Math 203A - Solution Set 1

Similar documents
Math 203A - Solution Set 1

Math 203A - Solution Set 1

Math 418 Algebraic Geometry Notes

LECTURE Affine Space & the Zariski Topology. It is easy to check that Z(S)=Z((S)) with (S) denoting the ideal generated by elements of S.

Reid 5.2. Describe the irreducible components of V (J) for J = (y 2 x 4, x 2 2x 3 x 2 y + 2xy + y 2 y) in k[x, y, z]. Here k is algebraically closed.

Math 203A - Solution Set 3

ALGEBRAIC GEOMETRY COURSE NOTES, LECTURE 2: HILBERT S NULLSTELLENSATZ.

Course 311: Michaelmas Term 2005 Part III: Topics in Commutative Algebra

ALGEBRAIC GROUPS. Disclaimer: There are millions of errors in these notes!

π X : X Y X and π Y : X Y Y

MAT4210 Algebraic geometry I: Notes 2

PROBLEMS, MATH 214A. Affine and quasi-affine varieties

Institutionen för matematik, KTH.

Math 145. Codimension

CHEVALLEY S THEOREM AND COMPLETE VARIETIES

Algebraic geometry of the ring of continuous functions

Basic facts and definitions

THE ALGEBRAIC GEOMETRY DICTIONARY FOR BEGINNERS. Contents

CHAPTER 1. AFFINE ALGEBRAIC VARIETIES

Summer Algebraic Geometry Seminar

Pure Math 764, Winter 2014

Algebraic Varieties. Brian Osserman

Algebraic Geometry. Instructor: Stephen Diaz & Typist: Caleb McWhorter. Spring 2015

Exploring the Exotic Setting for Algebraic Geometry

A ne Algebraic Varieties Undergraduate Seminars: Toric Varieties

Algebraic Geometry. Andreas Gathmann. Notes for a class. taught at the University of Kaiserslautern 2002/2003

MATH 631: ALGEBRAIC GEOMETRY: HOMEWORK 1 SOLUTIONS

MATH 8253 ALGEBRAIC GEOMETRY WEEK 12

Projective Varieties. Chapter Projective Space and Algebraic Sets

MATH32062 Notes. 1 Affine algebraic varieties. 1.1 Definition of affine algebraic varieties

ALGEBRAIC GEOMETRY (NMAG401) Contents. 2. Polynomial and rational maps 9 3. Hilbert s Nullstellensatz and consequences 23 References 30

D-MATH Algebraic Geometry FS 2018 Prof. Emmanuel Kowalski. Solutions Sheet 1. Classical Varieties

(dim Z j dim Z j 1 ) 1 j i

Math General Topology Fall 2012 Homework 6 Solutions

ALGEBRAIC GEOMETRY COURSE NOTES, LECTURE 4: MORE ABOUT VARIETIES AND REGULAR FUNCTIONS.

10. Noether Normalization and Hilbert s Nullstellensatz

Algebraic varieties and schemes over any scheme. Non singular varieties

INTRODUCTION TO ALGEBRAIC GEOMETRY. Throughout these notes all rings will be commutative with identity. k will be an algebraically

COMPLEX VARIETIES AND THE ANALYTIC TOPOLOGY

B 1 = {B(x, r) x = (x 1, x 2 ) H, 0 < r < x 2 }. (a) Show that B = B 1 B 2 is a basis for a topology on X.

Chapter 1. Affine algebraic geometry. 1.1 The Zariski topology on A n

10. Smooth Varieties. 82 Andreas Gathmann

Yuriy Drozd. Intriduction to Algebraic Geometry. Kaiserslautern 1998/99

Algebraic Varieties. Notes by Mateusz Micha lek for the lecture on April 17, 2018, in the IMPRS Ringvorlesung Introduction to Nonlinear Algebra

Rings and groups. Ya. Sysak

Maths 212: Homework Solutions

This is a closed subset of X Y, by Proposition 6.5(b), since it is equal to the inverse image of the diagonal under the regular map:

NAME: Mathematics 205A, Fall 2008, Final Examination. Answer Key

Topology Exercise Sheet 2 Prof. Dr. Alessandro Sisto Due to March 7

Math 214A. 1 Affine Varieties. Yuyu Zhu. August 31, Closed Sets. These notes are based on lectures given by Prof. Merkurjev in Winter 2015.

