Affine SU(N) algebra from wall-crossings

Similar documents
BPS states, Wall-crossing and Quivers

Free fermion and wall-crossing

Counting black hole microstates as open string flux vacua

BPS States in N=4. Ashoke Sen. Harish-Chandra Research Institute, Allahabad, India

2d-4d wall-crossing and hyperholomorphic bundles

Witten Index for Noncompact Dynamics

Yet Another Alternative to Compactification by Heterotic Five-branes

Web Formalism and the IR limit of massive 2D N=(2,2) QFT. collaboration with Davide Gaiotto & Edward Witten

Yet Another Alternative to Compactification

Orientiholes Γ 2 Γ 1. Frederik Denef, Mboyo Esole and Megha Padi, arxiv:

Knot Homology from Refined Chern-Simons Theory

Gauge Threshold Corrections for Local String Models

F-theory effective physics via M-theory. Thomas W. Grimm!! Max Planck Institute for Physics (Werner-Heisenberg-Institut)! Munich

5d SCFTs and instanton partition functions

Fixing all moduli in F-theory and type II strings

wall crossing redux PILJIN YI STRINGS 2013 KOREA INSTITUTE for ADVANCED STUDY

Surface Defects and the BPS Spectrum of 4d N=2 Theories

Anomalous discrete symmetries in D-brane models

Supersymmetric Gauge Theories in 3d

Dualities and Topological Strings

Black Hole Microstate Counting using Pure D-brane Systems

Part I. Refined Wall-Crossing

Wall Crossing from Boltzmann Black Hole Halos

String Phenomenology ???

Instanton effective action in - background and D3/D(-1)-brane system in R-R background

Refined BPS Indices, Intrinsic Higgs States and Quiver Invariants

David R. Morrison. String Phenomenology 2008 University of Pennsylvania 31 May 2008

Generalized N = 1 orientifold compactifications

D-brane instantons in Type II orientifolds

Generalized Kac-Moody Algebras from CHL Dyons

A wall-crossing formula for 2d-4d DT invariants

Instantons in string theory via F-theory

Brane Tilings: NSVZ Beta Function

Heterotic Torsional Backgrounds, from Supergravity to CFT

Entropy of asymptotically flat black holes in gauged supergravit

Wall-crossing from quantum multi-centered BPS black holes

Think Globally, Act Locally

THE MASTER SPACE OF N=1 GAUGE THEORIES

Spectral Networks and Their Applications. Caltech, March, 2012

Two Examples of Seiberg Duality in Gauge Theories With Less Than Four Supercharges. Adi Armoni Swansea University

Framed BPS States In Four And Two Dimensions. Gregory Moore. String Math, Paris, June 27, 2016

Partition functions of N = 4 Yang-Mills and applications

On Flux Quantization in F-Theory

Flux Compactification of Type IIB Supergravity

A Landscape of Field Theories

Little strings and T-duality

Supersymmetric Gauge Theories, Matrix Models and Geometric Transitions

Current Algebra Constraints on Supersymmetric Quantum Field Theories

Instantons and Donaldson invariants

Topological String Theory

Moduli of heterotic G2 compactifications

BPS Dyons, Wall Crossing and Borcherds Algebra

NUMBER THEORY IN STRING THEORY: SKEW, MOCK, FALSE, AND QUANTUM

arxiv: v2 [hep-th] 11 Oct 2009

Dualities and 5-Brane Webs for 5d rank 2 SCFTs

Non-Supersymmetric Seiberg duality Beyond the Planar Limit

Knots and Mirror Symmetry. Mina Aganagic UC Berkeley

4d N=2 as 6d N=(2,0) compactified on C

Maximally Supersymmetric Solutions in Supergravity

BPS non-local operators in AdS/CFT correspondence. Satoshi Yamaguchi (Seoul National University) E. Koh, SY, arxiv: to appear in JHEP

Topological reduction of supersymmetric gauge theories and S-duality

Hilbert Series and Its Applications to SUSY Gauge Theories

Topological Strings and Donaldson-Thomas invariants

Calabi-Yau Fourfolds with non-trivial Three-Form Cohomology

Algebraic structure of the IR limit of massive d=2 N=(2,2) theories. collaboration with Davide Gaiotto & Edward Witten

Refined Chern-Simons Theory, Topological Strings and Knot Homology

A Localization Computation in Confining Phase

arxiv: v1 [hep-th] 4 Oct 2010 Walter Van Herck

Four Lectures on Web Formalism and Categorical Wall-Crossing. collaboration with Davide Gaiotto & Edward Witten

