High-throughput screening of small-molecule adsorption in MOF. Supplementary Materials

Similar documents
Supporting information

Heterogeneous catalysis: the fundamentals Kinetics

Supplementary Information

Supplementary Figures

Bonding/Lewis Dots Lecture Page 1 of 12 Date. Bonding. What is Coulomb's Law? Energy Profile: Covalent Bonds. Electronegativity and Linus Pauling

Chapter 10: Modern Atomic Theory and the Periodic Table. How does atomic structure relate to the periodic table? 10.1 Electromagnetic Radiation

Electronic supplementary information

CHEM 130 Exp. 8: Molecular Models

CHEM 172 EXAMINATION 1. January 15, 2009

Solutions and Ions. Pure Substances

Lewis dot structures for molecules

The Periodic Table of Elements

Earth Materials I Crystal Structures

2 (27) 3 (26) 4 (21) 5 (18) 6 (8) Total (200) Periodic Table

Three hour lab. Chem : Sept Experiment 2 Session 2. Preparation Pre-lab prep and reading for E2, Parts 3-5

ORBITAL DIAGRAM - A graphical representation of the quantum number "map" of electrons around an atom.

All chemical bonding is based on the following relationships of electrostatics: 2. Each period on the periodic table

Three hour lab. Chem : Feb Experiment 2 Session 2. Experiment 2 Session 2 Electrons and Solution Color

Nucleus. Electron Cloud

1 Electrons and Chemical Bonding

Course theme. Three hours of lab Complete E1 (Parts 1, 2, 3, 4, and 5B) Prepare discussion presentation Prepare team report.

Three hours of lab Complete E1 (Parts 1, 2, 3, 4, and 5B) Prepare discussion presentation Prepare team report. Course theme

M09/4/CHEMI/SPM/ENG/TZ1/XX+ CHEMISTRY. Monday 18 May 2009 (afternoon) 45 minutes INSTRUCTIONS TO CANDIDATES

Name Date Class STUDY GUIDE FOR CONTENT MASTERY. covalent bond molecule sigma bond exothermic pi bond

1 of 5 14/10/ :21

MgO-decorated carbon nanotubes for CO 2 adsorption: first principles calculations

NAME: FIRST EXAMINATION

610B Final Exam Cover Page

PART 1 Introduction to Theory of Solids

Guide to the Extended Step-Pyramid Periodic Table


Chemistry 431 Practice Final Exam Fall Hours

M11/4/CHEMI/SPM/ENG/TZ2/XX CHEMISTRY STANDARD LEVEL PAPER 1. Monday 9 May 2011 (afternoon) 45 minutes INSTRUCTIONS TO CANDIDATES

CHEM- 457: Inorganic Chemistry

- Atomic line spectra are UNIQUE to each element. They're like atomic "fingerprints".

... but using electron configurations to describe how aluminum bromide forms is a bit cumbersome! Can we simplify the picture a bit?

The Low Temperature Conversion of Methane to Methanol on CeO x /Cu 2 O catalysts: Water Controlled Activation of the C H Bond

Chapter 20 d-metal complexes: electronic structures and properties

E4 Acids, Bases, and Salts

How many grams of sodium metal is required to completely react with 2545 grams of chlorine gas?

SUPPLEMENTARY INFORMATION

CLASS TEST GRADE 11. PHYSICAL SCIENCES: CHEMISTRY Test 4: Matter and materials 1

Speed of light c = m/s. x n e a x d x = 1. 2 n+1 a n π a. He Li Ne Na Ar K Ni 58.

CHEM 167 FINAL EXAM MONDAY, MAY 2 9:45 11:45 A.M GILMAN HALL

ph = - log [H3O+] Example: ph 7 = - log [ 1 x 10-7] [H3O+] = mole/liter units ph values are unitless

Marks for each question are as indicated in [] brackets.

A systematic theoretical study on FeO x -supported single-atom catalysts: M 1 /FeO x for CO oxidation

SHAPES OF EXPANDED VALENCE MOLECULES

Binding energy of 2D materials using Quantum Monte Carlo

single-layer transition metal dichalcogenides MC2

8. Relax and do well.

Os/Pt Core-Shell Catalysts Validated by

ORBITAL DIAGRAM - A graphical representation of the quantum number "map" of electrons around an atom.

