Effects of wood ash on the growth of known strains of Bacillus subtilis

Similar documents
Chapter 6 Microbial Growth With a focus on Bacteria

Microbiology. Definition of a Microorganism. Microorganisms in the Lab. The Study of Microorganisms

Laboratory Exercise # 7: Aseptic Technique

Killing of Bacillus Spores by High-Intensity Ultraviolet Light

Appendix 1. Analytical Methods

A Selective Medium for Bacillus anthracis

Lab Exercise 5: Pure culture techniques

Worksheet for Morgan/Carter Laboratory #13 Bacteriology

BACTERIAL TOLERANCE TO HEAVY METALS UNDER THE INFLUENCE OF ph, TEMPERATURE AND SALINITY

ALKEN-MURRAY CORPORATION P. O. Box 400, New Hyde Park, NY TELEPHONE Fax

S Illustrate and explain how carbon, nitrogen, and oxygen are cycled through an ecosystem.

GUJARAT UNIVERSITY Syllabus for First Year Microbiology Semester I and II Effective from June 2017

C.M. Harris*, S.K. Williams* 1. PhD Candidate Department of Animal Sciences Meat and Poultry Processing and Food Safety

Agronomy 485/585 Test #1 October 2, 2014

Supporting information

Current State of Extraction Don t Be Deceived! Sharon F. Webb, Ph.D. Director of Quality Program

ANALYSIS OF MICROBIAL COMPETITION

THE IDENTIFICATION OF TWO UNKNOWN BACTERIA AFUA WILLIAMS BIO 3302 TEST TUBE 3 PROF. N. HAQUE 5/14/18

Lidia Sas Paszt The Rhizosphere Laboratory, Research Institute of Horticulture, Skierniewice, Poland,

Journal of Chemical and Pharmaceutical Research, 2015, 7(9S): Research Article

MICROBIOLOGY CHAPTER 1 INTRODUCTION TO MICROORGANISMS

Analytical Chemistry National 4 and 5

Fundamentals of Small- Scale Mushroom Production

Agriculture, Washington, Received for publication February 18, 1922

EFFECT OF STAPHYLOCOCCUS AUREUS EXTRACTS ON VARIOUS. instead of the animal tissues. These bacterial extracts, by the nature of their BACTERIA

The impact of spore aggregation on viable and total counts of Bacillus subtilis

Maejo International Journal of Science and Technology

Antimicrobial Activity of Cinnamic Acid, Citric Acid, Cinnamaldehyde, and Levulinic Acid Against Foodborne Pathogens

ENTEROBACTER AEROGENES UNKNOWN BACTERIA FLOW CHART UNKNOWN LAB REPORT, MICROBIOLOGY ENTEROBACTER AEROGENES

5 Efrotomycin. [Summary of efrotomycin] ET A 2 ET A 1 ET B 2 ET B 1 C 59 H 88 N 2 O 20 MW: 1145

Fundamentals of Small- Scale Mushroom Production

Screening of disinfectants and their selective toxicity at lower temperature to bursaphelenchus xylophilus and bacteria

PRODUCTION OF SPORANGIA BY PHYTOPHTHORA CINNAMOMI IN PURE CULTURE

Project Title: Estimation of the area affected by animal feces in vegetable field under overhead sprinkle irrigation system

09/07/16 12/07/16: 14/07/16:

Culture Medium for Selective Isolation and Enumeration of Gram-Negative Bacteria from Ground Meatst

Soil Quality Monitoring in Estuarine Ecosystem. Sachin N Hegde Center for Ecological Science Indian Institute of Science

CE 370. Disinfection. Location in the Treatment Plant. After the water has been filtered, it is disinfected. Disinfection follows filtration.

Interpretation Guide. Aerobic Count Plate

Tex-620-J, Determining Chloride and Sulfate Contents in Soil

PRODUCTION OF ANTIBIOTIC SUBSTANCES BY ACTINOMYCETES*

Lab 8 Dynamic Soil Systems I: Soil ph and Liming

How to Manage Microorganisms with Complex Life Cycles in the Food Industry

Example: How would we prepare 500. ml of M sodium sulfate in water?

