During part of the journey the car is driven at a constant speed for five minutes.

Similar documents
The image below shows a student before and after a bungee jump.

The water exerts a force on the ship. In which direction does this force act?... (1)

The stopping distance of a car is the sum of the thinking distance and the braking distance.

1. The diagram below shows water falling from a dam. Each minute kg of water falls vertically into the pool at the bottom.

The driver then accelerates the car to 23 m/s in 4 seconds. Use the equation in the box to calculate the acceleration of the car.

M1. (a) increases 1. increases 1. (c) (i) all points correctly plotted all to ± ½ small square one error = 1 mark two or more errors = 0 marks 2

1.0 The distance taken for a car to stop after an emergency depends on two things:

Topic 4 &11 Review Waves & Oscillations

Personalised Learning Checklists AQA Physics Paper 2

Figure 1. The distance the train travels between A and B is not the same as the displacement of the train.

(a) (i) There is a lift inside the building. The lift travels at a mean velocity of 10 m/s.

P5 Momentum Collision Calculations

Standing waves [49 marks]

Personalised Learning Checklists AQA Physics Paper 2

NEW HORIZON SCHOOL WORKSHEETS TERM 2 SESSION [CLASS 9] Physics

AQA Physics P2 Topic 1. Motion

FORM 4 PHYSICS TIME: 1h 30min

London Examinations IGCSE

P3 Revision Questions

Physics GCSE (9-1) Energy

A-level Physics (7407/7408)

(1) (3)

Friday 20 January 2012 Morning

Sample questions: maths in science

Paper 1 Mark scheme. (Total for Multiple Choice Questions = 8 marks) Acceptable Answer Additional Guidance Mark. Number. Question 7 C 1 5 C 1 4 D 1

Paper 1 Mark scheme. Question Number. Acceptable Answer Additional Guidance Mark

UNIVERSITY OF MALTA G.F. ABELA JUNIOR COLLEGE

FORM 4 PHYSICS TIME: 1h 30min

Figure 1 shows white light passing through a triangular glass prism. The white light splits up into different colours. Two of the colours are shown.

gains gravitational... energy. (1) Use the correct equation from the Physics Equations Sheet

PHYSICS A 2825/02. Health Physics. OXFORD CAMBRIDGE AND RSA EXAMINATIONS Advanced GCE. 1 hour 30 minutes

Personalised Learning Checklists AQA Physics Paper 2

The drag lift pulls the skier from the bottom to the top of a ski slope.

The drag lift pulls the skier from the bottom to the top of a ski slope. Figure 1. Which arrow represents the force pulling the skier up the slope?

Second Semester Review

Subject: Triple Physics Unit title: P4.5 Forces (Paper 2) Strand Content Checklist (L) R A G Forces and their interactions

Summer holiday homework. Physics Year 9/10

A-level Physics (7407/7408)

Figure 1. The distance the train travels between A and B is not the same as the displacement of the train.

Gr 10 Physics Worksheet paper 1. Sound and hearing

PHY2H (JUN08PHY2H01) General CertiÞ cate of Secondary Education June ADDITIONAL SCIENCE Unit Physics P2. PHYSICS Unit Physics P2.

Angel International School - Manipay 1 st Term Examination November, 2015

London Examinations IGCSE

Year 10 End of Year Examination Revision Checklist

Calculate the acceleration of the car during the 11 seconds

Wallace Hall Academy

gains gravitational... energy. (1) Use the correct equation from the Physics Equations Sheet

London Examinations IGCSE

GCSE PHYSICS. Materials For this paper you must have: a ruler a scientific calculator the Physics Equations Sheet (enclosed).

London Examinations IGCSE

Physics Common Assessment Unit 5-8 3rd Nine Weeks

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

Q1. (a) The diagram shows a car being driven at 14 rn/s. The driver has forgotten to clear a thick layer of snow from the roof.

