CP n supersymmetric mechanics in the U(n) background gauge fields

Similar documents
CP n supersymmetric mechanics in the U(n) background gauge fields

Lecture 7: N = 2 supersymmetric gauge theory

D-modules Representations of Finite Superconformal Algebras and Constraints on / 1 Su. Superconformal Mechanics

The Dirac Equation. Topic 3 Spinors, Fermion Fields, Dirac Fields Lecture 13

Geometry and Physics. Amer Iqbal. March 4, 2010

Lecture 6 The Super-Higgs Mechanism

Symmetry Groups conservation law quantum numbers Gauge symmetries local bosons mediate the interaction Group Abelian Product of Groups simple

Superfield Approach to Abelian 3-form gauge theory. QFT 2011 (23 27 Feb. 2011) [IISER, Pune]

Supersymmetric Gauge Theories, Matrix Models and Geometric Transitions

Talk at the International Workshop RAQIS 12. Angers, France September 2012

Properties of monopole operators in 3d gauge theories

g abφ b = g ab However, this is not true for a local, or space-time dependant, transformations + g ab

Supersymmetry Highlights. Kevin Hambleton

Topological reduction of supersymmetric gauge theories and S-duality

Symmetries, Fields and Particles. Examples 1.

Reφ = 1 2. h ff λ. = λ f

Exact Quantization of a Superparticle in

The N = 2 Gauss-Bonnet invariant in and out of superspace

Symmetries of curved superspace

Exchange statistics. Basic concepts. University of Oxford April, Jon Magne Leinaas Department of Physics University of Oslo

Introduction to supersymmetry

Symmetries, Groups, and Conservation Laws

Aspects of SUSY Breaking

Abelian and non-abelian Hopfions in all odd dimensions

JHEP05(2018)175. SU(2 1) supersymmetric mechanics on curved spaces. Nikolay Kozyrev, a Sergey Krivonos, a Olaf Lechtenfeld b and Anton Sutulin a

where P a is a projector to the eigenspace of A corresponding to a. 4. Time evolution of states is governed by the Schrödinger equation

Introduction to defects in Landau-Ginzburg models

Supersymmetric Mirror Duality and Half-filled Landau level S. Kachru, M Mulligan, G Torroba and H. Wang Phys.Rev.

Star operation in Quantum Mechanics. Abstract

2 Canonical quantization

Stability in Maximal Supergravity

NONINTEGER FLUXES, DOLBEAULT COMPLEXES, AND SUPERSYMMETRIC QUANTUM MECHANICS. based on [ ] and [ ] Hannover, August 1, 2011

Lie n-algebras and supersymmetry

Supercurrents. Nathan Seiberg IAS

Chern-Simons Theory and Its Applications. The 10 th Summer Institute for Theoretical Physics Ki-Myeong Lee

Generalized Global Symmetries

Isotropic harmonic oscillator

Some applications of light-cone superspace

Alternative mechanism to SUSY

Exact Results in D=2 Supersymmetric Gauge Theories And Applications

Generalized N = 1 orientifold compactifications

Heterotic Torsional Backgrounds, from Supergravity to CFT

Lecture 7 SUSY breaking

3 Representations of the supersymmetry algebra

University of Groningen. The many faces of OSp(1 32) Bergshoeff, Eric; Proeyen, Antoine Van. Published in: Classical and Quantum Gravity

Symmetries, Groups Theory and Lie Algebras in Physics

SUSY Breaking in Gauge Theories

An extended standard model and its Higgs geometry from the matrix model

arxiv:hep-th/ v1 6 Mar 2007

arxiv:hep-th/ v1 7 Nov 1998

Conformal Sigma Models in Three Dimensions

SUPERSYMMETRIC HADRONIC MECHANICAL HARMONIC OSCILLATOR

Chiral Symmetry Breaking from Monopoles and Duality

3.3 Lagrangian and symmetries for a spin- 1 2 field

Symmetries for fun and profit

Half BPS solutions in type IIB and M-theory

MSci EXAMINATION. Date: XX th May, Time: 14:30-17:00

SUSY QCD. Consider a SUSY SU(N) with F flavors of quarks and squarks

752 Final. April 16, Fadeev Popov Ghosts and Non-Abelian Gauge Fields. Tim Wendler BYU Physics and Astronomy. The standard model Lagrangian

