Modelling Operational Risk Using Bayesian Inference

Similar documents
Estimation of Operational Risk Capital Charge under Parameter Uncertainty

The Bayesian Choice. Christian P. Robert. From Decision-Theoretic Foundations to Computational Implementation. Second Edition.

COPYRIGHTED MATERIAL CONTENTS. Preface Preface to the First Edition

Ronald Christensen. University of New Mexico. Albuquerque, New Mexico. Wesley Johnson. University of California, Irvine. Irvine, California

Bayesian Modelling of Extreme Rainfall Data

Bayesian Methods for Machine Learning

Estimation of Quantiles

Monte Carlo Methods. Handbook of. University ofqueensland. Thomas Taimre. Zdravko I. Botev. Dirk P. Kroese. Universite de Montreal

Numerical Analysis for Statisticians

Exploring Monte Carlo Methods

Subject CS1 Actuarial Statistics 1 Core Principles

Bayesian Inference and MCMC

Bayesian Inference, Monte Carlo Sampling and Operational Risk.

Markov Chain Monte Carlo in Practice

Principles of Bayesian Inference

Bayesian Phylogenetics:

Contents. Part I: Fundamentals of Bayesian Inference 1

Markov Chain Monte Carlo methods

PART I INTRODUCTION The meaning of probability Basic definitions for frequentist statistics and Bayesian inference Bayesian inference Combinatorics

Risk Aggregation. Paul Embrechts. Department of Mathematics, ETH Zurich Senior SFI Professor.

Bayesian Prediction of Code Output. ASA Albuquerque Chapter Short Course October 2014

Comparison of Three Calculation Methods for a Bayesian Inference of Two Poisson Parameters

Markov Chain Monte Carlo

Large Scale Bayesian Inference

Multilevel Statistical Models: 3 rd edition, 2003 Contents

ST 740: Markov Chain Monte Carlo

Foundations of Statistical Inference

CSC 2541: Bayesian Methods for Machine Learning

ABC methods for phase-type distributions with applications in insurance risk problems

Tutorial on Probabilistic Programming with PyMC3

Likelihood-free MCMC

MCMC and Gibbs Sampling. Kayhan Batmanghelich

Standard Error of Technical Cost Incorporating Parameter Uncertainty

MCMC Sampling for Bayesian Inference using L1-type Priors

A Bayesian Approach to Phylogenetics

The Metropolis-Hastings Algorithm. June 8, 2012

Marginal Specifications and a Gaussian Copula Estimation

Non-Life Insurance: Mathematics and Statistics

SPRING 2007 EXAM C SOLUTIONS

(5) Multi-parameter models - Gibbs sampling. ST440/540: Applied Bayesian Analysis

Contents. Preface to Second Edition Preface to First Edition Abbreviations PART I PRINCIPLES OF STATISTICAL THINKING AND ANALYSIS 1

Bayesian Methods in Multilevel Regression

High-dimensional Problems in Finance and Economics. Thomas M. Mertens

Bayesian Gaussian Process Regression

Bayesian inference for multivariate extreme value distributions

Overview of Extreme Value Theory. Dr. Sawsan Hilal space

eqr094: Hierarchical MCMC for Bayesian System Reliability

Extreme Value Analysis and Spatial Extremes

BAYESIAN METHODS FOR VARIABLE SELECTION WITH APPLICATIONS TO HIGH-DIMENSIONAL DATA

Bayesian model selection in graphs by using BDgraph package

Lecture 8: The Metropolis-Hastings Algorithm

Bivariate Degradation Modeling Based on Gamma Process

Estimation of Truncated Data Samples in Operational Risk Modeling

Supplement to A Hierarchical Approach for Fitting Curves to Response Time Measurements

Markov Chain Monte Carlo, Numerical Integration

Approximate Bayesian computation for spatial extremes via open-faced sandwich adjustment

Bayesian Estimation with Sparse Grids

Bayesian inference. Fredrik Ronquist and Peter Beerli. October 3, 2007

Monte Carlo integration

Some conditional extremes of a Markov chain

MCMC 2: Lecture 2 Coding and output. Phil O Neill Theo Kypraios School of Mathematical Sciences University of Nottingham

Continuous Univariate Distributions

Estimation of Truncated Data Samples in Operational Risk Modeling

F denotes cumulative density. denotes probability density function; (.)