London Examinations IGCSE

Fig. 8.1 shows the paths of the metal ball and the block. The ball collides with the block. Air resistance is negligible. ball and block collide here

40 N 40 N. Direction of travel

(Total 1 mark) IB Questionbank Physics 1

In which row is the size of the vector equal to the size of the scalar?

1. Data analysis question.

GraspIT Questions AQA GCSE Physics Forces

Draw a ring around the correct answer to complete the sentence. Complete the table to show the relative charges of the atomic particles.

The graph shows how the distance from their home changes with time. Which part of the graph, A, B, C or D, shows them walking the fastest? ...

Physics Assessment Unit AS 2

Waves Final Review. Name: Date: 1. On which one of the following graphs is the wavelength λ and the amplitude a of a wave correctly represented?

Write down the equation which links gravitational field strength, gravitational potential energy, height and mass.

Practice paper Set 1 MAXIMUM MARK 100. Final. H556/02 Mark Scheme Practice 1. AS Level Physics A H556/02 Exploring Physics MARK SCHEME

P2a Acceleration and Motion Graphs Foundation

Practice exam-style paper

Physics 11 Exam Preparation

The diagram below shows a block on a horizontal frictionless surface. A 100.-newton force acts on the block at an angle of 30. above the horizontal.

Physics/Additional Science Unit P2: Physics for Your Future Higher Tier

PHYSICAL SCIENCES: PAPER I

Theme 1: On the Move

1. (a) Methane can be a gas, a liquid or a solid. In the diagram below, arrows P, Q, R and S represent changes of state.

Q1. (a) The weightlifter in the picture has lifted a weight of 2250 newtons above his head. The weight is held still.

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

In which vector triangle does the vector Z show the magnitude and direction of vector X Y?

NATIONAL SENIOR CERTIFICATE GRADE 10

AS PHYSICS (7407/2) Paper 2. Specimen 2014 Morning Time allowed: 1 hour 30 minutes SPECIMEN MATERIAL

(c) curved track. direction of motion Fig. 1.2 State the effect that this force has on the motion... (iii) ... State how this force is provided. ...

Oscillations - AP Physics B 1984

Sample Final Exam SPH4U0

Review Chapter 1 and 2 [184 marks]

Study Guide: Semester Two ( )

Rotational Motion Test

Physics Assessment Unit AS 2

Honor Physics Final Exam Review. What is the difference between series, parallel, and combination circuits?

PhysicsAndMathsTutor.com. Question Answer Acceptable answers Mark. 1(ai) B momentum (1) (1) Answer Acceptable answers Mark. Question Number.

St Olave s Grammar School. AS Physics Mock Revision Checklist

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

In this lecture we will discuss three topics: conservation of energy, friction, and uniform circular motion.

D sn 1 (Total 1 mark) Q3. A ball of mass 2.0 kg, initially at rest, is acted on by a force F which varies with time t as shown by the graph.

igcse Physics Specification Questions 2. State the equation linking average speed, distance moved and time.

Projectile [86 marks]

Topic Student Checklist R A G

The drag lift pulls the skier from the bottom to the top of a ski slope.

Motion. 1. Explain the difference between a scalar and vector quantity, including one example of each in your explanation.

KULLEGG MARIA REGINA BOYS SECONDARY MOSTA HALF-YEARLY EXAMINATIONS 2010/2011

Momentum and Impulse

DO NOT OPEN THE EXAMINATION PAPER UNTIL YOU ARE TOLD BY THE SUPERVISOR TO BEGIN PHYSICS FINAL EXAMINATION June General Instructions

Transcription:

The figure below shows the horizontal forces acting on a car. (a) Which one of the statements describes the motion of the car? Tick one box. It will be slowing down. It will be stationary. It will have a constant speed. It will be speeding up. () (b) During part of the journey the car is driven at a constant speed for five minutes. Which one of the equations links distance travelled, speed and time? Tick one box. distance travelled = speed + time distance travelled = speed time distance travelled = speed time distance travelled = speed time () (c) During a different part of the journey the car accelerates from 9m / s to 8m / s in 6 s. Use the following equation to calculate the acceleration of the car. acceleration= acceleration =... m / s 2 (2) Page of 28