Alternative mechanism to SUSY (Conservative extensions of the Poincaré group)

Lecture 12 Holomorphy: Gauge Theory

HIGHER SPIN PROBLEM IN FIELD THEORY

Quantization of scalar fields

LIBERATION ON THE WALLS IN GAUGE THEORIES AND ANTI-FERROMAGNETS

Supersymmetric Gauge Theories in 3d

Generalized Gaugino Condensation: Discrete R-Symmetries and Supersymmetric Vacua

arxiv:cond-mat/ v1 21 Jun 2000

Rigid SUSY in Curved Superspace

Introduction to Modern Quantum Field Theory

arxiv:hep-th/ v1 21 Mar 2000

Coordinate/Field Duality in Gauge Theories: Emergence of Matrix Coordinates

Techniques for exact calculations in 4D SUSY gauge theories

3 Quantization of the Dirac equation

Origin and Status of INSTANTONS

The Gauge Principle Contents Quantum Electrodynamics SU(N) Gauge Theory Global Gauge Transformations Local Gauge Transformations Dynamics of Field Ten

Fuzzy extra dimensions and particle physics models

Development of Algorithm for Off-shell Completion of 1D Supermultiplets

ON ULTRAVIOLET STRUCTURE OF 6D SUPERSYMMETRIC GAUGE THEORIES. Ft. Lauderdale, December 18, 2015 PLAN

Quantum Field Theory III

Spectral action, scale anomaly. and the Higgs-Dilaton potential

Lattice Gauge Theory: A Non-Perturbative Approach to QCD

A Note On The Chern-Simons And Kodama Wavefunctions

Small Black Strings/Holes

String Theory and Generalized Geometries

S-CONFINING DUALITIES

Chern-Simons Theories and AdS/CFT

Symmetries of the Schrödinger equation and algebra/superalgebra duality

Supergravity in Quantum Mechanics

Classification of Symmetry Protected Topological Phases in Interacting Systems

Introduction to Supersymmetry

On the Classification of N-extended Supersymmetric Quantum Mechanical Systems

N = 2 supergravity in d = 4, 5, 6 and its matter couplings

Topological DBI actions and nonlinear instantons

Quantum Field Theory I Examination questions will be composed from those below and from questions in the textbook and previous exams

Contact interactions in string theory and a reformulation of QED

Lorentz-covariant spectrum of single-particle states and their field theory Physics 230A, Spring 2007, Hitoshi Murayama

N=1 Global Supersymmetry in D=4

Current Status of Link Approach for Twisted Lattice SUSY Noboru Kawamoto Hokkaido University, Sapporo, Japan

Lecture 5 The Renormalization Group

Transcription:

Preliminaries: and free CP n mechanics CP n supersymmetric mechanics in the U(n) background gauge fields Sergey Krivonos Joint Institute for Nuclear Research Advances of Quantum Field Theory, Dubna, 2011 S.Bellucci, S.K., A.Sutulin arxiv:1106.2435 S.Bellucci, N.Kozyrev, S.K., A.Sutulin, in preparation S. Krivonos CP n supersymmetric mechanics... 1/28

Outline Preliminaries: and free CP n mechanics 1 Preliminaries: and free CP n mechanics 2 3 S. Krivonos CP n supersymmetric mechanics... 2/28

Outline Preliminaries: and free CP n mechanics 1 Preliminaries: and free CP n mechanics 2 3 S. Krivonos CP n supersymmetric mechanics... 3/28

Outline Preliminaries: and free CP n mechanics 1 Preliminaries: and free CP n mechanics 2 3 S. Krivonos CP n supersymmetric mechanics... 4/28