Ch. 9 NOTES ~ Chemical Bonding NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics.

-"l" also contributes ENERGY. Higher values for "l" mean the electron has higher energy.

CHEM 10113, Quiz 5 October 26, 2011

K. 27 Co. 28 Ni. 29 Cu Rb. 46 Pd. 45 Rh. 47 Ag Cs Ir. 78 Pt.

Reporting Category 1: Matter and Energy

Supporting Information

CHEM 10123/10125, Exam 2

NAME (please print) MIDTERM EXAM FIRST LAST JULY 13, 2011

- When atoms share electrons, the electrons might not be EVENLY shared. Shared electrons may spend more time around one atomic nucleus than the other.

Part III: Theoretical Surface Science Adsorption at Surfaces

M14/4/CHEMI/SPM/ENG/TZ1/XX CHEMISTRY. Monday 19 May 2014 (afternoon) 45 minutes INSTRUCTIONS TO CANDIDATES

INSTRUCTIONS: Exam III. November 10, 1999 Lab Section

Chemistry 2 Exam Roane State Academic Festival. Name (print neatly) School

How many grams of sodium metal is required to completely react with 2545 grams of chlorine gas?

Reporting Category 1: Matter and Energy

- Why are phase labels required? Because phase changes either absorb or release energy. ... what does this mean?

Chemistry 2000 Fall 2017 Final Examination

8. Relax and do well.

Chemistry 31A Autumn 2004 Professors Chidsey & Zare Exam 2 Name:

VIIIA H PREDICTING CHARGE

5 questions, 3 points each, 15 points total possible. 26 Fe Cu Ni Co Pd Ag Ru 101.

(C) Pavel Sedach and Prep101 1

Oxide Formation of Transition Metal Surfaces and Effect on Catalysis

8. Relax and do well.

Chemistry Standard level Paper 1

M10/4/CHEMI/SPM/ENG/TZ2/XX+ CHEMISTRY. Wednesday 12 May 2010 (afternoon) 45 minutes INSTRUCTIONS TO CANDIDATES

8. Relax and do well.

Chem 102H Exam 2 - Spring 2005

PERIODIC TABLE OF THE ELEMENTS

Supplementary Figure 1. HRTEM images of PtNi / Ni-B composite exposed to electron beam. The. scale bars are 5 nm.

1. Following Dalton s Atomic Theory, 2. In 1869 Russian chemist published a method. of organizing the elements. Mendeleev showed that

- Light has properties of WAVES such as DIFFRACTION (it bends around small obstructions).

The Periodic Table. Periodic Properties. Can you explain this graph? Valence Electrons. Valence Electrons. Paramagnetism

CHEM 107 (Spring-2005) Exam 3 (100 pts)

- A CHEMICAL BOND is a strong attractive force between the atoms in a compound. attractive forces between oppositely charged ions

Fall 2011 CHEM Test 4, Form A

Title of file for HTML: Supplementary Information Description: Supplementary Figures, Supplementary Tables and Supplementary References

Atomic Structure & Interatomic Bonding

WRITING AN IONIC FORMULA

materials and their properties

Atoms and The Periodic Table

Example: If a simple ionic compound is made of these two ions, what is its formula? In the final formula, don't write the charges on the ions!

Chemistry Higher level Paper 1

Hydrogenation of Single Walled Carbon Nanotubes

30 Zn(s) 45 Rh. Pd(s) Ag(s) Cd(s) In(s) Sn(s) white. 77 Ir. Pt(s) Au. Hg(l) Tl. 109 Mt. 111 Uuu. 112 Uub. 110 Uun. 65 Tb. 62 Sm. 64 Gd. 63 Eu.