(d) Which equation links acceleration, mass and resultant force? Tick one box. resultant force = mass + acceleration resultant force = mass acceleration resultant force = mass acceleration resultant force = mass acceleration () (e) The mass of the car is 20 kg. The mass of the driver is 80 kg. Calculate the resultant force acting on the car and driver while accelerating. Resultant force =... N (2) (f) Calculate the distance travelled while the car is accelerating. Use the correct equation from the Physics Equation Sheet. Distance =... m (3) Page 2 of 28

(g) A car driver sees a fallen tree lying across the road ahead and makes an emergency stop. The braking distance of the car depends on the speed of the car. For the same braking force, explain what happens to the braking distance if the speed doubles. You should refer to kinetic energy in your answer. (4) (Total 4 marks) Page 3 of 28

2 A train travels from town A to town B. Figure shows the route taken by the train. Figure has been drawn to scale. Figure (a) The distance the train travels between A and B is not the same as the displacement of the train. What is the difference between distance and displacement? () (b) Use Figure to determine the displacement of the train in travelling from A to B. Show how you obtain your answer. Displacement =... km Direction =... (2) Page 4 of 28

(c) There are places on the journey where the train accelerates without changing speed. Explain how this can happen. (2) Page 5 of 28

(d) Figure 2 shows how the velocity of the train changes with time as the train travels along a straight section of the journey. Figure 2 Estimate the distance travelled by the train along the section of the journey shown in Figure 2. To gain full marks you must show how you worked out your answer. Distance =... m (3) (Total 8 marks) Page 6 of 28

3 Figure shows a set of tuning forks. Figure A tuning fork has a handle and two prongs. It is made from metal. When the prongs are struck on a hard object, the tuning fork makes a sound wave with a single frequency. The frequency depends on the length of the prongs. (a) Use the correct answer from the box to complete each sentence. direction loudness pitch speed The frequency of a sound wave determines its.... The amplitude of a sound wave determines its.... (2) (b) Each tuning fork has its frequency engraved on it. A student measured the length of the prongs for each tuning fork. Some of her data is shown in the table. Frequency in hertz Length of prongs in cm 320 9.5 384 8.7 480 7.8 52 7.5 (i) Describe the pattern shown in the table. () Page 7 of 28

Figure 2 shows a full-size drawing of a tuning fork. Figure 2 Measure and record the length of the prongs. Length of prongs =... cm () Use the data in the table above to estimate the frequency of the tuning fork in Figure 2. Explain your answer. Estimated frequency =... Hz (3) (c) Ultrasound waves are used in hospitals. (i) Use the correct answer from the box to complete the sentence. electronic hydraulic radioactive Ultrasound waves can be produced by... systems. () Page 8 of 28

The frequency of an ultrasound wave used in a hospital is 2 0 6 Hz. It is not possible to produce ultrasound waves of this frequency using a tuning fork. Explain why. (2) Page 9 of 28

(d) Figure 3 shows a tuning fork and a microphone. The microphone is connected to an oscilloscope. Figure 3 Sciencephotos/Alamy When the tuning fork is struck and then placed in front of the microphone, a trace appears on the oscilloscope screen. Figure 4 shows part of the trace on the screen. Figure 4 Each horizontal division in Figure 4 represents a time of 0.0005 s. What is the frequency of the tuning fork? Page 0 of 28

......... Frequency =... Hz (3) (Total 3 marks) 4 (a) Human ears can detect a range of sound frequencies. (i) Use the correct answers from the box to complete the sentence. 2 20 200 2000 20 000 The range of human hearing is from about... Hz to... Hz. (2) What is ultrasound?.. () (iii) Ultrasound can be used to find the speed of blood flow in an artery. State one other medical use of ultrasound.. () (b) The speed of an ultrasound wave in soft tissue in the human body is.5 0 3 m / s and the frequency of the wave is 2.0 0 6 Hz. Calculate the wavelength of the ultrasound wave....... Wavelength =... m (2) Page of 28

