Projection-valued measures and spectral integrals

Similar documents
Compact operators on Banach spaces

Analysis Preliminary Exam Workshop: Hilbert Spaces

The weak topology of locally convex spaces and the weak-* topology of their duals

Measures. Chapter Some prerequisites. 1.2 Introduction

FUNCTIONAL ANALYSIS LECTURE NOTES: COMPACT SETS AND FINITE-DIMENSIONAL SPACES. 1. Compact Sets

Stone-Čech compactification of Tychonoff spaces

Functional Analysis HW #5

LECTURE OCTOBER, 2016

Topological vectorspaces

The spectrum of a self-adjoint operator is a compact subset of R

10.1. The spectrum of an operator. Lemma If A < 1 then I A is invertible with bounded inverse

Some Background Material

11. Spectral theory For operators on finite dimensional vectors spaces, we can often find a basis of eigenvectors (which we use to diagonalize the

Spectral Theory, with an Introduction to Operator Means. William L. Green

Part V. 17 Introduction: What are measures and why measurable sets. Lebesgue Integration Theory

Math Solutions to homework 5

CHAPTER I THE RIESZ REPRESENTATION THEOREM

Hilbert spaces. 1. Cauchy-Schwarz-Bunyakowsky inequality

Infinite-Dimensional Triangularization

Problem Set 2: Solutions Math 201A: Fall 2016

Spectral Measures, the Spectral Theorem, and Ergodic Theory

Finite-dimensional spaces. C n is the space of n-tuples x = (x 1,..., x n ) of complex numbers. It is a Hilbert space with the inner product

2 Garrett: `A Good Spectral Theorem' 1. von Neumann algebras, density theorem The commutant of a subring S of a ring R is S 0 = fr 2 R : rs = sr; 8s 2

(1) Consider the space S consisting of all continuous real-valued functions on the closed interval [0, 1]. For f, g S, define

CHAPTER V DUAL SPACES

NAME: Mathematics 205A, Fall 2008, Final Examination. Answer Key

1 Math 241A-B Homework Problem List for F2015 and W2016

Estimates for probabilities of independent events and infinite series

08a. Operators on Hilbert spaces. 1. Boundedness, continuity, operator norms

Hilbert Space Methods Used in a First Course in Quantum Mechanics A Recap WHY ARE WE HERE? QUOTE FROM WIKIPEDIA

Chapter 1. Measure Spaces. 1.1 Algebras and σ algebras of sets Notation and preliminaries

COMMON COMPLEMENTS OF TWO SUBSPACES OF A HILBERT SPACE

MAT 570 REAL ANALYSIS LECTURE NOTES. Contents. 1. Sets Functions Countability Axiom of choice Equivalence relations 9

Topology. Xiaolong Han. Department of Mathematics, California State University, Northridge, CA 91330, USA address:

2. Dual space is essential for the concept of gradient which, in turn, leads to the variational analysis of Lagrange multipliers.

The following definition is fundamental.

Semicontinuous functions and convexity

Exercise Solutions to Functional Analysis

REAL AND COMPLEX ANALYSIS

CHAPTER X THE SPECTRAL THEOREM OF GELFAND

Spectral theorems for bounded self-adjoint operators on a Hilbert space

CHAPTER VIII HILBERT SPACES

A Brief Introduction to Functional Analysis

are Banach algebras. f(x)g(x) max Example 7.4. Similarly, A = L and A = l with the pointwise multiplication

HILBERT SPACES AND THE RADON-NIKODYM THEOREM. where the bar in the first equation denotes complex conjugation. In either case, for any x V define

CHAPTER 3. Hilbert spaces

Chapter 1 The Real Numbers

The Gram matrix in inner product modules over C -algebras

Five Mini-Courses on Analysis

AN ELEMENTARY PROOF OF THE SPECTRAL RADIUS FORMULA FOR MATRICES

The Lebesgue Integral

106 CHAPTER 3. TOPOLOGY OF THE REAL LINE. 2. The set of limit points of a set S is denoted L (S)

A Crash Course in Topological Groups

Real Analysis, 2nd Edition, G.B.Folland Elements of Functional Analysis

Functional Analysis I

V (v i + W i ) (v i + W i ) is path-connected and hence is connected.