Unit 1 Part 2 Atomic Structure and The Periodic Table Introduction to the Periodic Table UNIT 1 ATOMIC STRUCTURE AND THE PERIODIC TABLE

Last 4 Digits of USC ID:

Transcription:

High-throughput screening of small-molecule adsorption in MF Supplementary Materials Pieremanuele Canepa, Calvin A. Arter, Eliot M. Conwill, Daniel H. Johnson, Brian A. Shoemaker, Karim Z. Soliman, and T. Thonhauser Department of Physics, Wake Forest University, Winston-Salem, NC 27109, USA. (Dated: August 12, 2013)

2 I. MF-74-M LATTICE CNSTANTS AND THER QUANTITIES TABLE I. Computed lattice constants a and c (in Å) and volume V (in Å 3 ). Atomic numbers Z and Bader charges Q M (in units of e) atthemetalsitesm are also reported. Experimental and computational data is reported in parenthesis where available. M Z a c V Q M Be 4 25.655 6.663 3797.877 1.6 Mg 12 26.084 (25.881) a,1 6.863 (6.878) 4043.947 (3990.357) 1.5 Al 13 25.402 6.565 3668.630 2.6 Ca 20 25.454 (26.759) b,2 7.591 (7.682) 4259.190 (4763.703) 1.5 Sc 21 23.675 (24.342) b,2 7.334 (7.247) 3559.960 (3718.993) 1.9 Ti 22 23.669 (26.477) b,2 7.210 (6.927) 3498.429 (4205.462) 1.8 V 23 25.254 (25.933) b,2 7.000 (6.943) 3868.982 (4043.558) 1.6 Cr 24 26.171 (26.329) b,2 6.525 (6.607) 3870.148 (3966.526) 1.5 Mn 25 26.242 (26.230) a,3 7.082 (7.035) 4223.524 (4191.711) 1.4 Fe 26 26.010 (26.098) a,4 6.711 (6.851) 3931.742 (4041.3) 1.3 Co 27 26.078 6.872 4047.173 1.3 Ni 28 25.688 (25.786) a,5 6.188 (6.770) 3536.291 (3898.3) 1.1 Cu 29 26.271 6.138 3668.332 0.8 Zn 30 26.142 (25.932) b,6 6.875 (6.836) 4068.779 (3981.5) 1.2 Sr 38 26.683 6.710 4137.427 1.6 Zr 40 23.455 7.530 3587.630 2.0 Nb 41 27.031 6.414 4058.779 1.4 Ru 44 27.061 6.119 3880.592 1.3 Rh 45 25.833 6.804 3932.355 1.3 Pd 46 26.570 6.432 3932.482 1.1 La 57 26.672 6.431 3962.091 2.2 W 74 26.960 6.177 3888.314 1.6 s 76 26.480 4.977 3022.272 1.8 Ir 77 26.020 6.796 3984.552 1.2 Pt 78 26.560 6.511 3977.779 1.2 a Experimental data. b Computational data GGA+D Grimme.

3 II. SIMULATED X-RAY PWDER DIFFRACTIN SPECTRA Figures 1, 2, 3, and 4 depict the simulated X-ray powder di raction patterns of the four MF-74-M with M = Pd, s, Ir, and Pr, relevant for their future synthesis. Intensity [ arb. units ] 0 5 10 15 20 25 30 35 40 45 50 2θ [ deg. ] FIG. 1. X-ray powder di raction pattern for MF-74-Pd, using a Cu K source. Intensity [ arb. units ] 0 5 10 15 20 25 30 35 40 45 50 2θ [ deg. ] FIG. 2. X-ray powder di raction pattern for MF-74-s, using a Cu K source.

4 Intensity [ arb. units ] 0 5 10 15 20 25 30 35 40 45 50 2θ [ deg. ] FIG. 3. X-ray powder di raction pattern for MF-74-Ir, using a Cu K source. Intensity [ arb. units ] 0 5 10 15 20 25 30 35 40 45 50 2θ [ deg. ] FIG. 4. X-ray powder di raction pattern for MF-74-Pt, using a Cu K source.

