Principles of Humidity Dalton s law

Similar documents
Chemical Physics II. More Stat. Thermo Kinetics Protein Folding...

University of Illinois at Chicago Department of Physics. Thermodynamics & Statistical Mechanics Qualifying Examination

Brief Introduction to Statistical Mechanics

22/ Breakdown of the Born-Oppenheimer approximation. Selection rules for rotational-vibrational transitions. P, R branches.

Ch. 24 Molecular Reaction Dynamics 1. Collision Theory

MCB137: Physical Biology of the Cell Spring 2017 Homework 6: Ligand binding and the MWC model of allostery (Due 3/23/17)

Coupled Pendulums. Two normal modes.

Elements of Statistical Thermodynamics

ph People Grade Level: basic Duration: minutes Setting: classroom or field site

Chapter 8: Electron Configurations and Periodicity

Where k is either given or determined from the data and c is an arbitrary constant.

Introduction to Condensed Matter Physics

The pn junction: 2 Current vs Voltage (IV) characteristics

2. Laser physics - basics

ATMO 551a Homework 6 solutions Fall 08

Exam 1. It is important that you clearly show your work and mark the final answer clearly, closed book, closed notes, no calculator.

5.80 Small-Molecule Spectroscopy and Dynamics

Title: Vibrational structure of electronic transition

Contemporary, atomic, nuclear, and particle physics

1.2 Faraday s law A changing magnetic field induces an electric field. Their relation is given by:

ECE507 - Plasma Physics and Applications

The influence of electron trap on photoelectron decay behavior in silver halide

fiziks Institute for NET/JRF, GATE, IIT JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics THERMODYNAMICS AND STATISTICAL PHYSICS

Exam 2 Thursday (7:30-9pm) It will cover material through HW 7, but no material that was on the 1 st exam.

Relate p and T at equilibrium between two phases. An open system where a new phase may form or a new component can be added

orbiting electron turns out to be wrong even though it Unfortunately, the classical visualization of the

A central nucleus. Protons have a positive charge Electrons have a negative charge

A General Thermal Equilibrium Discharge Flow Model

Why is a E&M nature of light not sufficient to explain experiments?

Quasi-Classical States of the Simple Harmonic Oscillator

COMPUTER GENERATED HOLOGRAMS Optical Sciences 627 W.J. Dallas (Monday, April 04, 2005, 8:35 AM) PART I: CHAPTER TWO COMB MATH.

PRINCIPLES OF PLASMA PROCESSING Course Notes: Prof. J. P. Chang Part B3: ATOMIC COLLISIONS AND SPECTRA

In this lecture... Subsonic and supersonic nozzles Working of these nozzles Performance parameters for nozzles

Statistical Thermodynamics: Sublimation of Solid Iodine

Physics 111. Lecture 38 (Walker: ) Phase Change Latent Heat. May 6, The Three Basic Phases of Matter. Solid Liquid Gas

A Propagating Wave Packet Group Velocity Dispersion

Pair (and Triplet) Production Effect:

Nusselt number correlations for simultaneously developing laminar duct flows of liquids with temperature dependent properties

Higher order derivatives

Determination of Vibrational and Electronic Parameters From an Electronic Spectrum of I 2 and a Birge-Sponer Plot

First derivative analysis

Addition of angular momentum

Electrochemical Energy Systems Spring 2014 MIT, M. Z. Bazant. Midterm Exam

5.62 Physical Chemistry II Spring 2008

Lecture 37 (Schrödinger Equation) Physics Spring 2018 Douglas Fields

A nonequilibrium molecular dynamics simulation of evaporation

PHA 5127 Answers Homework 2 Fall 2001

5. Equation of state for high densities

Pipe flow friction, small vs. big pipes

Electrochemistry L E O

The Matrix Exponential

Math 34A. Final Review

Math-3. Lesson 5-6 Euler s Number e Logarithmic and Exponential Modeling (Newton s Law of Cooling)

