Positron theoretical prediction

Similar documents
Outlook: Application of Positron Annihilation for defects investigations in thin films. Introduction to Positron Annihilation Methods

Positron Annihilation Spectroscopy - A non-destructive method for material testing -

Study of semiconductors with positrons. Outlook:

Application of positrons in materials research

Hydrogen-induced defects in bulk niobium

Basics and Means of Positron Annihilation

Positron Annihilation Spectroscopy

PRINCIPLES OF POSITRON ANNIHILATION

Introduction into Positron Annihilation

DEVELOPMENT OF A NEW POSITRON LIFETIME SPECTROSCOPY TECHNIQUE FOR DEFECT CHARACTERIZATION IN THICK MATERIALS

Motivation. g-spectroscopy deals with g-ray detection and is one of the most relevant methods to investigate excited states in nuclei.

Positron Annihilation in Material Research

Investigation of SiC by Positrons

Positron Annihilation techniques for material defect studies

Positron Annihilation Lifetime Spectroscopy (PALS)

SLOW-POSITRON IMPLANTATION SPECTROSCOPY IN NANOSCIENCE *

The intense, pulsed positron source EPOS at the Research Centre Dresden-Rossendorf

POSITRON AND POSITRONIUM INTERACTIONS WITH CONDENSED MATTER. Paul Coleman University of Bath

Research Center Dresden Rossendorf

New Concept of EPOS Progress of the Mono-energetic Positron Beam (MePS) Gamma-induced Positron Spectroscopy (GiPS)

Material Science using Positron Annihilation

COMPARATIVE STUDY OF PIGE, PIXE AND NAA ANALYTICAL TECHNIQUES FOR THE DETERMINATION OF MINOR ELEMENTS IN STEELS

CHAPTER-II Experimental Techniques and Data Analysis (Positron annihilation spectroscopy)

Antimatter. Jan Meier. Seminar: Experimental Methods in Atomic Physics May, 8th 2007

DETECTORS. I. Charged Particle Detectors

REFERENCE SOURCES FOR THE CALIBRATION OF THE AUTOCORRELATION SINGLE-CRYSTAL SCINTILLATION TIME SPECTROMETER

ASPECTS OF THE MCMASTER INTENSE POSITRON BEAM FACILITY

Multiscale modelling of D trapping in W

on basis of the Geant4 simulations

Identification of Getter Defects in high-energy self-implanted Silicon at Rp/2

Interaction of ion beams with matter

Defect structure and oxygen diffusion in PZT ceramics

Unique phenomena of tungsten associated with fusion reactor: uncertainties of stable hydrogen configuration tapped in tungsten vacancy

David B. Cassidy. Department of Physics and Astronomy, University of California, Riverside, USA. Varenna, July 09

Polarization Correlation in the Gamma- Gamma Decay of Positronium

Technical Status Update on PA Lifetime Spectroscopy Experiments and Results

Vacancy generation during Cu diffusion in GaAs M. Elsayed PhD. Student

The EPOS System (ELBE Positron Source) at Helmholtz Centre Dresden- Rossendorf and first experiments at photovoltaic CIGS layers

ABSTRACT CHARACTERIZING DEFECTS IN STEEL, ALUMINUM AND COPPER BY WAY OF POSITRON ANNIHILATION LIFETIME SPECTROSCOPY. by Jason Lavaska Calloo

Large electron screening effect in different environments

Positron and Positronium Annihilation in Polymers Studied by Age-Momentum Correlation Spectroscopy

Department of Physics, Techno India Batanagar (Techno India Group), Kolkata , West Bengal, India.

Nuclear Lifetimes. = (Eq. 1) (Eq. 2)

National Institute of Materials Physics Bucharest-Magurele. Cristian-Mihail Teodorescu, PhD, S.R.1, Surfaces and Interfaces,

Replication Of MHI Transmutation Experiment By D 2 Gas Permeation Through Pd Complex

3. Perturbed Angular Correlation Spectroscopy

Positron-Electron Annihilation

STRESS ANALYSIS USING BREMSSTRAHLUNG RADIATION

arxiv: v1 [physics.ins-det] 3 Feb 2011

X-ray photoelectron spectroscopic characterization of molybdenum nitride thin films

Measurement of Muon Lifetime

β and γ decays, Radiation Therapies and Diagnostic, Fusion and Fission Final Exam Surveys New material Example of β-decay Beta decay Y + e # Y'+e +

Positron Annihilation in Materials Science

Gamma-ray spectroscopy with the scintillator/photomultiplierand with the high purity Ge detector: Compton scattering, photoeffect, and pair production

Structural and Electronic properties of platinum nanoparticles studied by diffraction and absorption spectroscopy

The ortho-positronium lifetime puzzle & new Physics

Positron Annihilation Spectroscopy on Defects in Semiconductors

in Si by means of Positron Annihilation

Lecture 3. lecture slides are at:

Steady-state diffusion is diffusion in which the concentration of the diffusing atoms at

hν' Φ e - Gamma spectroscopy - Prelab questions 1. What characteristics distinguish x-rays from gamma rays? Is either more intrinsically dangerous?