F-theory and the classification of elliptic Calabi-Yau manifolds

BPS states in Matrix Strings

String theory effects on 5D black strings

Dynamics of Multiple Kaluza-Klein Monopoles in M- and String Theory

arxiv: v1 [hep-th] 23 Oct 2008

Functional determinants, Index theorems, and Exact quantum black hole entropy

Predictions from F-theory GUTs. (High vs. low-scale SUSY; proton decay)

Exact Solutions of 2d Supersymmetric gauge theories

String Theory Compactifications with Background Fluxes

Deconstructing the BPS sector of (2,0) Theories

Wall Crossing and Quivers

Framed BPS States In Two And Four Dimensions. Gregory Moore. String Math, Paris, June 27, 2016

Microstates of AdS black holes and supersymmetric localization

Three-Charge Black Holes and ¼ BPS States in Little String Theory

Theory III: String Theory. presented by Dieter Lüst, MPI and LMU-München

A Supergravity Dual for 4d SCFT s Universal Sector

Heterotic Geometry and Fluxes

* +, ...! Einstein. [1] Calabi-Yau [2] Calabi-Yau. :;æåø!! :; õ ø!!

Branes in Flux Backgrounds and Dualities

Disk Instantons, Mirror Symmetry and the Duality Web

Chern-Simons Theory and Its Applications. The 10 th Summer Institute for Theoretical Physics Ki-Myeong Lee

Rigid Holography and 6d N=(2,0) Theories on AdS 5 xs 1

Possible Advanced Topics Course

Phenomenological Aspects of LARGE Volume Models

DEFECTS IN COHOMOLOGICAL GAUGE THEORY AND DONALDSON- THOMAS INVARIANTS

Direct generation of a Majorana mass for the Neutron from exotic instantons!

Amoebas and Instantons

Chern-Simons Theory & Topological Strings

Disk Instantons, Mirror Symmetry and the Duality Web

New Toric Swiss Cheese Solutions

Spectral networks at marginal stability, BPS quivers, and a new construction of wall-crossing invariants

Transcription:

Affine SU(N) algebra from wall-crossings Takahiro Nishinaka ( KEK ) arxiv: 1107.4762 : T. N. and Satoshi Yamaguchi 12 Aug. 2011

Counting BPS D-branes on CY3 Microstates of black holes in R 4 Instanton counting on D-branes Topological string Quiver gauge theory, Brane tilings Wall-crossing phenomena

Counting BPS D-branes on CY3 Microstates of black holes in R 4 Instanton counting on D-branes Topological string Quiver gauge theory, Brane tilings Wall-crossing phenomena

D4-D2-D0 on CY3 D4-D2-D0 bound states on CY3 # D-brane bound states? 6-dim ( Calabi-Yau ) The degeneracy of BPS D-branes depends on the moduli parameters = D2/D0 branes on a single D4 sizes and B-fields of compact cycles 4-dim ( R 4 ) BPS particle Wall-crossing phenomena N =2 supersymmetry

D4-D2-D0 on CY3 Large radii limit D0-brane D2-brane instanton on D4 magnetic flux on D4 Chern-Simons interaction on D4 D4 D0-charge = # instantons C (1) F F Q 0 = 1 F F, 8π 2 D4 D2-charge = # magnetic flux C (3) F Q 2 = 1 F k, 2π k : unit volume form on 2-cycle

ALE instantons If a D4-brane is wrapped on ALE space... A N 1 -ALE space: minimal resolution of C 2 /Z N (z 1,z 2 ) blowup (0, 0) 1 2 3 N 1 (z 1,z 2 ) (ωz 1, ωz 2 ) where ω = e 2πi/N The instanton partition function on a D4-brane wrapping A N 1 ALE space = character of affine SU(N) algebra [Nakajima] [Vafa-Witten]

ALE instantons Affine SU(N) character q Q : Boltzmann weight of D0 : Boltzmann weight of D2 χ csu(n) 1 r = 1 η(q) N 1 n 1,,n N 1 Z q P N 1 i=1 n2 i P N 2 i=1 n in i+1 +n 1 r+ r2 2 N 1 N N 1 j=1 n Q j + N i j N r ex.) affine SU(2) χ csu(2) 1 r = 1 η(q) n= q n2 +nr+ r2 4 Q n+ r 2