Outline Preliminaries: and free CP n mechanics 1 Preliminaries: and free CP n mechanics 2 3 S. Krivonos CP n supersymmetric mechanics... 5/28

Preliminaries: and free CP n mechanics Our goal is to construct a N = 4 supersymmetric mechanics describing the motion of the particle over CP n manifold in background U(n) gauge fields. Quantum Hall effect in higher (greater then two) dimensions: Zhang and Hu considered the Landau problem for charged fermions on S 4 with a background magnetic field which is SU(2) instanton. Karabali and Nair have extended the original idea of quantum Hall effect to the complex projective spaces CP n The corresponding gauge potentials are proportional to the connections on SO(4)/SO(3) and SU(n + 1)/U(n) The case of CP n allows both Abelian (U(1)) and non-abelian (SU(n)) background fields The system describing the motion of the particles over CP n manifold in the absence of gauge fields can be easily extended to possess N = 4 supersymmetry S. Krivonos CP n supersymmetric mechanics... 6/28

Outline Preliminaries: and free CP n mechanics 1 Preliminaries: and free CP n mechanics 2 3 S. Krivonos CP n supersymmetric mechanics... 7/28

Preliminaries: and free CP n mechanics The construction of N = 4 supersymmetric mechanics on CP n manifold is almost trivial. Let us take n complex N = 4 chiral superfields Z α, Z α } D i Z α = 0, D i Z α = 0, α = 1...n, i, j = 1, 2, {D i, D j = 2iδj i t, then the superfields action S S = ] dt d 4 θ log [1+Z α Z α did all job, completely defining the model. The explicit form of Lagrangian density immediately follows from invariance of the action with respect to SU(n+1) group, which is realized on the superfields Z, Z as δz α = a α + Z α( ) ( ) Z β ā β, δz α = ā α + Z α a β Z β, where a α, ā α are the parameters of the coset SU(n+ 1)/U(n) transformations. S. Krivonos CP n supersymmetric mechanics... 8/28

Preliminaries: and free CP n mechanics The description of the N = 4 supersymmetric CP n mechanics directly follows from the action after passing to the components and removing the auxiliary fields. So, our basic ingredients are bosonic variables{z α, z α} which parameterized the coset SU(n+1)/U(n) and fermionic variables { ψ α i, ψ i α} : z α = Z α, z α = Z α, ψ α i = D i Z α, ψ i α = D i Z α. In what follows we will pay a great attention to U(n) properties of our model. That is why we decided to keep the corresponding indices α, β of our fields in a proper position. For SU(n + 1) group we will fix the commutation relations to be [ i R α, R β] [ ] = J β α, i J β σ α, J γ = δγ β J σ α δαj σ β γ, ] i [J β α, R γ = δγ β R α +δαr β γ, i [ J α β, R γ] = δ γ αr β δ β αr γ. Thus, the generators R α, R α β belong to the coset SU(n+1)/U(n) while J α form U(n). In addition we choose these generators to be anti-hermitian ones ( ) (R α) = R α β, J α = α Jβ. S. Krivonos CP n supersymmetric mechanics... 9/28

Preliminaries: and free CP n mechanics After introducing the momenta for all our variables and passing to Dirac brackets we will obtain the following set of relations (As usually, the bosonic momenta are shifted by ψ ψ terms in this basis) { ψi α, ψ } ( j β = iδ j i g 1) α, β { } p α,ψ β 1 i = (1+z z) { p α, ψ } β i 1 = (1+z z) { p α, p β} = i [ z αψ βi +δ β αψ γi z γ ], [z α ψi β +δ α β z γ ψi γ ]. ( g α β g µ ν + g α ν g µ β ) ψi ν ψ µ i, Here, CP n metric g β α has standard Fubini-Studi form ] g β 1 α = [δ βα zαzβ, z z z α z α. (1+z z) (1+z z) S. Krivonos CP n supersymmetric mechanics... 10/28