The Nucleus. PHY 3101 D. Acosta

SiPM & Plastic Scintillator

MEASURING THE LIFETIME OF THE MUON

X-Ray Photoelectron Spectroscopy (XPS)-2

Carbon Quantum Dots/NiFe Layered Double Hydroxide. Composite as High Efficient Electrocatalyst for Water

In Situ Observation of Damage Evolution in Polycarbonate under Ion Irradiation with Positrons

The Compton Effect. Martha Buckley MIT Department of Physics, Cambridge, MA (Dated: November 26, 2002)

arxiv: v1 [physics.ins-det] 29 Jun 2011

Neutrinos & Weak Interactions

Positron Lifetime Spectroscopy of Silicon Nanocontainers for Cancer Theranostic Applications

EEE4106Z Radiation Interactions & Detection

Laboratory of Nuclear Solid State Physics, USTC

LECTURE 6: INTERACTION OF RADIATION WITH MATTER

Conclusion. 109m Ag isomer showed that there is no such broadening. Because one can hardly

The Mössbauer Effect

Improvement of depth resolution of VEPAS by a sputtering technique

PHY492: Nuclear & Particle Physics. Lecture 6 Models of the Nucleus Liquid Drop, Fermi Gas, Shell

Microscopical and Microanalytical Methods (NANO3)

4.1. The Positron Sources

NJCTL.org 2015 AP Physics 2 Nuclear Physics

R. Krause-Rehberg. Martin-Luther-Universität Halle-Wittenberg. Positron Lifetime / Doppler Broadening / Angular Correlation / AMOC

Y2 Neutrino Physics (spring term 2017)

PHYS 571 Radiation Physics

Alpha-Gamma discrimination by Pulse Shape in LaBr 3 :Ce and LaCl 3 :Ce

FACTS WHY? C. Alpha Decay Probability 1. Energetics: Q α positive for all A>140 nuclei

Rice University Physics 332 LIFETIME OF THE MUON I. INTRODUCTION...2! II. MEASUREMENT PROCEDURES...3! III. ANALYSIS PROCEDURES...7!

energy loss Ionization + excitation of atomic energy levels Mean energy loss rate de /dx proportional to (electric charge) 2 of incident particle

The intense Positron Source EPOS at ELBE Radiation Source of Research Center Rossendorf

Ionization Energy Loss of Charged Projectiles in Matter. Steve Ahlen Boston University

Chapter VI: Beta decay

X-Ray Photoelectron Spectroscopy (XPS)-2

Detection and measurement of gamma-radiation by gammaspectroscopy

Cosmic Ray Muon Detection

Lecture 3. lecture slides are at:

Radioactivity and Ionizing Radiation

Positronium Formation at Low Temperatures in Polymers and Other Molecular Solids

MockTime.com. Ans: (b) Q6. Curie is a unit of [1989] (a) energy of gamma-rays (b) half-life (c) radioactivity (d) intensity of gamma-rays Ans: (c)

The 46g BGO bolometer

COMPUTATION OF POSITRON IMPLANTATION PROFILE IN SOLIDS. *Corresponding author. Tel:

Transcription:

Positron theoretical prediction Schrödinger equation: ˆ 2 p x, t Vx, t x, t i 22 m tt non-relativistic equation of motion for electron Erwin Schrödinger 1933 Nobel prize

Positron theoretical prediction 2 x, t ˆ i tt Dirac equation: αpc mc x, t relativistic equation of motion for electron solutions with positive energy: normal electrons Paul Adrien Maurice Dirac 1933 Nobel prize P.A.M. Dirac, Proc. R. Soc. Lond. A 117, 610-624624 (1928) P.A.M. Dirac, Proc. R. Soc. Lond. A 133, 60-72 (1931)