5 III. LATTICE PARAMETERS, INTERATMIC DISTANCES, ADSRPTIN ENERGIES, AND ADSRPTIN-ENERGY CNTRIBUTINS Table II reports the calculated lattice parameters, relevant atomic distances, adsorption energies, and relevant adsorption-energy contributions for MF-74-M with M = Be, Mg, Al, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sr, Zr, Nb, Ru, Rh, Pd, La, W, s, Ir, and Pt. In Table III we compare our computed data with available experimental and computational data.

6 TABLE II. Computed lattice constants a and c (in Å) for MF-74-M after absorption of six H2, C2, CH4, and H2 molecules. Absorption energy E and deformation energies EMF and EM (in kj mol 1 ) are also reported. M-X represents the atomic distance (in Å) from the metal ion to the closest atom of the adsorbed molecule. H2 C2 CH4 H2 M a c M-X E EMF EM a c M-X E EMF EM a c M-X E EMF EM a c M-X E EMF EM Be 25.518 6.774 3.311 16.5 0.4 0.8 25.413 6.649 3.778 60.2 4.2 18.1 25.413 6.649 3.544 40.2 0.9 5.8 25.187 6.671 3.835 41.4 2.3 4.0 Mg 26.056 6.897 2.853 15.8 0.3 0.7 25.944 6.852 2.398 53.4 1.2 6.0 25.944 6.852 2.648 37.0 1.3 4.6 25.943 6.870 2.232 73.2 4.2 5.0 Al 25.535 6.486 2.320 19.8 0.9 0.3 24.988 6.642 1.807 118.4 126.6 207.7 25.413 6.649 2.656 38.2 1.0 4.6 25.480 6.503 2.010 135.7 23.6 1.1 Ca 25.122 7.650 3.269 18.7 1.2 0.4 24.598 7.208 2.621 57.0 1.7 10.0 25.492 7.538 2.809 40.1 5.2 0.8 26.233 7.505 2.485 87.1 9.1 2.2 Sc 23.424 7.363 3.473 19.6 0.6 0.6 23.450 7.319 3.746 53.0 1.5 8.5 23.840 7.272 2.905 45.3 1.3 7.0 25.786 7.126 2.265 113.1 16.5 0.9 Ti 21.503 7.023 3.513 1.4 12.0 8.0 22.696 7.257 4.400 49.4 5.0 12.6 22.606 7.269 3.543 39.9 5.8 9.6 22.583 7.274 4.283 50.7 6.0 35.7 V 25.417 8.135 3.471 20.0 0.6 0.4 26.026 6.827 2.257 52.7 7.5 1.0 26.007 6.934 2.378 43.3 2.4 3.2 26.038 6.900 2.185 110.9 6.1 0.9 Cr 26.206 6.308 3.767 19.8 0.2 0.5 26.053 6.529 3.826 52.9 1.0 4.4 25.987 6.500 2.975 37.8 1.2 5.9 26.955 5.802 2.499 51.1 12.4 2.4 Mn 26.316 6.928 3.000 19.0 0.5 0.3 26.170 7.064 2.755 53.7 2.6 3.6 26.170 7.064 2.694 43.2 0.5 4.9 26.244 7.011 2.341 73.1 11.3 2.7 Fe 25.994 6.810 3.461 19.8 0.2 0.4 25.854 6.639 3.705 51.2 1.4 5.4 25.854 6.639 3.131 39.8 1.5 5.9 31.031 4.128 2.142 129.7 30.1 4.0 Co 26.109 7.004 3.387 19.8 0.5 0.4 25.990 6.870 2.531 45.8 1.5 5.4 25.628 6.159 2.707 37.4 0.8 5.1 26.252 6.582 2.254 71.7 12.1 3.0 Ni 25.740 5.997 3.415 19.1 0.3 1.5 25.628 6.159 2.524 47.4 0.6 6.1 25.628 6.159 3.033 36.0 0.6 6.3 26.062 5.904 2.183 60.6 3.9 3.4 Cu e 25.990 6.870 2.973 42.9 0.8 0.6 26.213 6.094 2.919 39.7 0.6 5.1 30.246 4.256 2.233 90.3 18.1 8.8 Zn 26.108 6.816 2.745 20.9 0.4 1.5 26.159 6.570 3.826 52.4 0.7 3.1 26.177 6.472 2.851 40.1 0.6 3.3 26.769 5.841 2.228 73.9 3.4 3.8 Sr 27.192 6.544 3.250 18.6 1.2 0.4 27.513 6.559 2.980 49.7 5.2 1.7 26.827 6.765 2.831 43.9 0.2 5.1 30.973 4.447 2.505-153.6 31.2 0.8 Zr 23.329 7.517 3.651 17.8 0.2 0.9 23.060 7.552 4.265 52.0 1.7 11.9 22.984 7.566 3.537 43.8 2.1 8.4 23.298 7.260 2.370 90.3 29.7 3.3 Nb 26.905 3.031 2.911 20.7 0.2 0.2 27.262 6.520 2.361 89.1 5.5 0.6 26.171 6.525 2.533 44.5 4.9 1.0 27.255 6.559 2.325 124.5 3.6 1.8 Ru 27.112 6.261 3.539 20.5 0.3 0.7 27.092 5.901 3.794 49.5 1.8 2.5 27.065 5.927 3.220 38.5 1.7 3.8 25.970 4.947 3.163 77.5 15.0 0.1 Rh 25.936 7.120 3.650 20.8 0.5 0.4 25.515 6.827 3.968 52.5 1.3 7.1 25.545 6.818 2.911 36.1 1.0 6.2 25.782 6.798 3.882 f 50.5 0.6 2.9 Pd 26.271 6.138 4.029 19.5 0.1 0.7 26.611 6.384 3.591 51.3 0.2 2.3 26.424 6.413 3.102 37.4 0.6 5.7 26.721 6.360 3.447 f 46.1 0.7 2.6 La 26.9673 7.099 2.977 20.2 0.9 0.7 27.254 6.223 2.844 90.0 6.2 6.6 26.672 6.369 2.830 40.9 0.8 4.9 27.460 5.935 2.661 105.2 17.1 0.3 W 26.777 6.336 3.126 21.9 0.9 0.4 26.926 6.134 4.030 52.0 0.5 5.2 27.052 6.204 2.172 40.8 1.7 5.6 27.126 6.281 2.231 133.2 7.9 0.2 s 26.294 6.480 4.121 19.1 0.3 10.0 26.319 4.953 4.250 58.8 1.1 16.2 e 26.134 4.973 3.488 f 50.5 4.7 1.7 Ir 26.021 7.276 3.676 20.4 0.4 0.4 21.916 6.917 3.907 55.1 8.8 18.0 25.654 6.839 3.098 36.8 1.2 6.1 25.956 6.804 3.915 f 49.0 1.2 2.8 Pt 26.597 6.351 3.790 19.3 0.4 0.6 26.527 6.468 3.966 52.2 0.2 2.5 26.276 6.541 3.237 36.1 1.0 5.9 26.623 6.471 4.239 f 45.1 1.0 2.4 a Experimental data. b Computational DFT-LDA data. c Computational DFT-PBE+D Grimme data. d Computational DFT-B3LYP+D Grimme data. e Simulation considered not converged since we observe unphysical dissociation due to huge structural strains. f Here we give the distance between the site labeled as 2 nd in Fig. 4 in the main manuscript and the closest atom of the bound molecule.