What in this talk? Relation between ALE instantons and D4-D2-D0 wall-crossings

ALE C A N 1 -ALE C D A N 1 -ALE space (D) β 1 β 2 β N 1 1 2 N 1 N A single D4-brane wrapped on D moduli D2-branes wrapped on β 1 β N 1 : N 1 blowup two-cycles D0-branes localized in CY3 = B-fields and radii of β 1 β N 1

Outline of the rest of this talk 1. Wall-crossings in d=4, N=2 SUSY theory 2. Apply it to our case. 3. Summary

Wall-crossings in d=4, N=2 SUSY theory

Wall-crossing of BPS states BPS index The trace is taken over all one-particle states with charge. Γ Ω(Γ; z) := 1 2 Tr Γ[( 1) 2J (2J) 2 ] This index is piecewise constant in the moduli space of vacua, but not globally constant. z ( : vacuum moduli parameters ) = # bosonic BPS multiplets # fermionic BPS multiplets Wall-crossing phenomena moduli space z discrete change Ω(Γ; z 1 ) Ω(Γ; z 2 ) Some decay BPS BPS BPS Γ Γ 1 + Γ 2 occurs. wall of marginal stability

Wall-crossing of BPS states So the moduli space is divided into chambers by the walls of marginal stability. z jump jump jump jump jump Ω(Γ,z 2 ) Ω(Γ,z 3 ) Ω(Γ,z 4 ) Ω(Γ,z 5 ) Ω(Γ,z 1 ) Ω(Γ,z 6 ) wall wall wall wall wall The BPS index is exactly constant in each chamber.

Wall-crossing of BPS states Semi-primitive wall-crossing formula Γ : primitive There is no positive integer that can divide out Γ. ( except for one ) Suppose the wall-crossing is associated to a BPS decay channel Γ Γ 1 + nγ 2, n N where Γ 1, Γ 2 are primitive. Then the BPS partition function behaves as Z Z (1 + ( 1) jγ2,γ e jγ 2 ) ±jγ 2,ΓΩ(jΓ 2 ) [Denef-Moore] j=1 [Kontsevich-Soibelman] through the wall-crossing. Here we defined Z = Γ Ω(Γ; z)e Γ, e Γ 1 e Γ 2 = e Γ 1+Γ 2 partition function Boltzmann weight

Apply it to our case!

ALE C (D) Wall-crossing? β 1 β 2 β N 1 For Γ = D4 + k i D2 (i) + ld0, possible decays are 1 2 N 1 N Γ Γ 1 + Γ 2 Γ 2 = m i D2 (i) + nd0 (Γ 1 = Γ Γ 2 ) (m i = ±1) Γ 2, Γ =0 There is no wall-crossing!! cf) wall-crossing formula Z Z (1 + ( 1) jγ2,γ e jγ 2 ) ±jγ 2,ΓΩ(jΓ 2 ) j=1

Add dummy cycle Dummy cycle and flops We add a dummy two-cycle. In the large radius limit of β 0, we should recover the original CY3. β 0 β 1 β 2 (D) β N 1 Now, we have a non-vanishing intersection product: β 0, D =1 1 2 N 1 N Non-trivial wall-crossings!

Add dummy cycle ex.) -ALE A 1 C D4 is wrapped on A 1 -ALE space β 1 1 2

Add dummy cycle Im z 1 0 Im z 0 ex.) -ALE A 1 C (0 < Im z 0 ) moduli parameters β 0 z 0 β 1 z 1 z 0,z 1 C 1 2 Im z i area of i-th cycle

Add dummy cycle Im z 1 0 Im z 0 ex.) -ALE A 1 C (0 < Im z 0 ) moduli parameters z 0,z 1 z 0 z 1 Im zi area of i-th cycle C 1 2

Add dummy cycle Im z 1 0 Im z 0 ex.) -ALE A 1 C 1 2 moduli parameters z 0,z 1 C Im z i area of i-th cycle

Add dummy cycle Im z 1 0 Im z 0 ex.) -ALE A 1 C moduli parameters D4 is wrapped on O( 1) P 1 z 0 z 1 2 Im z i z 0,z 1 C area of i-th cycle 1 z 0 = z 0, z 1 = z 0 + z 1

Add dummy cycle Im z 1 0 Im z 0 ex.) -ALE A 1 C moduli parameters D4 is wrapped on O( 1) P 1 z 0 z 1 2 z 0,z 1 C Im z i area of i-th cycle 1 z 0 = z 0, z 1 = z 0 + z 1

Add dummy cycle Im z 1 0 Im z 0 ex.) -ALE A 1 C moduli parameters z 0,z 1 C 2 Im z i area of i-th cycle 1

