstroParticule et Cosmologie APC, Paris)

The interior of the Sun. Space Physics - Project by Christopher Keil. October 17, Supervisor: Prof. Kjell Rnnemark

10/17/ A Closer Look at the Sun. Chapter 11: Our Star. Why does the Sun shine? Lecture Outline

UNIVERSITY OF SOUTHAMPTON

Chapter 14 Lecture. The Cosmic Perspective Seventh Edition. Our Star Pearson Education, Inc.

Neutrino Physics and Nuclear Astrophysics: the LUNA-MV project at Gran Sasso

Astro Instructors: Jim Cordes & Shami Chatterjee.

Modeling sub-giant stars. Fernando Jorge Gutiérrez Pinheiro Centro de Astrofísica da Universidade do Porto ESO Visiting Scientist

Transcription:

Solar Neutrinos and The Sun NEUTEL 11 Venice 15/03/11 A. Serenelli

Outline Update on Solar models: abundances and nuclear reaction rates Solar neutrino fluxes from neutrino data: can neutrinos disentangle abundances? Extracting information from solar neutrino fluxes, an example Why CN neutrinos? Final remarks

Recap on solar abundances Asplund et al. 2009 latest revision slightly higher abundances than in 2005 (note, particularly, neon and argon: the human factor?)

Recap on solar abundances Asplund et al. 2009 latest revision slightly higher abundances than in 2005 (note, particularly, neon and argon: the human factor?) Not from photosphere

Recap on solar abundances CO 5 BOLD derives higher abundances and (up to 2X) larger error bars although model atmospheres agree very well diffs in spectral analysis Error (mostly) reflect internal dispersion determined by selection of lines; human factor? difficult to estimate model uncertainties (attempt by Asplund et al.)

Helioseismology The Solar Abundance Problem Model (Z/X) S Z S Z C R CZ /R δc/c δρ/ρ Y S Y C GS98 0.0229 0.0170 0.0201 0.713 0.0010 0.011 0.2423 0.6330 AGS05 0.0165 0.0126 0.0149 0.728 0.0049 0.048 0.2292 0.6195 AGSS09 0.0178 0.0134 0.0160 0.724 0.0038 0.040 0.2314 0.6220 Helios. 0.0172 0.713 0.0000 0.000 0.2485 ±0.002 ±0.001 0.0000 0.000 ±0.0034 Serenelli et al. (2009)

Helioseismology Small separation ratios: l = 0, 1, 2, 3 r 02 (n) = ν n,0 ν n 1,2 ν n,1 ν n 1,1 r 13 (n) = ν n,1 ν n 1,3 ν n +1,0 ν n,0 R 0 dc dr dr r r 02 & r 13 core mean molecular weight warning for non-ssm

Revised nuc. cross sections: Solar Fusion II (Adelberger et al. - arxiv:1004.2318) Small changes in helioseismic properties

Solar Neutrinos ν fluxes with Solar Fusion II Serenelli et al. (2011) Slight increase of pp small decrease of 7 Be and 8 B Small increase in uncertainties

Neutrino fluxes Gonzalez-Garcia et al. (2010) Luminosity constraint Global analysis of solar & terrestrial ν data 3 flavor-mixing framework Basic constraints from pp-chains and CNO cycles Luminosity constraint (optional) Exhaustive discussion of importance of Borexino No borexino Borexino

Neutrino fluxes Gonzalez-Garcia et al. 2010 GS98 AGS05 P(GS98) = 43% P(AGS05)= 20% AGSS09 + SFII + new data?

Neutrino fluxes Results after AGSS09 & SFII χ 2 (GS98)= 4.2 83% χ 2 (AGSS09)= 6.7 57% Solar pep flux would need revision due to R(pp)/R(pep) change in SFII

Neutrino fluxes Extracting information from ν fluxes C + N environmental factors can be (partially) cancelled out by taking appropriate ratios Flux L Age Diff C N Si Fe 8 B 7.130 1.380 0.280 0.025 0.007 0.211 0.510 13 N 4.400 0.855 0.340 0.861 0.148 0.109 0.262 15 O 6.005 1.338 0.394 0.810 0.207 0.158 0.386

Neutrino fluxes Extracting information from ν fluxes C + N environmental factors can be (partially) cancelled out by taking appropriate ratios Flux L Age Diff C N Si Fe 8 B 7.130 1.380 0.280 0.025 0.007 0.211 0.510 13 N 4.400 0.855 0.340 0.861 0.148 0.109 0.262 15 O 6.005 1.338 0.394 0.810 0.207 0.158 0.386

Neutrino fluxes Extracting information from ν fluxes C + N environmental factors can be (partially) cancelled out by taking appropriate ratios C+N to 10% and remaining uncert. experimental Flux L Age Diff C N Si Fe 8 B 7.130 1.380 0.280 0.025 0.007 0.211 0.510 13 N 4.400 0.855 0.340 0.861 0.148 0.109 0.262 15 O 6.005 1.338 0.394 0.810 0.207 0.158 0.386 R SK ( 8 0.828 B) R SSM ( 8 B) [1 ± 0.03(SK) ± 0.026(res env) ± 0.049(LMA) ± 0.071(nucl)] R(CN) = X(C+N) R SSM (CN) X SSM (C+N)

Neutrinos & Helioseismology: towards a complete analysis Sound speed sensitivity Opacity sensitivity Both insensitive to C and N

Neutrinos & Helioseismology: towards a complete analysis Delahaye et al. (2010): sound speed used to extract Ne Same Y S and R CZ but different Ne/O ratio show sound speed variations Ne can be separated from other phot. elements

Additional motivations for CN neutrinos Experimental detection of CNO-cycles Test of non-abundance solutions to solar abundance problem, e.g. opacities Solar abundances Solar abundance problem (Sun initially homogeneous?) Suggestions of Sun different from solar twins

Additional motivations for CN neutrinos Experimental detection of CNO-cycles Test of non-abundance solutions to solar abundance problem, e.g. opacities Solar abundances Solar abundance problem (Sun initially homogeneous?) Suggestions of Sun different from solar twins Gradient in meteoritic abundances?

Additional motivations for CN neutrinos Experimental detection of CNO-cycles Test of non-abundance solutions to solar abundance problem, e.g. opacities Solar abundances Solar abundance problem (Sun initially homogeneous?) Suggestions of Sun different from solar twins Gradient in meteoritic abundances? All would produce CN contrast between envelope and core

Final Remarks Updated solar models with latest abundance revision AGSS09 solar abundance problem (helioseismology) Solar Fusion II rates: changes in 8 B (-5%), 13 N- 15 O(+6%) ν uncertainties slightly larger ( 8 B) Solar neutrino data cannot separate models (yet); CN flux needed Solar neutrinos used to extract physical information about the Sun: example C+N core abundance, other S 17 Solar core C+N abundance (direct from CN neutrino) & difference with surface value: accretion processes, diffusion rates, opacity changes Helioseismic and neutrino data can be used to extract solar composition. Different indicators sensitive to different elements. Stay tuned!