Thermodynamical insight on the role of additives in shifting the equilibrium between white and grey tin

de/dx Effectively all charged particles except electrons

1. In the given figure PQRS is a parallelogram. Find the coordinates of R.

Radiation Physics Laboratory - Complementary Exercise Set MeBiom 2016/2017

Answer Homework 5 PHA5127 Fall 1999 Jeff Stark

26-Sep-16. Nuclear energy production. Nuclear energy production. Nuclear energy production. Nuclear energy production

Hydrogen Atom and One Electron Ions

The Matrix Exponential

Addition of angular momentum

Electromagnetism Physics 15b

1 Minimum Cut Problem

High Energy Physics. Lecture 5 The Passage of Particles through Matter

Computing properties in simulations

Search sequence databases 3 10/25/2016

15. Stress-Strain behavior of soils

Atomic energy levels. Announcements:

COHORT MBA. Exponential function. MATH review (part2) by Lucian Mitroiu. The LOG and EXP functions. Properties: e e. lim.

cycle that does not cross any edges (including its own), then it has at least

Give the letter that represents an atom (6) (b) Atoms of A and D combine to form a compound containing covalent bonds.

is an appropriate single phase forced convection heat transfer coefficient (e.g. Weisman), and h

Chapter 10. The singular integral Introducing S(n) and J(n)

CHAPTER 16 HW: CONJUGATED SYSTEMS

Lecture 28 Title: Diatomic Molecule : Vibrational and Rotational spectra

EXST Regression Techniques Page 1

Complex Powers and Logs (5A) Young Won Lim 10/17/13

The van der Waals interaction 1 D. E. Soper 2 University of Oregon 20 April 2012

Brief Notes on the Fermi-Dirac and Bose-Einstein Distributions, Bose-Einstein Condensates and Degenerate Fermi Gases Last Update: 28 th December 2008

Bifurcation Theory. , a stationary point, depends on the value of α. At certain values

The graph of y = x (or y = ) consists of two branches, As x 0, y + ; as x 0, y +. x = 0 is the

Cosmology and particle physics

Part 7: Capacitance And Capacitors

What are those βs anyway? Understanding Design Matrix & Odds ratios

Einstein Equations for Tetrad Fields

P3-4 (a) Note: This problem can have many solutions as data fitting can be done in many ways. Using Arrhenius Equation For Fire flies: T(in K)

CE 530 Molecular Simulation

Supplementary Materials

are given in the table below. t (hours)

REGISTER!!! The Farmer and the Seeds (a parable of scientific reasoning) Class Updates. The Farmer and the Seeds. The Farmer and the Seeds

The following information relates to Questions 1 to 4:

Classical Magnetic Dipole

How can I control light? (and rule the world?)

A Prey-Predator Model with an Alternative Food for the Predator, Harvesting of Both the Species and with A Gestation Period for Interaction

CS 361 Meeting 12 10/3/18

Homework #3. 1 x. dx. It therefore follows that a sum of the

VII. Quantum Entanglement

Design Guidelines for Quartz Crystal Oscillators. R 1 Motional Resistance L 1 Motional Inductance C 1 Motional Capacitance C 0 Shunt Capacitance

ECE602 Exam 1 April 5, You must show ALL of your work for full credit.

Transcription:

Principls of Humidity Dalton s law Air is a mixtur of diffrnt gass. Th main gas componnts ar: Gas componnt volum [%] wight [%] Nitrogn N 2 78,03 75,47 Oxygn O 2 20,99 23,20 Argon Ar 0,93 1,28 Carbon dioxid CO 2 0,03 0,04 Rst: H 2, N, H, Kr 0,02 0,01 On normal physical conditions ths gass bhav idal which mans that th gas molculs act indpndnt from ach othr which lads to Dalton s law : Th total prssur of a gas is th sum of th prssurs of ach componnt Th prssur of a singl componnt is calld partial prssur, so th total prssur of air is th sum of th partial prssurs of its componnts i.. p = p N2 + p O2 + p Ar +... dimnsion of p: [mbar] or [hpa] Watr in its gasous phas (vapour) is an additional idal gas componnt of air which appars in Dalton s law : p = p N2 + p O2 + p Ar +...+ = p da + p da partial prssur of (watr) vapour [mbar] partial prssur of dry air