Positron theoretical prediction 2 x, t ˆ i tt Dirac equation: αpc mc x, t relativistic equation of motion for electron solutions with positive energy: normal electrons solutions with negative energy energy of a free particle E 1 mv 2 2 2 p 2m (classical) Paul Adrien Maurice Dirac 1933 Nobel prize P.A.M. Dirac, Proc. R. Soc. Lond. A 117, 610-624624 (1928) P.A.M. Dirac, Proc. R. Soc. Lond. A 133, 60-72 (1931)

Positron theoretical prediction 2 x, t ˆ i tt Dirac equation: αpc mc x, t relativistic equation of motion for electron solutions with positive energy: normal electrons solutions with negative energy relativistic energy E 2 m 2 c 4 p 2 c 2 E m 2 c 4 p 2 c 2 Paul Adrien Maurice Dirac 1933 Nobel prize P.A.M. Dirac, Proc. R. Soc. Lond. A 117, 610-624624 (1928) P.A.M. Dirac, Proc. R. Soc. Lond. A 133, 60-72 (1931)

Positron theoretical prediction 2 x, t ˆ i tt Dirac equation: αpc mc x, t relativistic equation of motion for electron solutions with positive energy: normal electrons vacuum is a see of electrons with negative energy E > 0 mc 2 E = 0 -mc 2 E < 0 ray Paul Adrien Maurice Dirac 1933 Nobel prize P.A.M. Dirac, Proc. R. Soc. Lond. A 117, 610-624624 (1928) P.A.M. Dirac, Proc. R. Soc. Lond. A 133, 60-72 (1931)

Positron theoretical prediction 2 x, t ˆ i tt Dirac equation: αpc mc x, t relativistic equation of motion for electron solutions with positive energy: normal electrons vacuum is a see of electrons with negative energy positron is a hole in vacuum E > 0 mc 2 E = 0 -mc 2 E < 0 + electron Paul Adrien Maurice Dirac 1933 Nobel prize pair production positron P.A.M. Dirac, Proc. R. Soc. Lond. A 117, 610-624624 (1928) P.A.M. Dirac, Proc. R. Soc. Lond. A 133, 60-72 (1931)

Positron theoretical prediction 2 x, t ˆ i tt Dirac equation: αpc mc x, t relativistic equation of motion for electron solutions with positive energy: normal electrons vacuum is a see of electrons with negative energy positron is a hole in vacuum E > 0 mc 2 E = 0 -mc 2 + E < 0 ray ray anihilation Paul Adrien Maurice Dirac 1933 Nobel prize P.A.M. Dirac, Proc. R. Soc. Lond. A 117, 610-624624 (1928) P.A.M. Dirac, Proc. R. Soc. Lond. A 133, 60-72 (1931)

Discovery of positron discovery of positron 1932 Lorentz force F ev B B e + 23 MeV 6 mm Pb foil e + 63 MeV Carl David Anderson 1936 Nobel prize

Discovery of positron discovery of positron 1932 B = 1.7 T P = 425 kw m >3 t

Positron positron positron = antiparticle of electron rest mass: m e charge: +e spin: 1/2

Positron sources Cosmic rays 90 % protons 9 % -particles 1 % heavier nuclei & other particles (e -, e +, p - ) interaction with atmosphere p + NO N,

Positron sources Cosmic rays 90 % protons 9 % -particles 1 % heavier nuclei & other particles (e -, e +, p - ) interaction with atmosphere p + NO N,

Positron sources Cosmic rays 90 % protons 9 % -particles 1 % heavier nuclei & other particles (e -, e +, p - ) interaction with atmosphere p + NO N, e e e e

Positron sources Cosmic rays 90 % protons 9 % -particles 1 % heavier nuclei & other particles (e -, e +, p - ) interaction with atmosphere p + NO N, e e e e

Positron sources Cosmic rays 90 % protons 9 % -particles 1 % heavier nuclei & other particles (e -, e +, p - ) interaction with atmosphere p + NO N, e e e e

Positron sources Cosmic rays 90 % protons 9 % -particles 1 % heavier nuclei & other particles (e -, e +, p - ) interaction with atmosphere p + NO N, e e e e e e

Positron sources - decay - decay: e A Z A Z e X X ' 1 e e p n e u d e e Ba Cs 137 56 137 55 + decay: e A Z A Z e X X ' 1 e e u d e e n p N 22 N 22 e e Ne Na 22 10 22 11

Positron sources - decay - decay: A Z 137 55 X n Cs p A Z 1 137 56 X' e e e Bae e e + decay: A Z X p A Z 1 ne X' e e e Na 22 Nee 22 22 11 10 e