Measure, Integration & Real Analysis

Advanced Probability

1 Topology Definition of a topology Basis (Base) of a topology The subspace topology & the product topology on X Y 3

Real Analysis Comprehensive Exam Fall A(k, ε) is of Lebesgue measure zero.

Analysis II Lecture notes

An introduction to some aspects of functional analysis

A VERY BRIEF REVIEW OF MEASURE THEORY

Lecture Notes on Operator Algebras. John M. Erdman Portland State University. Version March 12, 2011

Chapter 2 Metric Spaces

Normed Vector Spaces and Double Duals

Math 7330: Functional Analysis Fall 2005

Math 350 Fall 2011 Notes about inner product spaces. In this notes we state and prove some important properties of inner product spaces.

Spectral theory for compact operators on Banach spaces

NORMS ON SPACE OF MATRICES

1 Functional Analysis

Factorization of unitary representations of adele groups Paul Garrett garrett/

Bounded and continuous functions on a locally compact Hausdorff space and dual spaces

Studying Rudin s Principles of Mathematical Analysis Through Questions. August 4, 2008

TOPOLOGY HW 2. x x ± y

Metric Spaces and Topology

Vector Space Concepts

ALGEBRAIC GEOMETRY COURSE NOTES, LECTURE 2: HILBERT S NULLSTELLENSATZ.

Chapter 2 Linear Transformations

A PRIMER ON SESQUILINEAR FORMS

DS-GA 1002 Lecture notes 0 Fall Linear Algebra. These notes provide a review of basic concepts in linear algebra.

M17 MAT25-21 HOMEWORK 6

Chapter 2. Vectors and Vector Spaces

Real Analysis Notes. Thomas Goller

I teach myself... Hilbert spaces

Functional Analysis Exercise Class

Elliptic Regularity. Throughout we assume all vector bundles are smooth bundles with metrics over a Riemannian manifold X n.

INVERSE LIMITS AND PROFINITE GROUPS

ABSTRACT ALGEBRA: A PRESENTATION ON PROFINITE GROUPS

MATH 51H Section 4. October 16, Recall what it means for a function between metric spaces to be continuous:

AN ALGEBRAIC APPROACH TO GENERALIZED MEASURES OF INFORMATION

2.2 Annihilators, complemented subspaces

Categories and Quantum Informatics: Hilbert spaces

(U) =, if 0 U, 1 U, (U) = X, if 0 U, and 1 U. (U) = E, if 0 U, but 1 U. (U) = X \ E if 0 U, but 1 U. n=1 A n, then A M.

Hausdorff measure. Jordan Bell Department of Mathematics, University of Toronto. October 29, 2014

Set, functions and Euclidean space. Seungjin Han

MAT 445/ INTRODUCTION TO REPRESENTATION THEORY

Measurable Choice Functions

Overview of normed linear spaces

Real Analysis Chapter 4 Solutions Jonathan Conder

Transcription:

Projection-valued measures and spectral integrals Jordan Bell jordan.bell@gmail.com Department of Mathematics, University of Toronto April 16, 2014 Abstract The purpose of these notes is to precisely define all the objects one needs to talk about projection-valued measures and the spectral theorem. 1 Orthogonal complements Let H be a separable complex Hilbert space. If W is a subset of H, the span of W is the set of all finite linear combinations of elements of W. If W α, α I, are subsets of H, let α I denote the closure of the span of α I W α. It is straightforward to check that this is the intersection of all closed subspaces of H that contain each of the W α. 1 If V is a subspace of H, define W α V {f H : f, g 0 for all g V }, called the orthogonal complement of V. If V is a subspace of H then V is a closed subspace of H. Let V be a closed subspace of H and let f H. It is a fact that there is a unique g 0 V such that f g 0 inf f g, g V 1 Let L be the set of all closed subspaces of H. Set inclusion is a partial order on L. L is a lattice: if M, N L, then M N is the greatest element in L that is contained both in M and in N, and M N is the least element in L that contains each of M and N. L is a complete lattice: if M α L, then α Mα is the greatest element in L that is contained in each M α, and α Mα is the least element in L that contains each Mα. (For comparison, the set of finite dimensional subspaces of an infinite dimensional Hilbert space is a lattice but is not a complete lattice. 1