Principls of Humidity - Vapour prssur Vapour prssur abov watr Vapour prssur cannot tak on any valu in air. Thr is a maximum partial prssur of vapour which dpnds only on air tmpratur. At high tmpraturs air can hold mor vapour than at low tmpraturs. This bhaviour can b xplaind in th following way : Th molculs, boundd in a liquid lik watr, ar moving with diffrnt vlocitis and th avrag kintic nrgy is proportional to th tmpratur of th liquid. Th nrgy distribution of th molculs is statistical as shown in Fig.1. numbr of molculs tmpratur 1 tmpratur 2 > tmpratur 1 Enrgy Fig. 1: Statistical nrgy distribution of molculs in a liquid at diffrnt tmpraturs. Th ovrall avrag kintic nrgy of th molculs is dpnding on tmpratur whras th nrgy of a singl molcul can b lowr or highr with a statistical probability. Molculs with nrgis blow th binding nrgy of th liquid cannot lav th watr surfac, but som hav nough nrgy to xcd th binding forc. Ths molculs can lav th liquid, thy vaporat from th watr surfac and incras th vapour concntration in th room abov th watr surfac. Th molculs in th vapour bhav similar but for thm th cas to hav lss nrgy than th binding nrgy of watr is xcptional: thy ar absorbd from th watr surfac by condnsation and dcras th vapour concntration. A closd box partly filld with watr at tmpratur t (Fig.2) will stabiliz in quilibrium btwn vaporation and condnsation. If thr is a lack of watr molculs in th moist rgion, mor vaporation will occur and th vapour concntration will incras. In th opposit cas mor molculs will condns than vaporat and th vapour concntration will dcras.

Vapour partial prssur w vaporation condnsation Watr Fig. 2 : Box partly filld with watr at constant tmpratur Th balanc btwn vaporation and condnsation lads to a vapour prssur, which dpnds only on tmpratur. Incrasing th tmpratur mor molculs hav highr nrgis (s Fig.1), will lav th watr surfac and shift th quilibrium to highr vapour concntrations. On normal nvironmntal conditions vapour is an idal gas with no intraction with othr prsnt idal gass. So th vapour concntration is practically indpndnt from othr xisting gass in th rgion abov th watr surfac. In th box at tmpratur t th balancd vapour prssur is a maximum at this tmpratur and is calld saturation vapour prssur abov watr w at tmpratur t. Th saturation prssur abov watr w dpnds approximatly xponntial on tmpratur t. Valus for w for diffrnt tmpraturs ar givn in Tab.1 [1].

t [dgc] w [mbar] t [dgc] w [mbar] 100 1014.19 0 6.112 90 701.82-10 2.8652 80 474.16-20 1.2559 70 312.02-30 0.5103 60 199.48-40 0.1903 50 123.53-50 0.0644 40 73.853-60 0.0195 30 42.470-70 5.187E-03 20 23.392-80 1.190E-03 10 12.281-90 2.298E-04 0.01 6.117-100 3.622E-05 Tab. 1: Saturation vapour prssur valus w abov watr Vapour prssur abov ic Blow t=0.01 dgc (tripl point of watr) watr can xist in th liquid phas as wll as in th solid phas (ic) but th liquid phas is usually not stabl. Th physical intrprtation of vaporation abov ic is qual to watr. t [dgc] i [mbar] 0.01 6.117 0 6.112-10 2.5989-20 1.0324-30 0.3800-40 0.1284-50 0.0394-60 0.0108-70 2.615E-03-80 5.472E-04-90 9.670E-05-100 1.402E-05 Tab. 2 : Saturation vapour prssur valus i abov ic