Interaction of e + with solid 0.035 Positron implantation profile 0.030 0.025 Mg Cu E ~ 250 kev 0.020 p 0.015 1274 kev 0.010 0.005 0.000 0 100 200 300 400 500 depth (m) + mean Free positron lifetimes penetration depth Mg Cu 154 114 m ps Al Nb 126 99 m ps Cu Al 163 30 m ps Nb Mg 233 31 m ps Thermalization 22 22 t < 1110 Na ps 10Ne e l ~ 50 m E kt (0.03 03 ev) 1/2 = 3.7 ps 22 10 Ne Difusion t Na ~ 100 ps l ~ 100 nm 22 11 T 1/2 = 2.6 year 90.4 %, EC 9.5 % 1274 kev 0.06 % + - 511 kev 511 kev Anihilation start signal

Positron lifetime N(t) - probability that e + is alive at time t : dn( t) N ( t) N ( 0) 1 dt positron annihilation rate: r 0 c n ( r) n ( r) dr N ( t) e t positron lifetime spectrum: - d N ( t ) dt e t mean time of positron life: dn( t) dt t d t 0 free positron lifetime: t t t 1 1 t te dt te 0 e dt 0 0 e 0 t 1

Positron lifetime spectrum positron lifetime spectrum: S id - dn ( t ) t e t 0.010 0.008 Cu 114 ps Mg 233 ps intensity 0.006 0.004004 0.002 0.000 0 200 400 600 800 1000 1200 1400 time (ps)

Positron lifetime spectrum positron lifetime spectrum: S id - dn ( t) t e t 1e-2 Cu 114 ps Mg 233 ps 1e-3 slope: 1 inten nsity 1e-4 1e-5 1e-6 0 200 400 600 800 1000 1200 1400 background time (ps) real positron lifetime spectrum: S real ( t) S id ( t ) R( )d B resolution function of spectrometer

Positron trapping Cu: fcc lifetime B = 114 ps 2.0 (001) plane 10] [0 1.5 1e-5 2e-5 3e-5 4e-5 5e-5 6e-5 7e-5 8e-5 (001) plane y (a) 1.0 1e-4 8e-5 0.5 n + (a.u.) 6e-5 4e-5 2.0 0.0 0.0 0.5 1.0 1.5 2.0 x (a) [100] 2e-5 0 2.0 1.5 [010] 1.0 y (a) 0.5 0.0 0.0 0.5 1.0 1.5 x (a) [100]

Positron trapping Cu: fcc vacancy in [1/2,1/2,0] position lifetime 1v = 180 ps 2.0 (001) plane [010 0] 1.5 2e-3 4e-3 6e-3 8e-3 1e-2 (001) plane y (a) 1.0 0.014 0.012 0.010 0.5 n + (a.u.) 0.008 0.006 2.0 0.0 0.0 0.5 1.0 1.5 2.0 x (a) [100] 0.004 0.002 0.000 20 2.0 1.5 [010] 1.0 y (a) 0.5 0.0 0.0 0.5 1.0 1.5 x (a) [100]

Positron lifetime spectrum 1e+6 Intensity 1e+5 1e+4 Cu: c 1v = 2.7 10-3 at% 1 = 84 ps I 1 = 48% 2 = 180 ps I 2 = 62% 1e+3 1e+2-2000 -1000 0 1000 2000 3000 4000 5000 6000 t (ps) decomposition of PL spectrum: lifetimes i type of defects present intensities I i defect densities

Simple positron trapping model: Cu with vacancies E free positron N f ( t ) f thermalization annihilation rate B = 1/ B binding energy ~ 1 ev trapping rate K 1V K 1v 1v c trapped positron N 1v ( t) 1v annihilation rate 1v = 1/ 1v Cu vacancy: 1v annihilation B = 114 ps 1.4 10 14 s -1 at. 1v = 180 ps two-component spectrum: 1 K 1 I 1 1 I 2 B 1v 2 S 1 K1v I2 K 1v B 1v id 1 I 1 1 e t 1 1 free positrons 1v 2 I 2 e t 2 positrons trapped at vacancies

Positronium hydrogen-like bound state of positron and electron parapositronium p-ps 1 S 0, singlet state, antiparallel spins, lifetime p-ps = 125 ps, 2- orthopositronium o-ps 3 S 1, triplet state, parallel spins, lifetime o-ps = 142 ns, 3- formed in large open volumes: e.g. in polymers in solids pick-off annihilation of o-ps o-ps reduced to several ns polycarbonate iron

Positron lifetime spectrometer 511 kev STOP detector START detector 511 kev 1274 kev Detector photomultiplier p BaF 2 scintillator