7 TABLE III. Same as Table II, but here we compare our calculated data with experimental and other computational data where available. For each metal M our calculated values from Table II are given in the first line and the values we compare to are given in the line(s) underneath. H2 C2 CH4 H2 M a c M-X E a c M-X E a c M-X E a c M-X E Mg 26.056 6.897 2.853 15.8 25.944 6.852 2.398 53.4 25.944 6.852 2.648 37.0 25.943 6.870 2.232 73.2 10.1 a,3 25.824 a,7 6.8904 a,7 2.283 a,7 47.0 a,8 25.850 a,1 6.9070 a,1 2.54 b,3 24.8 b,3 2.45 c,2 41.4 c,2 2.64 b,1 33.8 b,1 78.8 d,9 Ca 25.122 7.650 3.269 18.7 24.598 7.208 2.621 57.0 25.492 7.538 2.809 40.1 26.233 7.505 2.485 87.1 2.65 c,2 36.5 c,2 Sc 23.424 7.363 3.473 19.6 23.450 7.319 3.746 53.0 23.840 7.272 2.905 45.3 25.786 7.126 2.265 113.1 2.58 c,2 40.2 c,2 Ti 21.503 7.023 3.513 1.4 22.696 7.257 4.400 49.4 22.606 7.269 3.543 39.9 22.583 7.274 4.283 50.7 2.44 c,2 50.1 c,2 V 25.417 8.135 3.471 20.0 26.026 6.827 2.257 52.7 26.007 6.934 2.378 43.3 26.038 6.900 2.185 110.9 2.34 c,2 47.3 c,2 Cr 26.206 6.308 3.767 19.8 26.053 6.529 3.826 52.9 25.987 6.500 2.975 37.8 26.955 5.802 2.499 51.1 2.86 c,2 21.5 c,2 Mn 26.316 6.928 3.000 19.0 26.170 7.064 2.755 53.7 26.170 7.064 2.694 43.2 26.244 7.011 2.341 73.1 4.7, a,3 2.77 b,3 22.4 b,3 2.66 c,2 28.8 c,2 2.73 b,1 29.8 b,1 Fe 25.994 6.810 3.461 19.8 25.854 6.639 3.705 51.2 25.854 6.639 3.131 39.8 31.031 4.128 2.142 129.7 3.01 c,2 25.3 c,2 Co 26.109 7.004 3.387 19.8 25.990 6.870 2.531 45.8 25.628 6.159 2.707 37.4 26.252 6.582 2.254 71.7 10.7 a,3 2.31 b,3 35.6 b,3 2.72 c,2 29.2 c,2 2.74 b,1 29.7 b,1 Ni 25.740 5.997 3.415 19.1 25.628 6.159 2.524 47.4 25.628 6.159 3.033 36.0 26.062 5.904 2.183 60.6 10.7 a,3 25.784 a,10 6.7474 a,10 2.29 a,10 41.0 a,11 25.9783 a,5 6.6883 a,5 2.08 a,5 2.13 b,3 39.0 b,3 2.92 c,2 23.7 c,2 2.72 b,1 34.8 b,1 Cu e 25.990 6.870 2.973 42.9 26.213 6.094 2.919 39.7 30.246 4.256 2.233 90.3 2.86 c,2 21.5 c,2 34.7 b,1 Zn 26.108 6.816 2.745 20.9 26.159 6.570 3.826 52.4 26.177 6.472 2.851 40.1 26.769 5.841 2.228 73.9 25.854 a,12 6.851 a,12 8.8 a,3 2.13 b,3 22.0 b,3 2.71 c,2 29.8 c,2 2.72 b,1 29.7 b,1 26.212 d,9 6.989 d,9 2.125 d,9 64.0 d,9 a Experimental data. b Computational DFT-LDA data. c Computational DFT-PBE+D Grimme data. d Computational DFT-B3LYP+D Grimme data. e Simulation considered not converged since we observe unphysical dissociation due to huge structural strains.