and that f g 0 V. Then, f g 0 + (f g 0 V + V. Therefore, if V is a closed subspace of H then H V + V. (1 If V and W are subspaces of H, we write V W if v, w 0 for all v V, w W. If V, W are closed subspaces of H and V W, we can show that V + W V W, and thus V + W is in particular a closed subspace of H. 2 By induction, we obtain V 1 + + V n n V k. If V k, k 1, are mutually orthogonal closed subspaces of H, we define V k V k, called the orthogonal direct sum of the subspaces V k. The orthogonal direct sum V k is equal to the closure of the set of all finite sums of the form v k, where v k V k. 3 If V is a closed subspace of H, then (1 is H V V. The subobjects of a Hilbert space that we care about are mostly closed subspaces, because they are themselves Hilbert spaces (a closed subset of a complete metric space is itself a complete metric space. Generally, when talking about one type of object, we care mostly about those subsets of it that are the same type of object, which is why, for example, that we are so glad to know when closed subspaces are mutually orthogonal, because then their sum is itself a closed subspace. 4 2 Projections Let V be a closed subspace of H. The projection onto V is the map P V : H H defined in the following way: if f H V V, let f g + h, g V, h V, and set P V (f g. The image of P V is V : if f im P V then there is some f 0 H such that P V f 0 f and f 0 g + h, g V, h V, so by the definition of P V we get P V f 0 g, giving f g V ; on the other hand, if f V then P V f f, so f im P. 2 If z n V + W and z n z H, write z n v n + w n, v n V and w n W. Using V W we get z n z m 2 v n v m 2 + w n w m 2, which we use to prove the claim. On the other hand, there are examples of closed subspaces V, W of a Hilbert space that do not satisfy V W for which V + W is not itself closed. 3 See Paul Halmos, Introduction to Hilbert Space and the Theory of Spectral Multiplicity, p. 26, 13, Theorem 2. 4 Paul Halmos in his Introduction to Hilbert Space and the Theory of Spectral Multiplicity uses the term linear manifold to refer to what I call a subspace and subspace to refer to what I call a closed subspace. I think even better terms would be linear subspace and Hilbert subspace, respectively; this would emphasize the category of objects with which one is working. 2

The image of a projection is closed. 5 Hence if P is a projection, we have H im P V (im P V im P V ker P V. If P V is a projection onto a closed subspace V of H, we check that P V B(H. If g V, h V, then, because g, h 0, P V (g + h 2 g 2 g 2 + h 2 g, g + h, h g + h, g + h g + h 2, so P V 1. If V {0}, let g V, g 0. Then ( g g g 1, P V g g g 1. Hence if P V is a projection and P V 0, then P V 1. Of course, if P V 0 then P V 0. Using H V V, we check that if f 1, f 2 H then P V f 1, f 2 f 1, P V f 2, hence P V is self-adjoint. We call P B(H idempotent if P 2 P. 6 The following conditions are each equivalent to a nonzero idempotent P being a projection: P is positive P is self-adjoint P is normal ker P (im P P 1 3 The lattice of projections Two important projections: id H is the projection onto H, and 0 is the projection onto {0}. If T B(H is self-adjoint, we say that T is positive if, for all v H, T v, v 0. If S, T B(H are self-adjoint, we say that S T if, for all v H, Sv, v T v, v. 5 We call P : H H a projection if there is some closed subspace V of H such that P is the projection onto V, and this V will be the image of P. We often talk about a projection in H without specifying what it is a projection onto. 6 Often the term projection is used to refer to a thing we would call an idempotent, and the term orthogonal projection is used to refer to a thing we would call a projection. 3