Add dummy cycle Im z 1 0 Im z 0 ex.) -ALE A 1 C D4 is wrapped on C 2 z 0 z 1 1 2 moduli parameters Im z i z 0,z 1 C area of i-th cycle z 0 = z 1, z 1 = z 0 z 1

Im z 0 =+ (large radii) Z + z 0 Walls of MS Γ Γ 1 + Γ 2 Γ = D4 + l i D2 (i) + kd0 0 W m0,m 1 n : Γ 2 = i=0,1 m i D2 (i) + nd0 Im z 0 = (large radii) Z

Im z 0 =+ (large radii) Z + W 1, 1 0 W 1, 1 1 W 1, 1 2 W 1,0 1 1 0 1 W +1,0 2 W 1,0 0 W +1,0 1 W +1,0 0 W 1,0 2 z 0 W +1,0 1 W m0,m 1 n : Γ 2 = Walls of MS Γ Γ 1 + Γ 2 Γ = D4 + l i D2 (i) + kd0 i=0,1 m i D2 (i) + nd0 W +1,+1 1 W +1,+1 0 W +1,+1 1 Im z 0 = (large radii) Z

Results of wall-crossings Z + Z β 0 β 1 Z = n,m 0,m 1 Ω(D4 + m i D2 (i) + nd0)q n Q 0 m 0 Q 1 m 1 Result of wall-crossing formula Z + = Z n=0 1 n=1 1 q n (1 q n Q 0 )(1 q n Q 0 Q 1 ) m=1 (1 q n Q 0 1 )(1 q m Q 1 0 Q 1 1 )

Results of wall-crossings Z + Z Z = β 1 n,m 0,m 1 Ω(D4 + m i D2 (i) + nd0)q n Q 0 m 0 Q 1 m 1 Result of wall-crossing formula Z + = Z n=0 1 n=1 1 q n (1 q n Q 0 )(1 q n Q 0 Q 1 ) m=1 (1 q n Q 0 1 )(1 q m Q 1 0 Q 1 1 ) omit β 0 Z + Q0 independent = 1 1 q n n=1 3 m= q m2 Q 1 m = q1/8 η(q) 2 χcsu(2) 1 0 (q, Q 1 )

We can generalize it to A N 1 ALE space!!

Generalization Multiple flops We now have multiplet flop transitions. 1 2 N 1 N

Generalization Multiple flops We now have multiplet flop transitions. 1 2 N 1 N

Generalization Multiple flops We now have multiplet flop transitions. 1 2 N 1 N

Generalization Multiple flops We now have multiplet flop transitions. 1 2 N 1 N

Generalization Multiple flops We now have multiplet flop transitions. 1 2 N 1 N

Generalization Multiple flops We now have multiplet flop transitions. 1 2 N 1 N

Generalization Multiple flops We now have multiplet flop transitions. N 1 N 1 2

Generalization Multiple flops We now have multiplet flop transitions. 1 2 N 1 N Instantons on C 2

Generalization Affine SU(N) character from wall-crossings wall-crossings Q 0 Z (q, Q) Z + (q, Q) 1 = 1 q n n=1 From the wall-crossing formula, we find N 1 Z + (q, Q) = Z (q, Q) (1 q n Q 0 Q k ) k=0 n=0 m=1 (1 q m Q 1 0 Q 1 k ) = =1 1 1 q N+1 n 0,,n N 1 Z q P N 1 i=0 n i (n i 1) 2 N 1 k=0 ( Q 0 Q k ) n k

Generalization Z + (q, Q) = =1 1 1 q N+1 n 0,,n N 1 Z q P N 1 i=0 n i (n i 1) 2 N 1 k=0 ( Q 0 Q k ) n k After removing dummy cycle... Z + (q, Q) Q0 independent = n=1 1 1 q n 2 χ csu(n) 1 0 (q, Q) where χ csu(n) 1 0 (q, Q) = 1 η(q) N 1 n 1,,n N 1 Z q P N 1 N 1 i=1 n2 i P N 2 i=1 n in i+1 j=1 Q j n j Affine SU(N) character is correctly reproduced by wall-crossings!

Summary We study the relation between ALE instantons and wall-crossings of D4- D2-D0 on CY3. By adding a dummy cycle, the wall-crossings interpolate the instanton partition functions on ALE space and C 2. Our analysis relies on the wall-crossing formula of d=4, N=2 theories. Future work r χ csu(n) 1 The parameter of is left for future work. r Generalizations to other instanton partition functions on Vafa-Witten theories are to be studied.

That s all for my presentation. Thank you very much.