Math 203A - Solution Set 4

The Topology and Algebraic Functions on Affine Algebraic Sets Over an Arbitrary Field

Algebraic Geometry. Andreas Gathmann. Class Notes TU Kaiserslautern 2014

Algebraic Varieties. Chapter Algebraic Varieties

Problems - Section 17-2, 4, 6c, 9, 10, 13, 14; Section 18-1, 3, 4, 6, 8, 10; Section 19-1, 3, 5, 7, 8, 9;

2. Prime and Maximal Ideals

Math 6140 Notes. Spring Codimension One Phenomena. Definition: Examples: Properties:

CRing Project, Chapter 5

8. Prime Factorization and Primary Decompositions

2. Intersection Multiplicities

Lecture 2. (1) Every P L A (M) has a maximal element, (2) Every ascending chain of submodules stabilizes (ACC).

Reading Mathematical Expressions & Arithmetic Operations Expression Reads Note

ALGEBRAIC GEOMETRY HOMEWORK 3

z -FILTERS AND RELATED IDEALS IN C(X) Communicated by B. Davvaz

Math 40510, Algebraic Geometry

Real Analysis Math 131AH Rudin, Chapter #1. Dominique Abdi

4.4 Noetherian Rings

Topological properties

THE CLOSED-POINT ZARISKI TOPOLOGY FOR IRREDUCIBLE REPRESENTATIONS. K. R. Goodearl and E. S. Letzter

Introduction to Algebraic Geometry. Jilong Tong

Local properties of plane algebraic curves

4. Images of Varieties Given a morphism f : X Y of quasi-projective varieties, a basic question might be to ask what is the image of a closed subset

3 Hausdorff and Connected Spaces

Algebraic Geometry. 1 4 April David Philipson. 1.1 Basic Definitions. 1.2 Noetherian Rings

A course in. Algebraic Geometry. Taught by Prof. Xinwen Zhu. Fall 2011

Math 203A, Solution Set 6.

On z -ideals in C(X) F. A z a r p a n a h, O. A. S. K a r a m z a d e h and A. R e z a i A l i a b a d (Ahvaz)

MATH 221 NOTES BRENT HO. Date: January 3, 2009.

Final Exam Solutions June 10, 2004

Cartan s Criteria. Math 649, Dan Barbasch. February 26

Dimension Theory. Mathematics 683, Fall 2013

CHAPTER 7. Connectedness

V (f) :={[x] 2 P n ( ) f(x) =0}. If (x) ( x) thenf( x) =

FILTERED RINGS AND MODULES. GRADINGS AND COMPLETIONS.

MATH 326: RINGS AND MODULES STEFAN GILLE

12 Hilbert polynomials

MAT 570 REAL ANALYSIS LECTURE NOTES. Contents. 1. Sets Functions Countability Axiom of choice Equivalence relations 9

SOLUTIONS TO EXERCISES FOR. MATHEMATICS 205A Part 1. I. Foundational material

MAS 6396 Algebraic Curves Spring Semester 2016 Notes based on Algebraic Curves by Fulton. Timothy J. Ford April 4, 2016

14. Rational maps It is often the case that we are given a variety X and a morphism defined on an open subset U of X. As open sets in the Zariski

Krull Dimension and Going-Down in Fixed Rings

Some Basic Logic. Henry Liu, 25 October 2010

Commutative Algebra and Algebraic Geometry. Robert Friedman

Homework 5. Solutions

On Invariants of Complex Filiform Leibniz Algebras ABSTRACT INTRODUCTION

Foundations of Mathematics MATH 220 FALL 2017 Lecture Notes

MATH 54 - TOPOLOGY SUMMER 2015 FINAL EXAMINATION. Problem 1

D-MATH Algebra I HS18 Prof. Rahul Pandharipande. Solution 1. Arithmetic, Zorn s Lemma.