Preliminaries: and free CP n mechanics Now, it is not too hard to check that the supercharges Q i, Q i have extremely simple form Q i = p α ψ i α, Q i = ψ α i p α. They are perfectly anticommute as {Q i, Q j } = iδ i j H, where H reads { Q i, Q j} } = {Q i, Q j = 0, H = p α ( g 1) α β p β + 1 4 (gµα g ρ σ + g µ σ g ρ α ) ψ α i ψi σ ψ ρ j ψ µ j. In principle, one may modify the supercharges and by including the potential terms, but here we will be interesting in including the interaction with non-abelian gauge fields which looks itself a rather complicated. Therefore we will ignore such possible modifications in what follows. S. Krivonos CP n supersymmetric mechanics... 11/28

Outline Preliminaries: and free CP n mechanics 1 Preliminaries: and free CP n mechanics 2 3 S. Krivonos CP n supersymmetric mechanics... 12/28

Preliminaries: and free CP n mechanics Finally, we will need the explicit expressions for the vielbeins e β α and U(n)-connectionω β α on CP n manifold which we choose as ] e β 1 α = [δ β z αz β α ( ), 1+z z 1+z z 1+ 1+z z ω α β = [ ] 1 ( ) δ β z αz β α 1+z z 1+ 1+z z 2 1+z z ( 1+ 1+z z ). With our definition of SU(n + 1) algebra these quantities enter the standard Cartan forms as g 1 dg = dz α e α β R β + R α e α β d z β + ij α β (z α ω β γ d z γ dz γ ω γα z β ), where g = e xα R α+ x αr α, and z α tan x x x x x α. S. Krivonos CP n supersymmetric mechanics... 13/28

Outline Preliminaries: and free CP n mechanics 1 Preliminaries: and free CP n mechanics 2 3 S. Krivonos CP n supersymmetric mechanics... 14/28

Preliminaries: and free CP n mechanics How to introduce the interactions? N=2: There are no problems! [ ] S = dtd 2 θ F(z, z)d zdz + G(z, z) G(z, z) is an arbitrary function pre-potential N=4: The straightforward generalization gives a σ-model action S = dtd 4 θ F(z, z) In the case of chiral superfileds one may add the interactions S int = dtd 2 θg( z)+ dtd 2 θḡ(z) The interaction breaks the symmetries of the free action. Thus we need some additional ingredients. S. Krivonos CP n supersymmetric mechanics... 15/28

Outline Preliminaries: and free CP n mechanics 1 Preliminaries: and free CP n mechanics 2 3 S. Krivonos CP n supersymmetric mechanics... 16/28

Preliminaries: and free CP n mechanics It is curious, but the simplest form of the supercharges does not help in the coupling with gauge fields. One may easily check that the standard coupling by shifting bosonic momenta in supercharges does not work. Our idea is to introduce the coupling simultaneously with all currents spanning SU(n + 1) and/or SU(1, n) group. Thus, let us introduce the isospin currents spanning SU(n + 1) and/or SU(1, n), respectively { { R α, R β} } = ±J β α, J β σ α, J γ = δγ β J σ α δαj σ β γ, } {J β α, R γ = δγ β R α +δαr β γ, { J α β, R γ} = δ γ αr β δ β αr γ. The ± sign in the first line corresponds to the choice of SU(n+1) or SU(1, n). It will be clear soon, why we are going to consider both these cases. { } The currents R α, R β β, J α commute with all dynamic variables { z α, z α, p α, p α,ψi α, ψ } α i! They should be realized (on the Lagrangian level) in terms of new semi-dynamical variables { } u A, ū A as S ( dt u ū u ū ) +... S. Krivonos CP n supersymmetric mechanics... 17/28

Outline Preliminaries: and free CP n mechanics 1 Preliminaries: and free CP n mechanics 2 3 S. Krivonos CP n supersymmetric mechanics... 18/28