According to th xistnc of a solid and liquid phas thr ar two saturation curvs blow t=0.01 dgc as shown in Fig.3 on a logarithmic scal. Mind that btwn -100 dgc and 100 dgc th saturation vapour prssur is changing ovr 8 ordrs of magnitud! 1.E+04 saturation vapour prssur [mbar] 1.E+03 1.E+02 1.E+01 1.E+00-100 -50 0 50 100 1.E-01 1.E-02 1.E-03 1.E-04 watr ic 1.E-05 tmpratur [dgc] Fig. 3 : Vapour saturation curvs abov ic and watr. Blow th tripl point (t=0.01 dgc) th curv splits into two graphs. Ral gas corrction As so far watr vapour was tratd as an idal gas i.. watr molculs act indpndnt from th surrounding air. In rality thr is an intraction btwn watr molculs and th air which lads to a small incras of saturation vapour prssur undr prsnc of air. This fact is takn into account by th nhancmnt factor f(p,t). Th saturation vapour prssur undr prsnc of air w is givn by w = w (t) f(p,t) At normal prssur (p<1100 mbar) th nhancmnt factor is clos to on and can usually b nglctd. This mans that watr vapour mostly bhavs lik an idal gas. If you wish highr accuracis you should corrct th saturation watr prssur using th nhancmnt factor f, which dpnds on air prssur p and tmpratur t (for valus s Tab.3 [2] ).

t [dgc] -40-20 0 10 20 30 40 60 80 p [bar] 0.25 1.0013 1.0012 1.00131 1.00148 1.00173 1.00202 1.00223 1.00111 0.5 1.0026 1.0022 1.00217 1.00229 1.00251 1.00284 1.00323 1.00362 1.00051 1 1.0052 1.0044 1.0039 1.00388 1.004 1.00426 1.00467 1.00571 1.00564 1.5 1.0078 1.0065 1.0056 1.0055 1.00547 1.00564 1.00599 1.00713 1.00801 2 1.0104 1.0086 1.0074 1.0071 1.0069 1.00701 1.00728 1.00839 1.00968 2.5 1.013 1.0108 1.0091 1.0087 1.0084 1.0084 1.0086 1.00959 1.01108 3 1.0156 1.0129 1.0108 1.0103 1.0099 1.0097 1.0098 1.0108 1.01234 3.5 1.0183 1.015 1.0126 1.0119 1.0114 1.0111 1.0111 1.0119 1.01351 4 1.0209 1.0172 1.0144 1.0135 1.0128 1.0125 1.0124 1.013 1.0146 4.5 1.0236 1.0194 1.0161 1.0151 1.0143 1.0138 1.0136 1.0142 1.0157 5 1.0262 1.0215 1.0179 1.0167 1.0158 1.0152 1.0149 1.0153 1.0168 10 1.0533 1.0435 1.0356 1.033 1.0308 1.029 1.0277 1.0265 1.0271 20 1.11 1.089 1.072 1.066 1.0615 1.0573 1.0539 1.0493 1.0474 30 1.171 1.138 1.111 1.101 1.093 1.087 1.081 1.073 1.068 40 1.237 1.189 1.151 1.138 1.126 1.117 1.109 1.096 1.089 50 1.307 1.243 1.193 1.175 1.161 1.148 1.137 1.121 1.111 60 1.38 1.3 1.237 1.215 1.196 1.18 1.167 1.146 1.133 70 1.46 1.36 1.282 1.256 1.233 1.213 1.197 1.172 1.155 80 1.55 1.42 1.33 1.298 1.271 1.248 1.228 1.198 1.178 90 1.64 1.49 1.381 1.343 1.311 1.284 1.261 1.226 1.202 100 1.75 1.56 1.43 1.389 1.352 1.32 1.294 1.254 1.226 Tab. 3 : Enhancmnt factor f(p,t)