4.2 Chain Conditions

11. Dimension. 96 Andreas Gathmann

Transcription:

Math 203A - Solution Set 1 Problem 1. Show that the Zariski topology on A 2 is not the product of the Zariski topologies on A 1 A 1. Answer: Clearly, the diagonal Z = {(x, y) : x y = 0} A 2 is closed in the Zariski topology of A 2. We claim this Z is not closed in the product topology of A 1 A 1. Assume otherwise. Then, the complement A 2 \ Z is open in the product topology. Therefore, there are nonempty open sets U, V in A 1 such that U V A 2 \ Z. Now, the sets U and V have finite complements: We obtain a contradiction picking In this case, we clearly have U = A 1 \ {p 1,..., p n }, V = A 1 \ {q 1,..., q m }. z A 1 \ {p 1,..., p n, q 1,..., q m }. (z, z) U V, while (z, z) A 2 \ Z. Problem 2. A topological space X is said to be Noetherian if it satisfies the ascending chain condition on open sets, i.e. any ascending chain of open sets eventually stabilizes. (i) Check that any subset Y X of a Noetherian space is also Noetherian in the subspace topology. (ii) Show that a Noetherian space is quasi-compact i.e., show that any open cover of a Noetherian space has a finite subcover. (iii) Check that a Noetherian space which is also Hausdorff must be a finite set of points. (iv) Show that A n is Noetherian in the Zariski topology. Conclude that any affine algebraic set is Noetherian. Answer: (i) If {U i } i 1 is an ascending chain of open subsets of Y, there exists {V i } i 1 open subsets of X such that V i Y = U i for all i. Note that {V i } i 1 may not be ascending, but let W i = i k=1 V k. Then {W i } i 1 is clearly ascending and W i Y = ( i k=1 V k) Y = i k=1 (V k Y ) = i k=1 U k = U i. Therefore {W i } i 1 is an ascending chain of open subsets of X. Since X is Noetherian, there exists n 0 such that W n = W n0 for all n n 0. Therefore, U n = W n Y = W n0 Y = U n0 for all n n 0, i.e. {U i } i 1 eventually stabilizes. This implies Y is Noetherian. 1

2 (ii) Order the open sets in X by inclusion. It is clear that any collection U of open sets in X must have a maximal element. Indeed, if this was false, we could inductively produce a strictly increasing chain of open sets, violating the fact that X is Noetherian. Now, consider an open cover X = α U α, and define the collection U consisting in finite union of the open sets U α. The collection U must have a maximal element U α1... U αn. We claim Indeed, otherwise we could find X = U α1... U αn. x X \ (U α1... U αn ). Now, x U β for some index β. Then, U β U α1... U αn belongs to the collection U, and strictly contains the maximal element of U, namely U α1... U αn. This is absurd, thus proving our claim. (iii) Since X is Noetherian and Hausdorff, every subset Y X is also Noetherian and Hausdorff. By part (ii), Y is quasi-compact and Hausdorff, hence compact. In particular, X is compact. Since Y is compact, Y is closed. Since Y was arbitrary, X must have the discrete topology. In particular, X can be covered by point-sets {x}, for x X. Since X is compact, X must be finite. (iv) It suffices to show that A n satisfies the ascending chain condition on open sets. If {U i } be an ascending chain of open sets, let Y i be the complement of U i in A n. Then {Y i } is a descending chain of closed sets. Since taking ideal reverses inclusions, we conclude that I(Y i ) is an ascending chain of ideals in k[x 1,..., X n ]. This chain should eventually stabilize, so I(Y n ) = I(Y n+1 ) =..., for n large enough. Applying Z to these equalities, we obtain Y n = Y n+1 =.... This clearly implies that the chain {U i } stabilizes. Problem 3. Let A 3 be the 3-dimensional affine space with coordinates x, y, z. Find the ideals of the following algebraic sets: (i) The union of the three coordinate axes. (ii) The union of the (x, y)-plane with the z-axis. Answer: (i) The x-axis has the ideal (y, z), the y-axis has the ideal (x, z), and the z-axis has the ideal (x, y). Thus the union of the three axes has ideal (y, z) (x, z) (x, y) = (xy, yz, zx). (ii) The ideal of the (x, y)-plane is (z). The ideal of the z-axis is (x, y). By Problem 6, the ideal we re looking for is (z) (x, y) = (xz, yz).