Parameter Estimation. William H. Jefferys University of Texas at Austin Parameter Estimation 7/26/05 1

A BAYESIAN APPROACH FOR ESTIMATING EXTREME QUANTILES UNDER A SEMIPARAMETRIC MIXTURE MODEL ABSTRACT KEYWORDS

Stat 516, Homework 1

STA 4273H: Statistical Machine Learning

Parameter Estimation

On the Systemic Nature of Weather Risk

Efficient adaptive covariate modelling for extremes

Down by the Bayes, where the Watermelons Grow

Variability within multi-component systems. Bayesian inference in probabilistic risk assessment The current state of the art

Applied Probability and Stochastic Processes

TABLE OF CONTENTS CHAPTER 1 COMBINATORIAL PROBABILITY 1

MCMC for big data. Geir Storvik. BigInsight lunch - May Geir Storvik MCMC for big data BigInsight lunch - May / 17

MCMC Review. MCMC Review. Gibbs Sampling. MCMC Review

Stat 5101 Lecture Notes

Petr Volf. Model for Difference of Two Series of Poisson-like Count Data

Report and Opinion 2016;8(6) Analysis of bivariate correlated data under the Poisson-gamma model

Bayesian covariate models in extreme value analysis

Practical Bayesian Quantile Regression. Keming Yu University of Plymouth, UK

Bayesian Analysis. Bayesian Analysis: Bayesian methods concern one s belief about θ. [Current Belief (Posterior)] (Prior Belief) x (Data) Outline

27 : Distributed Monte Carlo Markov Chain. 1 Recap of MCMC and Naive Parallel Gibbs Sampling

Bayesian Methods for Estimating the Reliability of Complex Systems Using Heterogeneous Multilevel Information

Pattern Recognition and Machine Learning

Advanced Statistical Modelling

Asymptotics and Simulation of Heavy-Tailed Processes

FAV i R This paper is produced mechanically as part of FAViR. See for more information.

Stat 451 Lecture Notes Markov Chain Monte Carlo. Ryan Martin UIC

Neutral Bayesian reference models for incidence rates of (rare) clinical events

Practice Exam 1. (A) (B) (C) (D) (E) You are given the following data on loss sizes:

Irr. Statistical Methods in Experimental Physics. 2nd Edition. Frederick James. World Scientific. CERN, Switzerland

Bayesian Inference. Chapter 1. Introduction and basic concepts

Principles of Bayesian Inference

Statistical Inference and Methods

Default Priors and Effcient Posterior Computation in Bayesian

Bayesian Regression Linear and Logistic Regression

Stat 542: Item Response Theory Modeling Using The Extended Rank Likelihood

Forward Problems and their Inverse Solutions

Transcription:

Pavel V. Shevchenko Modelling Operational Risk Using Bayesian Inference 4y Springer

1 Operational Risk and Basel II 1 1.1 Introduction to Operational Risk 1 1.2 Defining Operational Risk 4 1.3 Basel II Approaches to Quantify Operational Risk 4 1.4 Loss Data Collections 7 1.4.1 2001 LDCE 10 1.4.2 2002 LDCE 11 1.4.3 2004 LDCE 13 1.4.4 2007 LDCE 15 1.4.5 General Remarks 16 1.5 Operational Risk Models 17 2 Loss Distribution Approach 21 2.1 Loss Distribution Model 21 2.2 Operational Risk Data 22 2.3 A Note on Data Sufficiency 24 2.4 Insurance 25 2.5 Basic Statistical Concepts 26 2.5.1 Random Variables and Distribution Functions 26 2.5.2 Quantiles and Moments 29 2.6 Risk Measures 32 2.7 Capital Allocation 33 2.7.1 Euler Allocation 34 2.7.2 Allocation by Marginal Contributions 36 2.8 Model Fitting: Frequentist Approach 37 2.8.1 Maximum Likelihood Method 39 2.8.2 Bootstrap 42 2.9 Bayesian Inference Approach 43 2.9.1 Conjugate Prior Distributions 45 2.9.2 Gaussian Approximation for Posterior 46 2.9.3 Posterior Point Estimators 46 2.9.4 Restricted Parameters 47