Figure 5 shows the molecular aggregation found after full relaxation of MF-74-M with M = Be, Ca, Cr, and s, once C 2 molecules are adsorbed in the nano-pore. The atom arrangement shown in Fig. 5 clearly demonstrates that the metal ions are not exposed in the pore anymore, inducing a progressive desorption of the adsorbates, which are now agglomerated in the middle of the channel. 8 FIG. 5. C 2 absorbed in MF-74-M with M = Be, Ca, Cr, and s. Bond lengths (in Å), depicted as dashed lines, refer to the case of MF-74-Be, but are comparable to the other cases.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A 9 Figure 6 clearly shows the chemi-adsorption of C2 in MF-74-Al, in which the oxygen of the adsorbate engages the Al species, whereas the C atom of C2 establishes a strong interaction with the C atoms of the benzene rings (i.e. the linkers). Note that the strong interaction of the C atom of C2 with the C atoms of the benzene rings disrupts the typical linear symmetry of C2. FIG. 6. MF-74-Al with C2 adsorbed at all metal sites. Notice the strong deviation of the bound C2 from its typical linear structure.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A 10 A strong chemi-adsorption is also observed for MF-74-La in Fig. 7. From this figure we see that C2 is tightly bound via its oxygen atoms to the La species, introducing a significant structural reconstruction. FIG. 7. MF-74-La with C2 adsorbed between all metal sites.