Problem 4. Let f : A n A m be a polynomial map i.e. f(p) = (f 1 (p),..., f m (p)) for p A n, where f 1,..., f m are polynomials in n variables. Are the following true or false: (1) The image f(x) A m of an affine algebraic set X A n is an affine algebraic set. (2) The inverse image f 1 (X) A n of an affine algebraic set X A m is an affine algebraic set. (3) If X A n is an affine algebraic set, then the graph Γ = {(x, f(x)) : x X} A n+m is an affine algebraic set. Answer: (i) False. Consider the following counterexample which works over infinite ground fields. Consider the hyperbola Clearly, X is an algebraic set. Let X = {(x, y) : xy 1 = 0} A 2. f : A 2 A 1, f(x, y) = x be the projection onto the first axis. The image of f in A 1 is {x : x 0}. This is not an algebraic set because the only algebraic subsets of A 1 are empty set, finitely many points or A 1. (ii) True. Suppose X = Z(F 1,..., F s ) A m, where F 1,..., F s are polynomials in m variables. Define G i = F i (f 1 (X 1,..., X n ),..., f m (X 1,..., X n )), 1 i s. These are clearly polynomials in n variables. In short, we set G i = F i f, 1 i s We claim f 1 (X) = Z(G 1,..., G s ) A n, which clearly exihibits f 1 (X) as an algebraic set. This claim follows from the remarks p f 1 (X) f(p) Z(F 1,..., F s ) F 1 (f(p)) = F 2 (f(p)) =... = F s (f(p)) = 0 G 1 (p) =... = G s (p) p Z(G 1,..., G s ). (iii) True. Assume that X is defined by the vanishing of the polynomials F 1,..., F s in the variables X 1,..., X n. Set G 1 = Y 1 f 1 (X 1,..., X n ),..., G m = Y m f m (X 1,..., X n ). We regard the F and G s as polynomials in the n+m variables X 1,..., X n, Y 1,..., Y m. We claim that the graph Γ is defined by the equations Indeed, Γ = Z(F 1,..., F s, G 1,..., G s ) A n+m. (x, y) Z(F 1,..., F s, G 1,..., G s ) F 1 (x) =... = F s (x) = 0, y 1 = f 1 (x),..., y m = f m (x) x X, y = f(x) (x, y) Γ. 3

4 Problem 5. Let X 1, X 2 be affine algebraic sets in A n. Show that (i) I(X 1 X 2 ) = I(X 1 ) I(X 2 ), (ii) I(X 1 X 2 ) = I(X 1 ) + I(X 2 ). Show by an example that taking radicals in (ii) is necessary. Answer: (i) If f I(X 1 X 2 ), f vanishes on X 1 X 2. In particular, f vanishes on X 1. Thus, f I(X 1 ). Similarly, we have f I(X 2 ). Then f I(X 1 ) I(X 2 ). We proved that I(X 1 X 2 ) I(X 1 ) I(X 2 ). On the other hand, if f I(X 1 ) I(X 2 ), then f I(X 1 ) and f I(X 2 ). Therefore, f vanishes on both X 1 and X 2, and then also on X 1 X 2. This implies that f I(X 1 X 2 ). Hence I(X 1 ) I(X 2 ) I(X 1 X 2 ). (ii) We assume the base field is algebraically closed. Because X 1, X 2 be affine algebraic sets, we can assume X 1 = Z(a), X 2 = Z(b). Furthermore, we may assume a and b are radical. Otherwise, if for instance a is not radical, we can replace a by a. This doesn t change the algebraic sets in question as X 1 = Z(a) = Z( a). By Hilbert s Nullstellensatz, I(X1 ) + I(X 2 ) = a I(Z(a)) + I(Z(b)) = + b = a + b and I(X 1 X 2 ) = I(Z(a) Z(b)) = I(Z(a + b)) = a + b. Therefore, I(X 1 X 2 ) = I(X 1 ) + I(X 2 ). Note: In the above, we made use of the equality Z(a) Z(b) = Z(a + b). This can be argued as follows. If x Z(a) Z(b), then f(x) = g(x) = 0 for all f a and g b. Thus x Z(a + b) proving that Z(a) Z(b) Z(a + b). Conversely, if x Z(a + b), then (f + g)(x) = 0 for every f a and g b. In particular, picking g = 0, we get f(x) = 0 for every f a, so x Z(a). Similarly x Z(b). Therefore Z(a + b) Z(a) Z(b). Counterexample: Consider the following two algebraic subsets of A 2 : X 1 = (y x 2 = 0), X 2 = (y = 0). Graphically, these can be represented by a parabola and a line tangent to it. It is clear that X 1 X 2 = {0}, so I(X 1 X 2 ) = (x, y).