Principls of Humidity - Magnus formula Th saturation vapour prssur abov ic and watr can b calculatd with good accuracy with th Magnus formula [1] : w, i = m t A xp Tn + t Th paramtrs A, m, T n ar diffrnt for ic and watr and ar givn in Tab. 4. Tmpratur rang t [dgc] A m T n abov ic : -80 to 0.01 6.112 22.46 272.62 abov watr : -45 to 50 6.112 17.62 243.12 Tab. 4 : Magnus formula paramtr [1]

Principls of Humidity Rlativ humidity Rlativ humidity U w [%] Tabl 1 and 2 (in sction Vapour prssur ) giv valus for th saturation watr vapour prssur as a function of tmpratur. Ths valus ar maximum valus, in practic partial vapour prssurs ar usually lowr. Rlativ humidity U w is dfind as th ratio btwn th actual partial vapour prssur and th saturation vapour prssur abov watr w U w = w 100 [%] Sinc th partial vapour prssur cannot xcd th saturation vapour prssur, th maximum valu of rlativ humidity is U w =100%. Rlativ humidity blow th tripl point Th dfinition of rlativ humidity blow th tripl point of watr t< 0.01 dgc rfrs again to th saturation prssur abov watr. In this xcptional tmpratur rgim you can ithr hav watr with saturation vapour prssur w or ic with a smallr valu i < w. In most applications howvr you will find ic sinc this is th stabl stat for tmpraturs t < 0.01 dgc. So th cas = i givs you an uppr limit for th rlativ humidity: t < 0.01 C: U max i w, = w 100 [%] t [dgc] 0-5 -10-15 -20-25 -30-35 -40 i [mbar] 6.108 4.015 2.597 1.652 1.032 0.633 0.380 0.223 0.128 w [mbar] 6.108 4.212 2.857 1.905 1.246 0.799 0.502 0.308 0.184 U max [%] 100% 95% 91% 87% 83% 79% 76% 73% 70% Tab. 5 : Maximum rlativ humidity valus abov ic

Principls of Humidity - Dw Point, Frost Point Whn you cool down air containing vapour blow th saturation concntration th actual partial prssur initially stays constant whil th rlativ humidity is incrasing du to th dcras of th saturation vapour prssur with tmpratur t. U w = w 100 [%] t dcrasing w (t) dcrasing U w incrasing At th dw point tmpratur t d th saturation vapour prssur quals th actual vapour prssur i.. w (t d )= and th rlativ humidity rachs its maximum valu of U w =100%. Th dw point tmpratur t d is thrfor th tmpratur to which you hav to cool down moist air at constant prssur for bginning condnsation. It can b calculatd from th tmpratur and rlativ humidity using th Magnus formula : t [ C] saturation vapour prssur w w [mbar], U w [%] w U w = 100 t d = T n ln A m ln A Th Magnus paramtrs A, m, T n ar givn in Tabl 4 in th sction Magnus Formula. Dcrasing th tmpratur blow th dw point tmpratur th partial vapour prssur xcds th saturation valu, so condnsation occurs until th balanc is rachd again. Blow th tripl point of watr t < 0.01 C you will usually find ic ( i ) in your application instad of watr ( w ). Th tmpratur at which th partial vapour prssur rachs th saturation vapour prssur i and frosting starts is calld frost point t f > t d.

Principls of Humidity Absolut Humidity Absolut humidity d v [g/m³] Givs th mass of watr in 1 m³ moist air and can b calculatd from th tmpratur t [dgc] and th partial vapour prssur [mbar] : t [dgc] saturation vapour prssur w = w U w d v = 216.7 273.15 + t [ g / m 3 ]

Principls of Humidity Mixing ratio Mixing ratio r [g/kg] Givs th mass of watr you hav to vaporat and mix with 1 kg dry air to prform a crtain rlativ humidity U w or partial vapour prssur t [dgc] saturation vapour prssur w = w U w 622 r = ( p ) [ g / kg] p air prssur [mbar]