Stoichiometry ( ) ( )

METABOLIC ACTIVITY OF BACTERIAL ISOLATES FROM WHEAT RHIZOSPHERE AND CONTROL SOIL'

SEC. Interpretation Guide. Select E. coli Count Plate

Web:

Shirley E. Clark, Ph.D., P.E., D. WRE Penn State Harrisburg. Robert Pitt, Ph.D., P.E., BCEE, D. WRE University of Alabama

The Effect of Static Magnetic Field on E. coli, S. aureus and B. subtilis Viability

Inactivation of Bacillus cereus Spores by High Hydrostatic Pressure at Different Temperatures

Effect of Microwaves on Escherichia coli and Bacillus subtilis

Salmonella typhimurium in Glucose-Mineral Salts Medium

Effect of Cooking Water ph on Commercial Sterility in the Production of Cooked Rice Packed under Semi-aseptic Condition

Spectrophotometric Determination of Ferrocyanide in Effluents

Tentative Identification of Methanogenic Bacteria by Fluorescence Microscopy

Solutions With Formaldehyde-Water Solutions

PROTOCOL FOR P FRACTIONATION

If you are looking for the book by R. C. W. Berkeley The Aerobic Endospore-Forming Bacteria: Classification and Identification (Special publications

Rapid Aerobic Count. Interpretation Guide. 3M Food Safety 3M Petrifilm Rapid Aerobic Count Plate

SUMMARY OF ASL TEST METHODS

Effect of Heat Treatment on Phosphate Sorption by Soils from Different Ecologies

TSC AGAR (base) INTENDED USE / HISTORY

Plant and animal cells (eukaryotic cells) have a cell membrane, cytoplasm and genetic material enclosed in a nucleus.

High Performance Biology

Treat the Cause not the symptom

Game plan Lecture Lab Prelabs

Role of mycorrhizal fungi in belowground C and N cycling

UNCLASSIFIED ADL DEFENSE DOCUMENTATION CENTER FOR SCIENTIFIC AND TECHNICAL INFORMATION CAMERON STATION ALEXANDRIA. VIRGINIA UNCLASSIFIED

The invention of the microscope has opened to us a world of extraordinary numbers. A singular drop of pond water reveals countless life forms

Cambridge International Examinations Cambridge Ordinary Level

Green Synthesis of Silver Nanoparticles and Their Antimicrobial Activity against Gram Positive and Gram Negative Bacteria

CHAPTER 3 Effect of heavy metals on E. coli

Thermal Injury and Recovery of Salmonella typhimurium and Its Effect on

Experiment 14 - Qualitative Analysis

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level

HAEMOPHILUS MODULE 29.1 INTRODUCTION OBJECTIVES 29.2 MORPHOLOGY. Notes

A Study of Waste Water Treatment of Microbiological Laboratories of Hospitals by Electrolyzed Oxidized Water

Introduction to Microbiology BIOL 220 Summer Session I, 1996 Exam # 1

Evaluation and selection of efficient strains of AM fungi & Rhizobium for Acacia nilotica and Ailanthus excelsa in western Rajasthan.

KINGDOM MONERA. Bacterial Cell Shape 8/22/2010. The Prokaryotes: Archaebacteria and Eubacteria

Introduction to Microbiology. CLS 212: Medical Microbiology Miss Zeina Alkudmani

ALLELOPATHIC EFFECTS OF CELOSIA ARGENTEA L. ON SPERMOSPHERE MICROORGANISMS

Evaluation of non-pathogenic surrogate bacteria as process validation indicators

THE INSTITUTE OF PAPER CHEMISTRY, APPLETON, WISCONSIN IPC TECHNICAL PAPER SERIES NUMBER 102

University of Chicago, Chicago, Illinois Received for publication June 6, 1955

Q1) Germ theory of diseases. Q2) Louis Pasteur. Q3) Bacillus. Q4) Cyanobacteria. Q5) Viroids. Q6) Prions Q7) TMV Q8) T4

Commercial microbial inoculants with endophytes (an overview)

Which of the following is NOT an abiotic factor? A) Rocks B) Soil C) Mountains D) Decomposers

B. Correct! Bacillus anthraces produces spores that can cause anthrax. D. Incorrect! Diphtheria is caused by Corynebacterium diphtheriae.

Effects of Temperature on Population Growth and N Mineralization of Soil Bacteria and a Bacterial-feeding Nematode

A. GENERAL NOTICES. Ninth Edition, which may be abbreviated as JSFA-IX.

AP Chemistry Test (Chapter 3) Multiple Choice and FIB (40%)

International Journal of Fundamental & Applied Sciences


BIOL 3702L: MICROBIOLOGY LABORATORY SCHEDULE, SUMMER 2015

Observations on the distribution of microorganisms in desert soil

Morphological and Cultural Studies of Sclerotium rolfsii Sacc. causing Foot Rot Disease of Tomato

BIOCONTROL OF ROOT ROT OF AVOCADO SEEDLINGS

TAKE A LOOK 3. Complete Carbon dioxide in the air is used for. The Cycles of Matter continued

Transcription:

ISSN: 2319-776 Volume 3 Number 11 (214) pp. 633-639 http://www.ijcmas.com Original Research Article Effects of wood ash on the growth of known strains of Bacillus subtilis T.R.Omodara* and E.Y.Aderibigbe Department of Microbiology, Ekiti State University, Ado-EkitiP.M.B. 5363, Ado-Ekiti, Nigeria *Corresponding author A B S T R A C T K e y w o r d s Wood ash, nutrient agar, nutrient broth, Gram positive, Parkia biglobosa, Annacadium occidentalis, sun-dried The effects of varying concentrations of wood ash on the growth of known strains of Bacillus subtilis were studied. Different concentrations of ash (-5% w/v) were prepared in distilled water and filtered. The ph of the filtrates that ranged between 9.6 and 9. were titrated, using.1m HCl (hydrochloric acid) to ph of 7.2. The ash filtrates were used to prepare nutrient agar and nutrient broth. The growth of five strains of Bacillus subtilis (B, 1A, 2B, 3A, 5A and BC4333) on the ashincorporated nutrient agar were determined by pour-plate method at 35 o C. Also, the growth of the strains of Bacillus in ash-incorporated nutrient broth was determined spectrophotometrically at OD 54nm. The microbial load of strain B decreased from 7 1 7 cfu/ml to 5.27 1 7 cfu/ml on agar plates, as the concentration of the wood ash increased from to 5%w/v. Similar trend of decrease in growth, with increasing ash concentration was observed in the broth culture. Thus, wood ash did not support the growth of the strains of Bacillus subtilis involved in fermentation of African locust beans to produce iru. Introduction Bacillus is a genus of Gram positive, rodshaped, spore-forming bacteria and a member of division Firmicutes. Members of the genus Bacillus are generally found in the soil. They have the ability to break down protein in fermentation processes. Many species of Bacillus are of considerable importance. Some produce antibiotics, bacitracin and polymyxin. Bacillus subtilis is an ubiquitous bacterium commonly recovered from water, soil, air, and decomposing plant residue and have the ability to form tough protective endospores allowing the organisms to tolerate extreme environmental condition. Bacillus subtilis strains grow optimally in the temperature range of 25 o C to 35 o C. Bacillus subtilis are generally non-pathogenic; though, some strains have been found to cause rots in potatoes. They grow in food that is nonacidic and cause ropiness in spoilt bread and some strains of Bacillus subtilis are capable of producing toxins. Bacillus subtilis is very useful in the fermentation industries, most especially during the fermentation of African locust beans to a soup condiment called iru. 633

Ash is the inorganic residue remaining after the organic matter in wood has been burnt (Rose and Henry, 21). Wood ash contains calcium carbonate, potash, phosphate and trace elements like iron, manganese, zinc, copper and some heavy metals, but it does not contain nitrogen because of the presence of calcium carbonate Pan, (24). Manganese, a growth factor is responsible for sporulation and also required for proteinase production in Bacillus subtilis Stockton and Wyss, (1946). Wood ash is used in the production of kuuru, a local softening agent used by the local women in the production of iru-pete. This paper aimed at elucidating the effects of wood ash on the growth of some known strains of Bacillus subtilis involved in fermentation of Parkia biglobosa cotyledons to produce iru-pete. Materials and Methods Collection of isolates: The strains of Bacillus subtilis used for the research were collected from the stock cultures in of the Department of Microbiology, Ekiti State University, Ado-Ekiti, Ekiti State. Preparation of wood ash A branch of cashew tree (Annacadium occidentalis) was cut, sun-dried after which it was burnt completely to ash. Preparation of media: Different amounts (g, 1g, 2g, 3g, 4g and 5g) of wood ash were weighed and dissolved in 1ml of distilled water in a conical flask separately and filtered using Whatman filter paper. The ph of the filtrates was determined using a ph meter, and titrated using.1m HCl to ph 7.2. The filtrates were used to prepare the nutrient agar (NA) and broth (NB) according to the manufacturer s instructions, sterilized in the autoclave at 121 o C for 15minutes. Determination of growth in ashincorporated media: Nutrient broth cultures of the Bacillus subtilis strains (B, 1A, 2B, 3A, 5A and BC4333) were diluted serially and plated (pour-plate) in the ash-incorporated media. Plates were incubated at 35 o C for. One milliliter (1ml) each of the serially diluted cultures were also aseptically inoculated into ash-incorporated broth media and incubated for at 35 o C, using shaker incubator (2rpm). Colonies developed on the ashincorporated agar plates were counted and the microbial load was determined and expressed as cfu/g using the method of Huarrigan and McCance (1976). The microbial growth in the ash-incorporated broth was determined spectrophotometrically at OD 54nm at 1h and respectively. Results and Discussion Table 1 shows the microbial load of the strains of Bacillus subtilis on the ashincorporated agar media after ours of incubation. The microbial load of strain B (7 1 7 cfu/g) on NA without ash was higher than that in all the ash-incorporated media (ranged from 5.27 1 7 to 7.1 1 7 cfu/g). Similar results were observed for the growth of the other strains 1A, 2B, 3A, 5A and BC4333 on the ash-incorporated NA. Fig. 1 shows the growth turbidity at (OD 54nm ) of Bacillus subtilis B in NB and ash incorporated NB at 1 and 24 hours. At 1 hours of growth, culture medium without ash, had the highest turbidity of (.39 1 7 ) while the growth in ash-incorporated media decreased (from.3 1 7 to.24 1 7 ) as the ash concentration increased. The same 634