11 IV. DENSITY F STATES FR SELECTED CASES F WATER IN MF-74-M Figures 8, 9, 10, 11, and 12 depict the projected density of states (pds) of the relevant atoms involved in the chemi-absorption of H 2 in MF-74-Sc, -Al, -V, -Nb, and -La. In each figure we report only the pds of the and H atoms of H 2,, and the metal species of MF-74-M; other atoms are removed for the sake of clarity. Metal states dominate at the Fermi energies of MF-74-V, -Nb, and -W, as can bee seen in Figs. 10, 11, and 12, demonstrating the metallic nature of some of these materials. H 2 (g) Sc MF H 2 H H 2 MF MF-74-Sc MF-74-Sc + H 2 Energy [ev] FIG. 8. pds for MF-74-Sc with H 2, MF-74-Sc, and H 2 in gas phase. Energies are given in ev with respect to the top of the valence band. Note that up- and down-states are added together.

12 H 2 (g) Al MF H H 2 H 2 MF MF-74-Al MF-74-Al + H 2 Energy [ev] FIG. 9. As in Fig. 8, but here for MF-74-Al. H 2 (g) V MF H H 2 H 2 MF MF-74-V MF-74-V + H 2 Energy [ev] FIG. 10. As in Fig. 8, but here for MF-74-V.

13 H 2 (g) Nb MF H H 2 H 2 MF MF-74-Nb MF-74-Nb + H 2 Energy [ev] FIG. 11. As in Fig. 8, but here for MF-74-Nb. H 2 (g) W MF H H 2 H 2 MF MF-74-W MF-74-W + H 2 Energy [ev] FIG. 12. As in Fig. 8, but here for MF-74-W.

14 1 H. Wu, W. Zhou, and T. Yildirim, J. Am. Chem. Soc. 131, 4995(2009). 2 J. Park, H. Kim, S. S. Han, and Y. Jung, J. Phys. Chem. Lett. 3, 826(2012). 3 W. Zhou, H. Wu, and T. Yildirim, J. Am. Chem. Soc. 46, 15268(2008). 4 E. D. Bloch, W. L. Queen, R. Krishna, C. M. Zadrozny, Brown, and J. R. Long, Science 335, 1606(2012). 5 P. D. C. Dietzel, B. Panella, M. Hirsher, R. Blom, and H. Fjellvåg, Chem. Commun. 9, 959(2006). 6 N. L. Rosi, J. Kim, C. B. Eddaoudi, M. Kee e, and. M. Yaghi, J. Am. Chem. Soc. 1504, 127(2005). 7 E. L. Queen, C. M. Brown, D. K. Britt, P. Zajdel, M. R. Hudson, and. M. Yaghi, J. Phys. Chem. C 115, 24915 (2011). 8 D. K. Britt, H. Furukawa, B. Wang, T. G. Glover, and. M. Yaghi, Proc. Nat. Acad. Sci. USA 106, 20637(2009). 9 A. J. Kennedy and L. Valenzano, Prep. Pap.-Am. Chem. Soc., Div. Fuel Chem. 57, 913(2012). 10 P. D. C. Dietzel, R. E. Johnsen, H. Fjellvåg, S. Bordiga, E. Groppo, S. Chavan, and R. Blom, Chem. Commun. 46, 5125(2008). 11 L. Valenzano, B. Civalleri, S. Chavan, G. T. Palomino, C.. Areán, and S. Bordiga, J. Phys. Chem. C 114, 11185 (2010). 12 Y. Liu, C. Kabbour, C. Brown, D. A. Neumann, and C. C. Ahn, Langmuir 24, 4772(2008).