On the other hand, Therefore I(X 1 ) + I(X 2 ) = (y x 2 ) + (y) = (y x 2, y) = (y, x 2 ). I(X 1 X 2 ) I(X 1 ) + I(X 2 ). Problem 6. Find the irreducible components of the affine algebraic set x 2 yz = xz x = 0 in A 3. What is the dimension of this algebraic set? Answer: Let X be the affine algebraic set given by the two equations above. The second equation can be written as Case 1. If x = 0, the first equation becomes xz x = x(z 1) = 0 = x = 0 or z = 1. x 2 yz = yz = 0 = y = 0 or z = 0. Therefore, there are two possibilities: x = y = 0 or x = z = 0. These correspond to two algebraic sets X 1 = the z-axis and X 2 = the y-axis, defined by the equations Case 2. If z = 1, the first equation becomes X 1 = Z(y, z) and X 2 = Z(x, z). x 2 yz = x 2 y = 0. This zero set is a parabola which can be rewritten as According to discussion above, X 3 = Z(z 1, x 2 y). X = X 1 X 2 X 3. We claim that the X i s are irreducible. This can be seen at once since all these sets are homeomorphic to A 1. This shows X 1, X 2, X 3 are irreducible components of the affine algebraic set X. These three sets are homeomorphic to A 1, hence their dimension is 1. Alternatively one may argue as follows. X 1 is irreducible if and only if (y, z) is a prime ideal in C[x, y, z], which is equivalent to C[x, y, z]/(y, z) = C[x] is an integral domain. By the same argument, X 2 is also irreducible. Finally, X 3 = Z(z 1, x 2 y) is irreducible. Indeed (z 1, x 2 y) is a prime ideal in C[x, y, z]. This is the case since is an integral domain. C[x, y, z]/(z 1, x 2 y) = C[x, y]/(x 2 y) = C[x], Problem 7. Find the irreducible components of the affine algebraic set xz y 2 = z 3 x 5 = 0 in A 3. 5

6 Answer: If x = 0, then the two equations imply that y = z = 0. Similarly, if y = 0, then x = z = 0. Let us assume that x 0, y 0. Write the first equation as y x = z := t. y Thus, The second equation becomes This implies y = tx, z = t 2 x. z 3 = x 5 t 6 x 3 = x 5 x 2 = t 6 x = ±t 3. y = ±t 4, z = ±t 5. Thus (x, y, z) = (t 3, t 4, t 5 ) or ( t 3, t 4, t 5 ) for some t C. Letting we obtain X 1 = {(t 3, t 4, t 5 ) t C } and X 2 = {( t 3, t 4, t 5 ) t C } X = X 1 X 2. We claim that X 1, X 2 are the irreducible components of X. First, there are polynomial maps f 1 : A 1 A 3 t (t 3, t 4, t 5 ) and f 2 : A 1 A 3 t ( t 3, t 4, t 5 ). Since X 1 = f 1 (A 1 ), X 2 = f 2 (A 1 ) and A 1 is irreducible, the images X 1 and X 2 are irreducible. It remains to explain that X 1 and X 2 are algebraic sets. We claim X 1 = Z(y 3 x 4, z 3 x 5, z 4 y 5 ), X 2 = Z(y 3 + x 4, z 3 x 5, z 4 + y 5 ). Let us check this claim for X 1 only. This follows using the same strategy as before. Indeed, if x = 0 then y = z = 0, so we may assume x 0. Let t = y x. From the first equation we have ( y ) 3 x = = t 3 = y = t 4. x Dividing the last two equations we get z = y5 x 5 = t5 = (x, y, z) = (t 3, t 4, t 5 ), as claimed. The verification for X 2 is entirely similar. Problem 8. Let X be the image of the map A 1 A 3, t (t, t 3, t 5 ). Show that I(X) cannot be generated by fewer than 3 elements.

Answer: Let I be the ideal of the set (t 3, t 4, t 5 ) in A 3, as t A 1. Observe that (xz y 2, yz x 3, x 2 y z 2 ) I. We assume that I can be generated by at most two elements f and g. Since I contains no polynomials of degree 0 or 1, it follows that f and g contain only quadratic terms or higher. Writing I (2) for the quadratic terms of the polynomials in I, it follows that f (2) and g (2) generate I (2). However, observe that the part I (2) is a k-vector space of dimension at least 3 since it contains (yz, y 2, z 2 ). hence I (2) cannot be generated by 2 polynomials. This contradication shows that I needs at least 3 generators. 7