2.9.5 Noninformative Prior 48 2.10 Mean Square Error of Prediction 49 2.11 Markov Chain Monte Carlo Methods 50 2.11.1 Metropolis-Hastings Algorithm 52 2.11.2 Gibbs Sampler 53 2.11.3 Random Walk Metropolis-Hastings Within Gibbs 54 2.11.4 ABC Methods 56 2.11.5 Slice Sampling 58 2.12 MCMC Implementation Issues 60 2.12.1 Tuning, Burn-in and Sampling Stages 60 2.12.2 Numerical Error 62 2.12.3- MCMC Extensions '. 65 2.13 Bayesian Model Selection 66 2.13.1 Reciprocal Importance Sampling Estimator 68 2.13.2 Deviance Information Criterion 68 Problems 69 Calculation of Compound Distribution 71 3.1 Introduction 71 3.1.1 Analytic Solution via Convolutions 72 3.1.2 Analytic Solution via Characteristic Functions 73 3.1.3 Compound Distribution Moments 76. 3.1.4 Value-at-Risk and Expected Shortfall 78 3.2 Monte Carlo Method 79. 3.2.1 Quantile Estimate 80 3.2.2 Expected Shortfall Estimate 82 3.3 Panjer Recursion 83 3.3.1 Discretisation 85 3.3.2 Computational Issues 87 3.3.3 Panjer Extensions 88 3.3.4 Panjer Recursion for Continuous Severity 89 3.4 Fast Fourier Transform 89 3.4.1 Compound Distribution via FFT 91 3.4.2 Aliasing Error and Tilting 92 3.5 Direct Numerical Integration 94 3.5.1 Forward and Inverse Integrations 94 3.5.2 Gaussian Quadrature for Subdivisions 98 3.5.3 Tail Integration 100 3.6 Comparison of Numerical Methods 103 3.7 Closed-Form Approximation 105 3.7.1 Normal and Translated Gamma Approximations 105 3.7.2 VaR Closed-Form Approximation 106 Problems 108

Bayesian Approach for LDA Ill 4.1 Introduction Ill 4.2 Combining Different Data Sources 114 4.2.1 Ad-hoc Combining 114 4.2.2 Example of Scenario Analysis 116 4.3 Bayesian Method to Combine Two Data Sources 117 4.3.1 Estimating Prior: Pure Bayesian Approach 119 4.3.2 Estimating Prior: Empirical Bayesian Approach 121 4.3.3 Poisson Frequency 121 4.3.4 The Lognormal CJ\f(ix, a) Severity with Unknown \x 126 4.3.5 The Lognormal CJ\f(ix, a) Severity with Unknown pu and a 129 4.3.6 Pareto Severity 131 4.4 Estimation of the Prior Using Data 136 4.4.1 The Maximum Likelihood Estimator 136 4.4.2 Poisson Frequencies 137 4.5 Combining Expert Opinions with External and Internal Data 140 4.5.1 Conjugate Prior Extension 142 4.5.2 Modelling Frequency: Poisson Model 143 4.5.3 Modelling Frequency: Poisson with Stochastic Intensity... 150 4.5.4 Lognormal Model for Severities 153 4.5.5 Pareto Model 156 4.6 Combining Data Sources Using Credibility Theory 159 4.6.1 Buhlmann-Straub Model 161 4.6.2 Modelling Frequency 163 4.6.3 Modelling Severity 166 4.6.4 Numerical Example 169 4.6.5 Remarks and Interpretation 170 4.7 Capital Charge Under Parameter Uncertainty 171 4.7.1 Predictive Distributions 171 4.7.2 Calculation of Predictive Distributions 173 4.8 General Remarks 175 Problems 177 Addressing the Data Truncation Problem 179 5.1 Introduction 179 5.2 Constant Threshold - Poisson Process 181 5.2.1 Maximum Likelihood Estimation 182 5.2.2 Bayesian Estimation 186 5.3 Extension to Negative Binomial and Binomial Frequencies 188 5.4 Ignoring Data Truncation 192 5.5 Threshold Varying in Time 196 Problems 200 V