Preliminaries: and free CP n mechanics Now, we are ready to write the anzatz for the supercharges. This anzatz is a direct generalization of those supercharges for SU(2) case which were explicitly constructed within superspace approach. Q i = ( p α z γ J γ β h β α ) ψi α +ψ i α f α β R β, Q i = ψ α i (p α + h α β J βγ z γ ) +R β f β α ψi α. Here, h α β and f α β are arbitrary, for the time being, functions depending on the bosonic fields z α, z α only. Moreover, due to explicit U(n) symmetry of our construction, we are going to keep unbroken, one may further restrict these functions as h α β = h 1 δ β α + h 2 z αz β, f α β = f 1 δ β α + f 2 z αz β, where scalar functions h 1, h 2, f 1, f 2 depend now on z z only. S. Krivonos CP n supersymmetric mechanics... 19/28

Preliminaries: and free CP n mechanics The supercharges have to obey the standard N = 4 Poincaré superalgebra relations. Therefore, the closure of superalgebra is achieved if the following equations on functions in our supercharges are satisfied { f 1 = (f 1 h 1 + xf 1 h 2 ), f 2 = (2f 2 h 1 + f 1 h 2 + 2xf 2 h 2 ), {Q, Q} = 0 h 1 = (h1 2 h 2 + xh 1 h 2 ), f 2 = f 1 h 1 } {Q i, Q j = iδj i H h 2 = 1 2 (Af 1 2 h1 2 + h1), 3 h 2 = 1 2 h2 1, Af1 2 = (2h 1 xh1), 2 where the derivatives are taken with respect to x. The simplest, almost trivial solution of these equations reads f 1 = f 2 = 0, h 1 = 2 z z, h 2 = 2 (z z) 2. The functions h 1, h 2 have the singularities at (z, z) 0. In addition, in the case of CP 1 h = h 1 + h 2 z z = 0 No interaction! Moreover, this solution has no any geometric meaning within CP n geometry. Thus, without R, R terms in the Ansatz the reasonable interaction can not be constructed. S. Krivonos CP n supersymmetric mechanics... 20/28

Preliminaries: and free CP n mechanics In contrast, with non-zero f 1, f 2 functions the solution of the equations is fixed to be 1 A f 1 =, f 2 = 1+A z z (1+A z z) ( 1+ 1+A z z ), h 1 = A 1+A z z ( 1+ 1+A z z ), 1 h 2 = 2 (1+A z z) ( 1+ 1+A z z ). 2 Here, A = +1 for the SU(1, n) currents and A = 1 for SU(n+1) case. Thus, we see that the matrix valued function f α β is perfectly coincides with the vielbeins for CP n manifold if we choose A = 1. The function h α β, defining the gauge fields, is the part of the spin connection for CP n. This gauge field is identical to those one constructed previously in H. Kihara, M. Nitta, Generalized Instantons on Complex Projective Spaces, J.Math.Phys. 50 (2009) 012301, as the solution of the Bogomol nyi equation for the Tchrakian s type of self-duality relations in U(n) gauge theory. S. Krivonos CP n supersymmetric mechanics... 21/28

Outline Preliminaries: and free CP n mechanics 1 Preliminaries: and free CP n mechanics 2 3 S. Krivonos CP n supersymmetric mechanics... 22/28

Preliminaries: and free CP n mechanics Last step is to write the ( ) ( ) ( ) ( ) ( ) H = p g 1 p + p g 1 h J z z J h g 1 p R f g 1 f R z J h g 1 h J z ( ) 1 A [(z + i ψ ) ( i R f ψ) (ψ f R) i (ψ z) (1+z z)(1+az z) i ] ia (ψ i f J f ψ i) i + 1 4 (gµα g ρ σ + g µ σ g ρ α ) ψ α i ψi σ ψ ρ j ψ µ j. Here, we used concise notations - all indices in parenthesize are in the proper positions and they are converted from top-left to down-right, e.g. (ψ z) i = ψi α z α, etc. Our commutes with all our supercharges, as it should be. Its bosonic part (the first two lines) contains the terms describing the interaction with U(n) gauge fields and a specific potential term. S. Krivonos CP n supersymmetric mechanics... 23/28