(c) When ultrasound is used to find the speed of blood flow in an artery: an ultrasound transducer is placed on a person s arm ultrasound is emitted by the transducer the ultrasound is reflected from blood cells moving away from the transducer the reflected ultrasound is detected at the transducer. Describe the differences between the ultrasound waves emitted by the transducer and the reflected waves detected at the transducer............. (2) (Total 8 marks) 5 A car has an oil leak. Every 5 seconds an oil drop falls from the bottom of the car onto the road. (a) What force causes the oil drop to fall towards the road?... () (b) The diagram shows the spacing of the oil drops left on the road during part of a journey Describe the motion of the car as it moves from A to B.... Explain the reason for your answer............. (3) Page 2 of 28

(c) When the brakes are applied, a braking force slows down and stops the car. (i) The size of the braking force affects the braking distance of the car. State one other factor that affects the braking distance of the car. () A braking force of 3 kn is used to slow down and stop the car in a distance of 25 m. Calculate the work done by the brakes to stop the car and give the unit. Work done =... (3) (Total 8 marks) 6 (a) The diagram shows a microphone being used to detect the output from a loudspeaker. The oscilloscope trace shows the wave pattern produced by the loudspeaker. (i) How many waves are produced by the loudspeaker in 0.000 seconds?... () How many waves are produced by the loudspeaker every second? Assume the input to the loudspeaker does not change. () Page 3 of 28

(iii) A person with normal hearing cannot hear the sound produced by the loudspeaker. Explain why. (2) (b) The diagram shows how a very high frequency sound wave can be used to check for internal cracks in a large steel bolt. The oscilloscope trace shows that the bolt does have an internal crack. (i) Explain what happens to produce pulse A and pulse B. (2) Page 4 of 28

Use the information in the diagram and the equation in the box to calculate the distance from the head of the bolt to the internal crack. distance = speed time Speed of sound through steel = 6000 m/s Show clearly how you work out your answer. (3) (Total 9 marks) 7 (a) The diagrams show oscilloscope traces for the same musical note played on two different instruments. The oscilloscope settings are not changed. (i) How can you tell, from the diagrams, that it is the same musical note?...... () Page 5 of 28

How can you tell, from the diagrams, that the musical note has been played on different instruments?...... () (b) This passage is from an electronics magazine. Electronic systems can be used to produce ultrasound waves. These waves have a higher frequency than the upper limit for hearing in humans. Ultrasound waves are partially reflected when they meet a boundary between two different media. (i) Approximately what is the highest frequency that humans can hear? State the number and the unit.... () What does the word media mean when it is used in this passage?...... () (iii) What happens to the ultrasound which reaches the boundary between two different media and is not reflected?............ (2) (Total 6 marks) Page 6 of 28

8 (a) The diagram below shows a moving tractor. The forward force from the engine exactly balances the resisting forces on the tractor. (i) Describe the motion of the tractor.... The tractor comes to a drier part of the field where the resisting forces are less. If the forward force from the engine is unchanged how, if at all, will the motion of the tractor be affected?...... (3) (b) Two pupils are given the task of finding out how fast a tractor moves across a field. As the tractor starts a straight run across the field the pupils time how long it takes to pass a series of posts which are forty metres apart. The results obtained are shown in the table below. Distancetravelled (m) 0 40 80 20 60 200 Timetaken (s) 0 8 6 24 32 40 Page 7 of 28

(i) Draw a graph of distance travelled against time taken using the axes on the graph below. Label your graph line A. (2) Calculate the speed of the tractor....... (3) (c) In another, wetter field there is more resistance to the movement of the tractor. It now travels at 4 m/s. Page 8 of 28