Modelling Large Losses 203 6.1 Introduction 203 6.2 EVT - Block Maxima 204 6.3 EVT - Threshold Exceedances 208 6.4 A Note on GPD Maximum Likelihood Estimation 212 6.5 EVT - Random Number of Losses 214 6.6 EVT - Bayesian Approach 216 6.7 Subexponential Severity 221 6.8 Flexible Severity Distributions 225 6.8.1 g-and-h Distribution 225 6.8.2 GB2 Distribution 227 6.8.3 Lognormal-Gamma Distribution 228 6.8.4 Generalised Champernowne Distribution 229 6.8.5 a-stable Distribution 230 Problems 232 Modelling Dependence 235 7.1 Introduction 235 7.2 Dominance of the Heaviest Tail Risks 238 7.3 A Note on Negative Diversification 240 7.4 Copula Models 241 7.4.1 Gaussian Copula 242. 7.4.2 Archimedean Copulas 243 7.4.3 f-copula 245 7.5 - Dependence Measures 247 7.5.1 Linear Correlation 247 7.5.2 Spearman's Rank Correlation 248 7.5.3 Kendall's tau Rank Correlation 249 7.5.4 Tail Dependence 250 7.6 Dependence Between Frequencies via Copula 251 7.7 Common Shock Processes 252 7.8 Dependence Between Aggregated Losses via Copula 253 7.9 Dependence Between the k-th Event Times/Losses 253 7.10 Modelling Dependence via Levy Copulas 253 7.11 Structural Model with Common Factors 254 7.12 Stochastic and Dependent Risk Profiles 256 7.13 Dependence and Combining Different Data Sources 260 7.13.1 Bayesian Inference Using MCMC 262 7.13.2 Numerical Example '. 264 7.14 Predictive Distribution 266 Problems 269

xv A List of Distributions 273 A.I Discrete Distributions 273 A. 1.1 Poisson Distribution, Poissonik) 273 A.1.2 Binomial Distribution, Bin(n, p) 274 A. 1.3 Negative Binomial Distribution, NegBin(r, p) 274 A.2 Continuous Distributions 275 A.2.1 Uniform Distribution, U(a, b) 275 A.2.2 Normal (Gaussian) Distribution, Af(/x, a) 275 A.2.3 Lognormal Distribution, CN(fx., a) 275 A.2.4 t Distribution, T(v, iu,,a 2 ) 276 A.2.5 Gamma Distribution, Gamma(a, /3) 276 A.2.6 Weibull Distribution, Weibull(a, 0).." 276 A.2.7 Pareto Distribution (One-Parameter), Pareto{%, XQ) 277 A.2.8 Pareto Distribution (Two-Parameter), Paretoi(a, P) 277 A.2.9 Generalised Pareto Distribution, GPD($, 0) 278 A.2.10 Beta Distribution, Beta(a, 0) 278 A.2.11 Generalised Inverse Gaussian Distribution, GIG(co, <p,v)... 279 A.2.12 ^-variate Normal Distribution, Mdifi, S) 280 A.2.13 ^-variate r-distribution, T d (v, /i,x) 280 B Selected Simulation Algorithms 281 B.I Simulation from GIG Distribution 281 B.2 Simulation from a-stable Distribution 282 Solutions for Selected Problems 283 References 289 Index 299