Positron lifetime spectrometer 511 kev STOP detector START detector 511 kev 1274 kev Detector BaF 2 scintillator Fast component: 1 = 220 nm, = 0.6 ns Slow component: 2 = 310 nm, = 630 ns

Positron lifetime spectrometer 511 kev STOP detector START detector 511 kev 1274 kev Detector Linearly focused PMT

Positron lifetime spectrometer 511 kev STOP detector START detector 511 kev 1274 kev CFD constant-fraction discrimination inversion+attenuation crossover CFD delay sum amplitude selection lower level upper level

Positron lifetime spectrometer STOP detector 511 kev START detector 511 kev 1274 kev CFD CFD START STOP delay STOP TAC START ADC PC

Positron lifetime spectrometer detectors t fast-fast PL spectrometer timing resolution 160 ps (FWHM 22 Na) coincidence count rate 100 s -1 10 7 counts in spectrum F. Bečvář et al., Nucl. Instr. Meth. A 443, 557 (2000) source-sample sandwich

Hydrogen in Niobium Nb: bcc structure t a = 3.3033(1) 3033(1) Å [PDF-2] H in Nb interstitial solid solution size (r Nb ): 0.155 0.291 N i /cell 6 12 N i /M 3 6 H 0.35 035 x H = N H /M number of hydrogen atoms per metal atoms

Hydrogen in Niobium Equilibrium phase diagram of Nb-H system two-phase field ( + ) x H = 0-0.06 (atom ratio H/Nb): single phase solid solution (-phase), bcc H fills tetrahedral interstitial positions

Hydrogen in Niobium Equilibrium phase diagram of Nb-H system two-phase field ( + ) -phase (NbH) orthorhombic a = 4.859 Å b = 4.878 Å c = 3.453 Å c z y x x H = 0-0.06 (atom ratio H/Nb): single phase solid solution (-phase), bcc H fills tetrahedral interstitial positions b a

Samples defect-free Nb - bulk Nb (99.9%) - annealing 1000 o C / 1h to anneal out all existing defects electron irradiated Nb - bulk Nb (99.9%) 9%) - annealing 1000 o C / 1h to anneal out all existing defects - 10 MeV electron irradiation, F = 2 10 21 m -2, T irr 100 o C all samples: Pd cap (thickness 30 nm) prevent oxidation facilitate H absorption R. Kircheim et al., Acta Metall. 30, 1059 (1982)

Hydrogen loading Electrochemical H loading R. Kircheim, Prog. Mat. Sci. 32 (1988), p. 261 hydrogen concentration ti Faraday s law i = 0.3 ma/cm 2 V impedance changer timer + current source + Ag/AgCl electrode - Evolution of defects was studied as a function of gradually increased hydrogen concentration in sample. Pt electrolyte: sample H 3 PO 4 (85%) + glycerin (85%) 1 : 2

H-induced lattice expansion: X-ray diffraction relative lattice expansion: a a 0 x a 0 H a 0 a lattice constant for virgin sample lattice constant t for hydrogen-loaded d d sample for Nb : 0.058 H. Peisl, in:. Hydrogen in Metals I, Springer-Verlag, g, Berlin (1978), p. 53 0.0022 0.0020 0.00180018 0.0016 0.0014 a / a 0 0.0012 0.0010 0.0008 = 0.058(1) 0.0006 0.0004 0.0002 0.0000-0.0002 0.00 0.01 0.02 0.03 0.04 0.05 x H

Hydrogen-induced vacancies well annealed Nb (1000 o C / 1h): single component PL spectrum 1 = (128.3 0.4) ps calculated l dbulk lknblif lifetime (ATSUP): B = (126 1) ps defect-free material TEM no dislocations observed, grain size > 10 m

Hydrogen-induced vacancies well annealed Nb (1000 o C / 1h) hydrogen loading hydrogen induced defects 2 = (150 0.5) ps hydrogen-induced volume expansion elastic process dislocations calculated lifetime for Nb vacancy (ATSUP): V = (222 1) ps vacancies surrounded by hydrogen shortening of positron lifetime 160 80 140 2 60 lifetime (ps s) 120 100 I 2 (%) 40 80 1 20 60 0.00 0.01 0.02 0.03 0.04 0.05 0 0.00 0.01 0.02 0.03 0.04 0.05 x H x H