(i) Calculate the time needed to travel 200m.......... On the graph in part (b) draw a line to represent the motion of the tractor across the second field. Label this line B. (4) (d) On a road the tractor accelerates from rest up to a speed of 6 m/s in 5 seconds. Calculate the acceleration of the tractor....acceleration =...m/s 2 (3) (Total 5 marks) 9 When a gun is fired, a very large force acts on the bullet for a very short time. The change in momentum of the bullet is given by the following relationship: force (N) time(s) = change in momentum (kg m/s) (a) An average force of 4000 newton acts for 0.0 seconds on a bullet of mass 50g. Calculate the speed of the bullet. (Show your working.) Answer... m/s (4) Page 9 of 28

(b) The bullet is fired horizontally. In the short time it takes for the bullet to reach its target, its horizontal speed has fallen to 80% of its initial speed. (i) Explain why the speed of the bullet decreases so quickly....... (2) Calculate the percentage of its original kinetic energy the bullet still has when it reaches its target. (Show your working.)............ (4) (Total 0 marks) Page 20 of 28

Mark schemes (a) It will have a constant speed. (b) distance travelled = speed time (c) a = 8 9 a =.5 6 allow.5 with no working shown for 2 marks (d) resultant force = mass acceleration (e) F = (20+80).5 F = 800 (N) allow 800 with no working shown for 2 marks accept their 0.3 200 correctly calculated for 2 marks (f) 8 2 9 2 = 2.5 s s = 8 2 9 2 / 2.5 s = 8 (m) Page 2 of 28

allow 8 (m) with no working shown for 3 marks accept answer using their 0.3 (if not.5) correctly calculated for 3 marks (g) Level 2 (3 4 marks): A detailed and coherent explanation is provided. The response makes logical links between clearly identified, relevant points that include references to the numerical factor. Level ( 2 marks): Simple statements are made. The response may fail to make logical links between the points raised. 0 marks: No relevant content. Indicative content doubling speed increase the kinetic energy kinetic energy increases by a factor of 4 work done (by brakes) to stop the car increases work done increases by a factor of 4 work done is force distance and braking force is constant so if work done increases by 4 then the braking distance must increase by 4 4 [4] 2 (a) distance is a scalar and displacement is a vector or distance has magnitude only, displacement has magnitude and direction (b) 37.5 km accept any value between 37.0 and 38.0 inclusive (c) 062 or N62 E accept 62 to the right of the vertical accept an angle in the range 60 64 accept the angle correctly measured and marked on the diagram train changes direction so velocity changes acceleration is the rate of change of velocity (d) number of squares below line = 7 accept any number between 6 and 8 inclusive each square represents 500 m Page 22 of 28

distance = number of squares value of each square correctly calculated 8500 m [8] 3 (a) pitch loudness (b) (i) as length (of prongs) decreases frequency / pitch increases accept converse accept negative correlation ignore inversely proportional (iii) 8.3 (cm) accept 8.3 ± 0. cm (8.3 cm is) between 7.8 (cm) and 8.7 (cm) ecf from part (so f must be) between 384 (Hz) and 480 (Hz) 40 (Hz) f 450 (Hz) if only the estimated frequency given, accept for mark an answer within the range (c) (i) electronic frequency is (very) high accept frequency above 20 000 (Hz) or audible range so tuning fork or length of prongs would be very small (.2 mm) (d) 285.7 (Hz) accept any correct rounding 286, 290, 300 allow 2 marks for 285 allow 2 marks for correct substitution 0.0035 = / f allow mark for T = 0.0035 s allow mark for an answer of 2000 3 [3] 4 (a) (i) 20 Page 23 of 28