This is equivalent to S T being a positive operator. Thus, T B(H is a positive operator if and only if T 0. One checks that is a partial order on the set of bounded self-adjoint operators on H. Let P B(H be a projection. As H im P (im P im P ker P, if v H then v v 1 + v 2, v 1 im P, v 2 (im P, P v, v v 1, v 1 + v 2 v 1, v 1 + v 1, v 2 v 1, v 1 0. Hence P 0. Let P, Q B(H be projections. It is a fact that the following statements are equivalent: P Q im P im Q QP P P Q P P v Qv for all v H The set of projections is a complete lattice. 7 4 Sums of projections If P, Q B(H are projections, we write P Q if im P im Q, which is equivalent to P Q 0 and QP 0; neither one of those by itself is sufficient. It is a fact 8 that P + Q is a projection if and only if P Q, in which case P + Q is a projection onto im P im Q. The product P Q is a projection if and only if P Q QP, in which case it is a projection onto im P im Q. Paul Halmos shows the following in Question 94 of his Hilbert Space Problem Book: If T n B(H are self-adjoint such that T n T n+1 for all n and if there is some self-adjoint T B(H such that T n T for all n, then there is some self-adjoint T B(H such that T n T in the strong operator topology. 9 This is analogous to how a nondecreasing sequence of real numbers that has an upper bound converges to a real number. Let M n, n 1, be closed subspaces of H such that M n M n+1 and let P n be the projection onto M n. As M n M n+1 we have P n P n+1 for all n. Also, P n id H for all n, as id H is the projection onto H and M n H. Hence by 7 If P, Q B(H are projections, then the infimum of P and Q is the projection onto im P im Q, and the supremum of P and Q is the projection onto im P im Q. See Problem 96 of Paul Halmos s Hilbert Space Problem Book. 8 See Steven Roman, Advanced Linear Algebra, third ed., p. 78 9 Recall that if T n B(H and T B(H, we say that T n T in the strong operator topology if for all v H we have T nv T v. (If T n T in B(H then T n T in the strong operator topology. 4

the result from Halmos stated above, there is some self-adjoint P B(H such that P n P in the strong operator topology. Let M M n. I claim that P is the projection onto M. 10 If P n B(H, n 1, are projections and P i P j for i j, let M n n im P k. Define T n v n P kv. As M n is a closed subspace of H, we have H M n M n im P 1 P n M n. If v v 1 + + v n + v, v 1 im P 1,..., v n im P n, v M n, then T n v n (P k (v 1 + + v n + v n v k. Thus T n is the projection onto M n. Therefore, there is some self-adjoint P B(H such that T n P in the strong operator topology, and with M n im P k im P k im P n, P is the projection onto M. n P k P in the strong operator topology, and we denote P by P k. 5 Definition of projection-valued measures Let P(H be the set of projections in B(H. Let B(C be the Borel σ-algebra of C. A projection-valued measure on C is a map E : B(C P(H such that E( 0 and E(C id H If B n B(C, n 1, are pairwise disjoint, then ( E B n E(B n, n 1 n 1 where n 1 E(B n is the limit of 1 n N E(B n in the strong operator topology. 10 cf. Paul Halmos, Introduction to Hilbert Space and the Theory of Spectral Multiplicity, p. 46, 28, Theorem 1. 5

6 Finite additivity If E : B(C P(H is any function that satisfies E(B 1 B 2 E(B 1 +E(B 2 for disjoint B 1, B 2 B(C, then it satisfies the following four properties. In particular, if E is a projection-valued measure it satisfies them. 1. E( E( E( + E(, so E( 0. 2. If B 1, B 2 B(C and B 1 B 2, then E(B 2 E(B 2 \ B 1 B 1 E(B 2 \ B 1 + E(B 1 E(B 1, since E(B 2 \B 1 is a projection and hence is a positive operator. Therefore, if B 1 B 2 then E(B 1 E(B 2. 3. Let B 1, B 2 B(C. We have and and E(B 1 E(B 1 B 2 + E(B 1 \ B 2, E(B 2 E(B 1 B 2 + E(B 2 \ B 1, E(B 1 B 2 E(B 1 B 2 + E(B 1 \ B 2 + E(B 2 \ B 1, and combining these gives, for any B 1, B 2 B(C, E(B 1 + E(B 2 E(B 1 B 2 + E(B 1 B 2 + E(B 1 \ B 2 + E(B 2 \ B 1 E(B 1 B 2 + E(B 1 B 2. 4. Let B 1, B 2 B(C. Multiplying both sides of the above equation on the left by E(B 2 gives E(B 1 E(B 2 + E(B 2 E(B 2 E(B 1 B 2 E(B 2 + E(B 1 B 2 E(B 2. As E(B 1 B 2 and E(B 2 are projections and E(B 1 B 2 E(B 2, we have E(B 1 B 2 E(B 2 E(B 2, which with E(B 2 E(B 2 E(B 2 gives E(B 1 E(B 2 + E(B 2 E(B 1 B 2 + E(B 2. Hence, for any B 1, B 2 B(C, E(B 1 E(B 2 E(B 1 B 2. 6