1e+0 e+71e+ 1e+0 Hydrogen-induced vacancies Effective medium theory J. Nørskov, Phys. Rev. B 26, 2875 (1982) 2.00 1.75 E hom (r) in (001) plane vacancy in 1,1,0 1e+6 1e+7 1e+8 1e+5 1e+5 1e+4 1e+4 1e+3 1e+6 1e+7 1e+8 1e+3 1e+4 1e+5 1e+6 1e+3 1e+2 1e+2 1e+1 1e+2 1e+1 10 1e+1 1 1e+0 1e+0 n 1.50 0.1 1e-1 1e-1 1.25 0.01 +31e+1e+6+8 1e +4 1e+1 1e+0 100 1.00 0.75 e+51e1e+6 175 1.75 1.50 1.25 [010] 1e +2 1e+0 +2 +1 1e 1e-1 1e 1e 1e+3 1e+4 1e+ e+5 1e+ e+6 1e-1 1e-1 0.50 1.00 [010] 1e+0 1e+1 0.25 1e+2 1e+1 1e+2 1e+0 1e+5 1e+4 1e+3 1e+3 1e+4 1e+1 1e+5 1e+6 1e+2 1e+6 1e+3 0.00 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 0.75 0.50 175 200 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 [100] 1e+4 [100] 0.25 0.00 H positions: [0.64,1,0],, [1,0.64,0],, [1,1,0.36], [1.36,1,0], [1,1.36,0], [1,1,-0.36]

1e+0 Hydrogen-induced vacancies Effective medium theory Stott, Zaremba, Nørskov, Lang 1980 1e+6 1e+7 1e+8 2.00 1e+5 1e+5 1e+4 1e+4 1e+3 1e+6 1e+7 1e+8 1e+3 1e+4 1e+6 1e+5 1e+3 1e+2 1e+2 1e+1 1.75 1e+2 1e+1 Nb 1e+1 1e+0 1e+0 1.50 1e-1 1e-1 1.25 1e+6+8 +4 1e+3 1e 1e+1 1e+0 100 1.00 0.75 e+51e1e+6 octahedral position [0,1,0.5] H e+71e+ [010] 1e +2 1e+0 +2 +1 1e 1e-1 1e 1e 1e+3 1e+4 1e+ e+5 1e+ e+6 1e-1 1e-1 0.50 0.25 0.00 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 [0.64,1,0], 1e+0 1e+0 1e+1 1e+2 1e+1 1e+2 1e+0 1e+5 1e+6 1e+4 1e+3 1e+3 1e+4 1e+1 1e+5 1e+2 1e+6 1e+3 1e+4 [100] H positions: [0.64,1,0],, [1,0.64,0],, [1,1,0.36], [1.36,1,0], [1,1.36,0], [1,1,-0.36] displacement = 0.46(7) Å

ATSUP calculations Nb vacancy in [1,1,0] and H in [0.64,1,0] electron density in (001) plane positron density in (001) plane n 1.75 0.016 0.014 1.50 0.012 0.010 2.00 100 10 1 1.25 0.008 0006 0.006 [010] 0.1 1000 10 1 01 0.1 0.01 0.1 1000 10 1 0.004 1.00 100 10 1 0.1 0.1 0.1 1 101000100 0.002 0.000 0.75 2.00 0.01 1.75 0.50 1.50 2.00 1.25 1.75 1.00 0.1 1.50 0.25 0.1 1.25 0.1 0.75 1 1.00 1 1 10 0.50 10 10100 100 0.75 0.00 050 0.50 0.00 0.25 0.50 0.25 0.75 1.00 1.25 1.50 1.75 2.00 0.25 0.00 0.00 [100] [010] [100] [010] 2.00 1.75 1.50 0.002 1.25 1.00 0.75 0.50 0.25 0.006 0.008 0.004 0.0040.010 0.012 0.002 0.004 0.008 0.006 0.002 000 0.00 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 [100] positron lifetime v-h = 204(1) ps

ATSUP calculations complexes (vacancy H) 2.00 1.75 vacancy + 2H 2.00 1.75 vacancy + 3H 1.50 1.25 0.002 0.006 0.008 0.004 1.50 1.25 0.004 0.006 0.002 0.008 [010] 1.00 0.010 0.012 0.008 0.004004 [010] 1.00 0.002 0.012 0.010 0.008 0.0060.002 0.75 0.0020.004 0.006 0.002 0.75 0.004 0.50 0.50 0.25 = 182(1) ps 0.00 000 0.00 025 0.25 050 0.50 075 0.75 100 1.00 125 1.25 150 1.50 175 1.75 200 2.00 [100] 0.25 = 169(1) ps 0.00 000 0.00 025 0.25 050 0.50 075 0.75 100 1.00 125 1.25 150 1.50 175 1.75 200 2.00 [100]