20 000 either order accept ringed answers in box (frequency) above human range accept pitch for frequency or (frequency) above 20 000 (Hz) do not accept outside human range allow ecf from incorrect value in (a)(i) (iii) any one from: (b) (c) pre-natal scanning accept any other appropriate scanning use do not accept pregnancy testing removal / destruction of kidney / gall stones repair of damaged tissue / muscle accept examples of repair, eg alleviating bruising, repair scar damage, ligament / tendon damage, joint inflammation accept physiotherapy accept curing prostate cancer or killing prostate cancer cells removing plaque from teeth 7.5 0 4 (m) for reflected waves any two from: cleaning teeth is insufficient.5 0 3 = 2.0 0 6 λ gains mark must be clear whether referring to emitted or detected / reflected waves if not specified assume it refers to reflected wave 2 frequency decreased wavelength increased intensity has decreased allow amplitude / energy has decreased allow the beam is weaker 2 [8] Page 24 of 28

5 (a) gravitational / gravity / weight do not accept gravitational potential (b) accelerating accept speed / velocity increases the distance between the drops increases but the time between the drops is the same accept the time between drops is (always) 5 seconds accept the drops fall at the same rate (c) (i) any one from: speed / velocity (condition of) brakes / road surface / tyres weather (conditions) 75 000 joules / J accept specific examples, eg wet / icy roads accept mass / weight of car friction is insufficient reference to any factor affecting thinking distance negates this answer allow mark for correct substitution, ie 3000 25 provided no subsequent step shown or allow mark for an answer 75 or allow 2 marks for 75 k(+ incorrect unit), eg 75 kn do not accept j an answer 75 kj gains 3 marks for full marks the unit and numerical answer must be consistent 2 [8] 6 (a) (i) 3 30 000 or 0 000 their (a)(i) correctly calculated Page 25 of 28

(iii) any two from: frequency is above 20 000 (Hz) accept the frequency is 30 000 frequency is above the upper limit of audible range upper limit of audible range equals 20 000 (Hz) ignore reference to lower limit it is ultrasound/ultrasonic (b) (i) wave (partially) reflected at crack to produce A and end of bolt to produce B accept at both ends of the crack 0.075 (m) allow 2 marks for time = 0.000025 allow mark for time = 0.000025 answers 0.5 or 0.05 or 0.09 gain 2 marks answers 0.8 or 0.03 gain mark the unit is not required but if given must be consistent with numerical answer for the available marks 2 3 [9] 7 (a) (i) same frequency / period / pitch / wavelength ignore references to amplitude differences in waveform / shape / quality accept the diagrams are not identical (b) (i) 20 000 Hz / hertz or 20 khz / kilohertz in both cases, if the symbol rather than the name is used, it must be correct in every detail material(s) / substance(s) (through which sound travels) Page 26 of 28

(iii) is absorbed accept (some) sound (energy) is transformed / transferred as heat / thermal energy is transmitted accept is refracted accept changes speed accept changes velocity do not accept is diffracted do not accept is diffused do not accept is dissipated [6] 8 (a) (i) Constant speed 2 Accelerates to higher constant speed (b) (i) Points correct (allow one major or two minor mistakes) Line correct (for their points) 2 5 m/s or 5 gets 2 marks or correct unit gets mark mark 3 (c) (i) 50 s or 50 gets 2 marks or t = d/v gets mark Line correct (of gradient 4 and spans 30 consecutive seconds) 3 Page 27 of 28

(d) (i) 0.04 or 6/5 gets 2 marks or a = v/t gets mark 3 [5] 9 (a) any evidence of: momentum = mass velocity (words, symbols or numbers) appropriate re-arrangement mass as 0.05kg each gains mark but 800 gains 4 marks 4 (b) (i) any reference to friction with air/air resistance gains mark but idea that friction with air/air resistance is high (at high speed) gains 2 marks 2 any evidence of: k.e. v 2 or k.e. = ½ mv 2 final k.e. initial k.e. either initial or final k.e. correctly calculated (i.e. 6000; 0240) each gains mark but (0.8) 2 gains 3 marks but 64%(credit 0.64) gains 4 marks (also credit e.c.f) 4 [0] Page 28 of 28