7 Complex measures Suppose that E : B(C P(H is a function such that E(C id H, and that for all v, w H, the function E v,w : B(C C defined by E v,w (B E(Bv, w is a complex measure. I will show that E is a projection-valued measure. Let B n B(C, n 1, be pairwise disjoint. 11 If B 1, B 2 B(C are disjoint, then for all v, w H, E(B 1 B 2 v, w E v,w (B 1 B 2 E v,w (B 1 + E v,w (B 2 E(B 1 v, w + E(B 2 v, w (E(B 1 + E(B 2 v, w, and since this holds for all v, w H, we obtain E(B 1 B 2 E(B 1 + E(B 2. Therefore, from 6, if B 1, B 2 B(C are disjoint then E(B 1 E(B 2 E(B 1 B 2 E( 0. If v H and v n E(B n v, then, for m n, v n, v m E(B n v, E(B m v E(B m E(B n v, v 0v, 0 0. For a n C, for the sequence N a nv n to converge in H it is equivalent to a nv n 2 < ; 12 but v n v, so it suffices to show that a n 2 <. Using that if T is a projection then T is self-adjoint and T 2 T, and that 11 cf. Paul Halmos, Introduction to Hilbert Space and the Theory of Spectral Multiplicity, p. 59, 36, Theorem 3. 12 e.g. Walter Rudin s Functional Analysis, p. 295, Theorem 12.6: if x n H are pairwise orthogonal, not necessarily of unit norm, then for xn to converge is equivalent to xn 2 <. 7

E v,v is a complex measure, E(B n v 2 N E(B n v, E(B n v E(B n E(B n v, v E(B n v, v E v,v (B n ( E v,v B n ( E B n v, v ( E B n v v. Therefore, the sequence N E(B nv converges in H; namely, N E(B n converges in the strong operator topology. Let P be its limit. By 4, P is the projection onto im E(B n. For v, w H, ( ( E B n v, w E v,w B n 2 E v,w (B n E(B n v, w P v, w, and since this is true for all v, w H, we obtain ( E B n P, where P is the limit of N E(B n in the strong operator topology. This completes the proof that E is a projection-valued measure. 8

On the other hand, if E : B(C P(H is a projection-valued measure, we can show that for each v, w H the function E v,w : B(C C defined by E v,w (B E(Bv, w is a complex measure. 8 Spectral integrals Let B(C be the set of bounded measurable functions C C. 13 It is a complex vector space, and we define the norm f sup z C f(z ; one checks that B(C is a Banach space. Paul Halmos, Introduction to Hilbert Space and the Theory of Spectral Multiplicity, p. 60, 37, proves 14 that if E : B(C P(H is a projection-valued measure and f B, then there is a unique A B(H such that, for all v, w H, Av, w E v,w (f fde v,w f(λde v,w (λ, and A 2 f. We write A E(f fde C C f(λde(λ. We can check that B(C is a C -algebra, with f defined by f (z f(z. It is a fact that B(H is a C -algebra. If α C and f, g B(C, then 15 E(αf αe(f, E(f + g E(f + E(g; E(f (E(f. (2 The first two of these together with E(f 2 f show that E : B(C B(H is a bounded linear map. If f, g B(C, then 16 E(fE(g E(fg. 13 This is not L (C, the set of equivalence classes of essentially bounded measurable functions, where two functions are equivalent if they are equal almost everywhere. Moreover, it is not even the set L (C of essentially bounded measurable functions. When does one speak about L (C? L (C is a vector space; let N (C be the set of those functions that are equal to 0 almost everywhere in C; N (C is a vector space; then L (C is the vector space quotient L (C/N (C. 14 The operator A is the operator obtained from the following statement, which itself follows from the Riesz representation theorem. If φ : H H C is sesquilinear (we take sesquilinear to mean linear in the first entry and conjugate linear in the second entry and M sup φ(v, w <, v w 1 then there exists a unique A B(H such that φ(v, w Av, w, v, w H, and A M. One also has to prove that for each f B, φ(v, w E v,w(f is sesquilinear. 15 See Paul Halmos, Introduction to Hilbert Space and the Theory of Spectral Multiplicity, p. 60, 37, Theorem 2. 16 From Paul Halmos, Introduction to Hilbert Space and the Theory of Spectral Multiplicity, p. 61, 37, Theorem 3. To understand the proof by Halmos (which is symbolically convincing because of our familiarity with the permissible moves one can make when integrating functions 9