ATSUP calculations complexes (vacancy H) 2.00 1.75 vacancy + 4H 2.00 1.75 vacancy + 5H 1.50 1.25 1.50 0.002 0.004 1.25 0.001 0.001 0.003 0.002 0.004 0.001 [010] 1.00 0.75 050 0.50 0.002 0.008 0.006 0.004 0.002 [010] 1.00 0.001 0.001 0.001 0.007 0.006 0.004 0.002 0.005 0.75 050 0.50 0.002 0.001 0.001 0.003 0.25 = 151(1) ps 0.00 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 [100] 0.25 = 142(1) ps 0.00 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 [100]

ATSUP calculations complexes (vacancy H) 2.00 vacancy + 6H 175 1.75 1.50 0.0005 0.0025 0.0005 0.0020 1.25 0.0005 0.0010 0.0015 0.0015 [010] 1.00 0.0005 0.0020 0.0005 0.0015 0.0010 0.0005 n 0.0010 0.0005 0.75 050 0.50 0.25 0.0010 0.0005 0.0005 0.00 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 [100] 0.0000 2.00 1.75 150 1.50 1.25 1.00 [010] 0.75 0.50 0.25 000 0.00 0.50 0.25 000 0.00 2.00 1.75 1.50 1.25 1.00 0.75 [100] = 127(1) ps

Hydrogen-induced vacancies calculated positron lifetime for vacancy is surrounded by several H atoms 240 220 200 v-nh (ps) 180 experiment 150 ps 160 140 Nb bulk 120 0 1 2 3 4 5 6 number of H Hydrogen loading creation of vacancies surrounded for 4 hydrogen atoms

Hydrogen-induced vacancies well annealed Nb (1000 o C / 1h) hydrogen loading hydrogen induced defects 2 = (150 0.5) ps hydrogen-induced volume expansion elastic process dislocations calculated lifetime for Nb vacancy (ATSUP): V = (222 1) ps vacancies surrounded by hydrogen shortening of positron lifetime c v 3 10-3 at.% T 1850 o C (0.8 Tm) 160 80 4.0x10-3 140 2 60 3.0x10-3 lifetime (ps s) 120 100 I 2 (%) 40 2.0x10-3 C v-4h (at.% %) 80 1 20 1.0x10-3 60 0.00 0.01 0.02 0.03 0.04 0.05 0 0.0 0.00 0.01 0.02 0.03 0.04 0.05 x H x H

H-induced defects bulk Nb mechanism of formation effective medium theory: H v E b 0.50 ev vacancy formation energy: E f 2.32 ev P. Korzhavyi et al. PRB 59, 11693 (1999) vacancy 4H: H v E f 4E b 0.32 ev equilibrium concentration of vacancy 4H complexes: c p e S / k k e E f 4E H v b / kt 4.0x10-3 experiment 3.0x10-3 4 H in nearest neighbor positions required p at.% 4 99 ~ c H c 710.%) C v-4h (at. 20x10 2.0x10-3 theory 4 H in active volume V 0 3 V0 2.9 nm 80 unit cells of Nb 1.0x10-3 0.0 J. Čížek et al. PRB 69, 224106 (2004) 0.00 0.01 0.02 0.03 0.04 0.05 x H

Hydrogen-induced vacancies 2 = 150 ps Loading unloading experiment 60 60 loading: constant current 0.3 ma unloading: constant t voltage 0.8 V I 2 (%) 50 40 30 50 40 30 20 20 PL intensity of trapped positrons 10 loading unloading 10 0 0.000 0.005 0.010 0.015 0.020 0 0 50 100 150 200 250 x H unloading time (h) 3.307 3.306 loading unloading 3.307 3.306 3.305 3.305 (10-10 m) a ( 3.304 3.303 3.304 3303 3.303 3.302 3.302 XRD lattice constant 3.301 Nb PDF2 3.301 3.300 0.000 0.005 0.010 0.015 0.020 x H 3.300 0 50 100 150 200 250 unloading time (h)

Electron irradiated bulk Nb sample 1 bare Nb electron irradiated (10 MeV e -, F = 2 10 21 m -2, T irr 100 o C) Pd cap sputtered after irradiation sample 2 Nb with Pd cap electron irradiated (10 MeV e -, F = 2 10 21 m -2, T irr 100 o C) Sample 1 (ps) I 1 (%) 2 (ps) I 2 (%) bare Nb 47 6 15 1 190.6 0.5 85 1 electron eecto irradiated adated. + Pd cap 47 9 15 2 190.0 0.8 85 2 Nb electron irradiated 57 7 17.0 08 0.8 185.88 08 0.8 83.0 08 0.8 with Pd cap vacancy-h complexes mixture of v-h ( v-h = 204 ps) and v-2h ( v-2h = 182 ps) complexes