Principls of Humidity Spcific Enthalpy Spcific nthalpy h [kj/kg] Th spcific nthalpi of air with tmpratur t, rlativ humidity U w and corrsponding mixing ratio r is th sum of th nrgis you nd to crat this stat in th following way : a) warming up 1 kg dry air from 0 dgc to t b) vaporating th vapour insid th moist air c) warming up th vapour from 0 dgc to t fi Spcific Enthalpi pr 1 kg dry air: h = [c pa t + (l w + c pv t) r] [kj/kg] c pa = 1.00545 kj/kg spcific hat capacity of dry air at constant prssur c pv = 1.85894 kj/kg spcific hat capacity of vapour at constant prssur l w = 2500.827 kj/kg latnt hat of watr Th spcific nthalpy is a rlativ quantity i.. only diffrncs ar significant. Mor gnrally nthalpy givs you th amount of nrgy which you nd to bring moist air from a thrmal stat 1 into a stat 2. Exampl 1 : To warm up air from 20 to 25 dgc and humidify th air from 40 to 60 % rlativ humidity you will nd h=20.2 kj/kg. Exampl 2 : Warming up air from 20 to 25 dgc and kping th rlativ humidity constant dissipats only h=10.3 kj/kg. Exampl 3 : Whn warming up air from 20 to 25 dgc and kping th partial vapour prssur constant (r = constant, t d = constant) th rlativ humidity dcrass down to U w =29.5 % which wasts only h=5.1 kj/kg. Ths xampls ar summarizd in Tabl 6 and ar drawn as procss 1, 2, 3 in Fig. 4 in th sction Mollir diagram.

Exampl 1 t [dgc] U w [%] h [kj/kg] stat 1 20 40 34.6 stat 2 25 29.5 39.7 Exampl 2 t [dgc] diffrnc 5.1 U w [%] h [kj/kg] stat 1 20 40 34.6 stat 2 25 40 44.9 Exampl 3 t [dgc] diffrnc 10.3 U w [%] h [kj/kg] stat 1 20 40 34.6 stat 2 25 60 54.8 diffrnc 20.2 Tab. 6: Enthalpy diffrncs with diffrnt changs of stat

Principls of Humidity - Mollir diagram Tabl 7 summarizs humidity function valus at diffrnt tmpraturs. A Mollir diagram srvs for solving problms in air conditioning tchnology graphically. It summarizs diffrnt humidity functions in on chart. Using th mixing ratio r thr is a rlation btwn r and tmpratur t with rlativ humidity U w as fr paramtr : 622 p r w ( t) U w r = = = p 622 + r 100 Using th Magnus formula you can draw a band of curvs of constant rlativ humidity U w as functions t(r) which is calld Mollir diagram. It is convnint to add curvs of constant nthalpy to th Mollir diagram (as in Fig. 4) : h = [c pa t + (l w + c pv t) r] t = (h - l w r) / (c pa + c pv r) In this way you can dscrib graphically thrmodynamical procsss such as xampls 1, 2, 3 in th sction Spcific Enthalpy. In a profssional Mollir diagram usually furthr humidity functions ar includd. tmpratur t [dgc] 50 45 40 35 30 25 20 15 10-10 -505 1%rh 2%rh 5%rh 10%rh 20%rh h = 0 kj/kg procss 1 procss 2 procss 3 h = 100 kj/kg 40%rh 60%rh 80%rh 100%rh fog rgion 0 5 10 15 20 mixing ratio r [g/kg] h = 50 kj/kg Fig. 4 : Mollir diagram : curvs of constant rlativ humidity and nthalpy. Exampls 1, 2, 3 from th sction Spcific Enthalpy ar drawn as procsss 1, 2, 3.