trend was observed at 1 hours and ours of growth. Figures 2, 3, 4, 5 and 6 show the growth turbidity at (OD 54nm ) of the Bacillus subtilis strains 1A, 2B, 3A, 5A and BC4333 having to 5%(w/v) of ash incorporated NB medium respectively. Similar trends of reduction in growth (turbidity measurement) as the concentration of ash increased were observed in all the strains both at 1h and incubation periods. The increase in ph of distilled water after the addition of wood ash was due to the alkaline nature of ash. The alkaline nature of ash has been reported by Haimi, (2) and Fritz, (2), that when soil was treated with wood ash, the soil was de-acidified, thereby leading to a rise in ph of the soil. The relatively higher microbial load of all the strains (B, 1A, 2B, 3A, 5A, BC4333) of Bacillus subtilis on nutrient agar (without ash) could be attributed to the pronounced decreased in the ph of the medium. The decrease in the microbial load with increasing concentration of ash in the ashincorporated medium (from 1%w/v to 5%w/v) could be attributed to the increase in ph of the ash-incorporated medium. It was also as a result of the absence of nitrogen source in the ash-incorporated medium which is a form of macro nutrients needed for growth by the microorganism. Similar result was reported by Pan, (2), that nitrogen in wood ash is normally insignificant due to the conversion of wood nitrogen to NH 3, NO 2 and N 2 during the combustion of wood. Similar result was observed from the growth measurement on the ash-incorporated broth. microbial load ( 5 5 5 5 Quantity of Ash used Fig.1 Microbial load for Bacillus subtilis strain B 635

.1 Quantity of ash used Fig.2 Microbial load for Bacillus subtilis strain 1A cfu/ml.1 7.4 Quantity of Ash used (g) Fig.3 Microbial load for Bacillus subtilis strain 2B Microbial Load (log 5 5 5 Quantity of ash (g) Fig.4 Microbial load for Bacillus subtilis strain 3A 636

7.4 Quantity of ash used (g) Fig.5 Microbial load for Bacillus subtilis strain 5A.1 7.4 7.3 Quantity of ash used (g) Fig.6 Microbial load for Bacillus subtilis strain BC4333.6.2 1h 1 2 3 4 5 Fig.7 Growth (OD 54nm ) of Bacillus subtilis strain B in the NB media (-5% w/v ash) 637

.6.2 1h 1 2 3 4 5 Fig. Growth (OD 54nm ) of Bacillus subtilis strain 1A in the NB media (-5% w/v ash).6.2 3 1 2 3 4 5 Fig.9 Growth (OD 54nm ) of Bacillus subtilis strain 2B in the NB media (-5% w/v ash).6.2 1 2 3 4 5 1h Fig.1 Growth (OD 54nm ) of Bacillus subtilis strain 3A in the NB media (-5% w/v ash) 63

.9.7.6.5.3.2.1 1 2 3 4 5 1h Fig.11 Growth (OD 54nm ) of Bacillus subtilis strain 5A in the NB media (-5% w/v ash).7.6.5.3.2.1 1 2 3 4 5 Ash (%) 1h Fig.12 Growth (OD 54nm ) of Bacillus subtilis strain BC4333 in the NB media (-5% w/v ash) References Rosefield, P., and Henry, C., 21. Activated carbon and wood ash sorption of waste water, compost and Biosolids odorants. Water Environment Research 7(4): 3-393. Pam, H., 24. The effect of wood ash application on litter decomposition in a Scots pine stand Forestry studies. Metsanduslikud Urimused 41: 35-41. Stockton, J.R., and Wyss, O. 1946. Proteinase production by Bacillus subtilis. J. Bact. 52: 227-229. Haimi, J., Fritze, H., and Moilanen, P. 2. Response of soil decomposer animals to wood-ash fertilization of and burning in coniferous forest stand. For. Ecol. Manage. 129: 53-61. Fritze, H., Perkiomak, J., Saarela, U., Katainen, R., Tikka, P., Yrjaa, K., Karp, M., Haimi., and Romantschuk, M. 2. Effect of Cd-containing wood ash on the microflora of coniferous forest humus. FEMS Microbiology Ecology 32: 43-51. Harrigan, W.F., and McCance, M.E.R., 1976. Laboratory Methods in Food and Dairy Microbiology. Academic Press London, New York. San Francisco. pp. 261-262. 639