This and the third statement in (2 show that E : B(C B(H is a homomorphism of C -algebras: From the fact that E : B(C B(H is a homomorphism of C -algebras, it follows in particular that E(f is a normal operator for each f B(C. 9 The spectrum of a projection-valued measure If E : B(C P(H is a projection-valued measure, let U α, α I, be those open sets U α C such that E(U α 0. The spectrum of E is σ(e C \ α I U α ; this may also be called the support of E, and is analogous to the support of a nonnegative measure. Since σ(e is the complement of a union of open sets, it is closed. For each n 1, let D n { z n}. D n is compact, so there are α n,1,..., α n,n such that N D n U αn,k. But, using 6 and the fact that E(U αn,k 0 for 1 k N, ( N E U αn,k ( N ( N E(U αn,1 + E U αn,k E U αn,1 U αn,k k2 ( N ( N E U αn,k E(U αn,1 E U αn,k k2 ( N E U αn,k 0, k2 therefore E(D n 0 (it will be 0, and as a projection is a positive operator it must equal 0. Let B n D n+1 \ D n ; as B n is a subset of D n+1 we get E(B n 0. We have B n C, and as the B n are pairwise disjoint we get ( E(C E B n E(B n 0, using complex measures, keep in mind that if B 1, B 2 B(C then k2 k2 E E(B1 v,w(b 2 E(B 2 E(B 1 v, w E(B 1 B 2 v, w E v,w(b 1 B 2. 10

contradicting that E(C id H. Therefore, if E is a projection-valued measure then its spectrum is not empty. Here are some facts about projection-valued measures. E(C \ σ(e 0. 17 Let B E (C be the set of bounded measurable functions σ(e C, and let f E sup z σ(e f(z. If E is a projection-valued measure with compact spectrum and f : C C is continuous, then 18 E(χσ(E f f E. (We often talk about projection-valued measures whose spectrum is compact; since their spectrum is closed, to demand that the spectrum of a projectionvalued measure is compact is to demand that it is bounded. If E is a projection-valued measure with compact spectrum and if A E(χ σ(e λ, then 19 σ(a σ(e. 10 Statement of the spectral theorem The spectral theorem, proved by in Paul Halmos, Introduction to Hilbert Space and the Theory of Spectral Multiplicity, p. 69, 43, Theorem 1, states the following: If A B(H is self-adjoint, then there exists a unique projection-valued measure E : B(C P(H, with σ(e compact and σ(e R, such that A E(χ σ(e λ λde(λ. σ(e Since σ(e R, we can write E : B(R P(H. 17 Paul Halmos, Introduction to Hilbert Space and the Theory of Spectral Multiplicity, p. 62, 38, Theorem 1. His statement is about regular measures, but a projection-valued measure on the Borel σ-algebra of C is regular, as he shows on the page after that. 18 Paul Halmos, Introduction to Hilbert Space and the Theory of Spectral Multiplicity, p. 62, 38, Theorem 2. 19 Paul Halmos, Introduction to Hilbert Space and the Theory of Spectral Multiplicity, p. 64, 39, Theorem 2. The proof uses the fact that T B(H is invertible if and only if there is some α > 0 such that T v α v for all v H. 11