Preliminaries: and free CP n mechanics The parameter A takes two values A = ±1, according with the algebra. If we take A = 1, so the algebra of currents of the internal group is SU(1, n), then the drastically simplified to be H A=1 = i ( ) p g 1 p ( p g 1 h J z ) ( z J h g 1 p + ( ψ i f J f ψ i) + 1 4 (gµα g σ ρ + g σ µ g α ρ ) ψ α i ψi σ ψ ρ j ψ µ j. ) ( ) ( ) R R z J h g 1 h J z Clearly, the R, R dependent term in the can be rewritten through the Casimir operator K of SU(1, n) algebra K = R α R α 1 2 Jαβ J β α + 1 2(n+1) Jαα J β β. Thus, the depends only on U(n) currents J α β and SU(1, n) Casimir operator. S. Krivonos CP n supersymmetric mechanics... 24/28

Preliminaries: and free CP n mechanics The U(1) gauge potential presented in the has standard form (for A=1 case) ż z z z A U(1) = i 2(1+z z). In the simplest case of CP 1 we have only this gauge potential in the theory, while the scalar potential term acquires form (This is just example of super-oscillator potential on CP n manifolds constructed in S. Bellucci, A. Nersessian, (Super)Oscillator on CP(N) and Constant Magnetic Field, Phys.Rev. D67 (2003) 065013; Erratum-ibid. D71 (2005) 089901) V CP 1 = R α R α z z 4 J2. Let us remind that we choose the matrix-valued operators R, R, J to be anti-hermitian. Thus, the potential is positively defined. S. Krivonos CP n supersymmetric mechanics... 25/28

Preliminaries: and free CP n mechanics Thus, we have constructed N = 4 supersymmetric extension of mechanics describing the motion of particle over CP n manifold in the presence of background U(n) gauge fields. The gauge potential is proportional to the U(n)-connection on SU(n + 1)/U(n). Such type of background gauge fields is well known for a long time in a bosonic case. This gauge potential appears in our system automatically as a result of imposing N = 4 supersymmetry. In addition to gauge fields N = 4 supersymmetry demand additional potential terms to be present in the. In the simplest case of CP 1 system this potential is just a harmonic oscillator one. S. Krivonos CP n supersymmetric mechanics... 26/28

Preliminaries: and free CP n mechanics One of the most unexpected features of the present model is a strange interplay between isospin group to which our gauge fields are coupled to and the form of these fields. It turns out that the standard SU(n + 1)/U(n) connection appears as a gauge fields potential only in case if isospin group is chosen to be SU(1, n). Alternatively, the choice of SU(n + 1) group for isospin variables gives rize to a U(n) connection on SU(1, n)/u(n) group. Any case, the both cases are compatible with N = 4 supersymmetry. Another interesting peculiarity of our model is the presence of the isospin variables on the whole SU(n + 1) (or SU(1, n)) group, despite the fact that only U(n) gauge fields appear in the. Again, this situation is not new. The same effect has been noted in the recently constructed N = 4 supersymmetric mechanics coupled to non-abelian gauge fields. S. Krivonos CP n supersymmetric mechanics... 27/28

Preliminaries: and free CP n mechanics One of the possible immediate application of the constructed model is the analysis of the role the additional fermionic variables play in the quantum Hall effect on CP n. In this respect it could be important that N = 4 supersymmetry insists on the simultaneous appearance of the gauge fields on U(1) and SU(n) with a proper fixed relative coefficient. The role of the special type of the scalar potential which appears due to N = 4 supersymmetry also has to be clarify. Another interesting possibility to describe N = 4 supersymmetric CP n mechanics is to replace from beginning the linear chiral supermultiplets by the nonlinear ones. This case is under investigation at present. S. Krivonos CP n supersymmetric mechanics... 28/28