Electron irradiated bulk Nb 3-component fit Sample 1 (ps) I 1 (%) 2 (ps) I 2 (%) 3 (ps) I 3 (%) bare Nb 43 8 14 2 182 Fix 61 2 204 Fix 25 3 electron irradiated. + Pd cap 44 9 14 2 182 Fix 57 2 204 Fix 29 4 Nb electron irradiated with Pd cap 48 5 15 2 182 Fix 74 1 204 Fix 11 3 v-2h complexes v-h complexes

Electron irradiated bulk Nb 14 application of 3-state trapping model (trapping coefficient: = 1 10 14 at. s -1 ) 12 concentration n (10-5 at. -1 ) 10 8 6 4 bare Nb irradiated Pd cap sputtered subsequently on the irradiated Nb Nb irradiated with Pd cap catalytic ti effect of Pd cap v-h transforms into v-2h 2 v-2h v-h 0

Doppler Broadening annihilation 1 2 E mec E 1 cp e - e + E L 2 annihilation peak 207 Bi 10000 10000 2 2 E mec E 2 counts 1000 100 1000 counts 100 10 10 FWHM = 2.580(3) kev 1 490 500 510 520 530 E (kev) FWHM = 1.103(1) kev 1 550 560 570 580 590 E (kev)

Coincidence Doppler Broadening spectroscopy (CDB) 2 E mec E 1 E e cp L 2 p T HPGe detector t p p L 2 - + 1 HPGe detector CFD CFD Coincidence gate spectroscopy amplifier E 1 E 2 spectroscopy ADC amplifier

Coincidence Doppler Broadening spectroscopy (CDB) reference Fe 30 1e+0 1e+1 1e+2 1e+3 1e+4 1e+5 E1+E E2-2 x 512 ((kev) 20 10 0-10 -20-30 -30-20 -10 0 E1- E2 (kev) 10 20 30

Coincidence Doppler Broadening spectroscopy (CDB) 1e+7 reference Fe 1e+6 1e+5 resolution function annihilation peak counts 1e+4 1e+3 1e+2 1e+1 1e+0-30 -20-10 0 10 20 30 E 1 -E 2 (kev)

Coincidence Doppler Broadening spectroscopy (CDB) CDB ratio curves 2.0 1.8 1.6 Cu 1.4 ratio to Fe 1.2 1.0 0.8 0.6 0.4 Al 0.2 0.0 0 10 20 30 40 50 p (10-3 m 0 c) element sensitivity

Coincidence Doppler Broadening spectroscopy (CDB) Chemical environment of defects CDB measurements two HPGe detectors energy resolution 1.05 kev (FWHM, E = 512 kev) coincidence count rate 550 s -1 10 8 counts in spectrum J. Čížek et al., Mat. Sci. Forum. 445-446, 63 (2004)

Vacancy-H complexes calculated HMP s annihilation with core electrons 2.0 15 1.5 effect of hydrogen 1s electrons to Nb ratio 10 1.0 0.5 Nb vacancy Nb vacancy+h Nb vacancy+2h Nb vacancy+3h Nb vacancy+4h Nb vacancy+5h Nb vacancy+6h 0.0 0 10 20 30 40 50 p (10-3 m 0 c)

Electron irradiated Nb experimental high momentum profiles effect of hydrogen 1s H electrons bare Nb irradiated 1.2 1.1 1.0 ratio to Nb 0.9 0.8 0.7 06 0.6 0 10 20 30 40 50 p (10-3 m 0 c)

Electron irradiated Nb experimental high momentum profiles bare Nb irradiated effect of hydrogen 1s H electrons Nb iradiated with Pd cap 1.2 1.1 1.0 ratio to Nb 0.9 0.8 0.7 06 0.6 0 10 20 30 40 50-3 p (10 m 0 c)

Electron irradiated Nb experimental high momentum profiles bare Nb irradiated effect of hydrogen 1s H electrons Nb iradiated with Pd cap hydrogen loaded Nb 1.2 1.1 1.0 ratio to Nb 0.9 0.8 0.7 06 0.6 0 10 20 30 40 50 p (10-3 m 0 c)

Other gas impurities calculated HMP s 2.0 1.5 Nb vacancy Nb vacancy - Oxygen in center Nb vacancy - Nitrogen in center ratio to Nb 1.0 0.5 0.0 0 10 20 30 40 50 p( (10-3 m 0 c)