Tab. 7: Humidity function valus at diffrnt tmpraturs (p =1013.25 mbar, ral gas corrctions ar takn into account) : -20 dgc U w [%] t d [dgc] [mbar] d v [g/m³] r [g/kg] h [kj/kg] 80-22.56 1.013 0.867 0.622-18.56 70-24.07 0.886 0.758 0.544-18.76 60-25.78 0.759 0.650 0.467-18.95 50-27.78 0.633 0.542 0.389-19.14 40-30.17 0.506 0.433 0.311-19.34 30-33.17 0.380 0.325 0.233-19.53 20-37.26 0.253 0.217 0.155-19.72 10-43.90 0.127 0.108 0.078-19.92 0 dgc Uw [%] t d [dgc] [mbar] d v [g/m³] r [g/kg] h [kj/kg] 100 0.00 6.139 4.870 3.791 9.45 90-1.45 5.525 4.383 3.410 8.50 80-3.04 4.911 3.896 3.029 7.55 70-4.82 4.297 3.409 2.649 6.61 60-6.85 3.683 2.922 2.269 5.66 50-9.20 3.069 2.435 1.890 4.72 40-12.02 2.456 1.948 1.511 3.77 30-15.55 1.842 1.461 1.133 2.83 20-20.35 1.228 0.974 0.755 1.89 10-28.11 0.614 0.487 0.377 0.94 5-35.34 0.307 0.243 0.188 0.47

20 dgc U w [%] t d [dgc] [mbar] d v [g/m³] r [g/kg] h [kj/kg] 100 20.00 23.431 17.318 14.723 56.64 90 18.31 21.088 15.586 13.220 52.96 80 16.44 18.745 13.854 11.723 49.28 70 14.36 16.402 12.123 10.234 45.62 60 12.00 14.059 10.391 8.751 41.95 50 9.26 11.715 8.659 7.276 38.30 40 5.98 9.372 6.927 5.807 34.65 30 1.88 7.029 5.195 4.345 31.00 20-3.67 4.686 3.464 2.890 27.36 10-12.60 2.343 1.732 1.442 23.73 5-20.89 1.172 0.866 0.720 21.92 40 dgc U w [%] t d [dgc] [mbar] d v [g/m³] r [g/kg] h [kj/kg] 100 40.00 74.052 51.237 49.041 158.72 90 38.04 66.647 46.113 43.791 146.57 80 35.89 59.242 40.989 38.623 134.49 70 33.48 51.836 35.866 33.535 122.47 60 30.76 44.431 30.742 28.525 110.52 50 27.61 37.026 25.618 23.590 98.64 40 23.84 29.621 20.495 18.730 86.83 30 19.14 22.216 15.371 13.943 75.08 20 12.79 14.810 10.247 9.226 63.39 10 2.62 7.405 5.124 4.579 51.77 5-6.78 3.703 2.562 2.281 45.99

60 dgc U w [%] t d [dgc] [mbar] d v [g/m³] r [g/kg] h [kj/kg] 100 60.00 200.610 130.470 153.543 400.02 90 57.74 180.549 117.423 134.859 363.59 80 55.26 160.488 104.376 117.055 327.75 70 52.50 140.427 91.329 100.069 292.48 60 49.38 120.366 78.282 83.846 257.75 50 45.79 100.305 65.235 68.337 223.57 40 41.51 80.244 52.188 53.494 189.91 30 36.17 60.183 39.141 39.276 156.77 20 28.99 40.122 26.094 25.644 124.14 10 17.51 20.061 13.047 12.563 91.99 5 6.97 10.030 6.523 6.219 76.10

Principls of Humidity - Litratur [1] Sonntag D.: Important Nw Valus of Physical Constants of 1986, Vapour Prssur Formulations basd on th ITS-90 and Psychromtr Formula; Z.Mtorol.70 (1990) 5, 340-344 [2] Hyland R.W.: A Corrlation for th scond Intraction Virial Cofficints and Enhancmnt Factors for Moist air; J.Rsarch NBS, A.Physics and Chmistry 79A (1975) 551-560