Chapter 2 A Class of Robust Solution for Linear Bilevel Programming

Similar documents
Interactive Bi-Level Multi-Objective Integer. Non-linear Programming Problem

Fuzzy Approaches for Multiobjective Fuzzy Random Linear Programming Problems Through a Probability Maximization Model

VARIATION OF CONSTANT SUM CONSTRAINT FOR INTEGER MODEL WITH NON UNIFORM VARIABLES

Some modelling aspects for the Matlab implementation of MMA

On the Multicriteria Integer Network Flow Problem

Lecture Notes on Linear Regression

The Study of Teaching-learning-based Optimization Algorithm

arxiv: v1 [math.oc] 3 Aug 2010

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017

MMA and GCMMA two methods for nonlinear optimization

Heuristic Algorithm for Finding Sensitivity Analysis in Interval Solid Transportation Problems

Using T.O.M to Estimate Parameter of distributions that have not Single Exponential Family

10) Activity analysis

International Journal of Pure and Applied Sciences and Technology

System in Weibull Distribution

FUZZY GOAL PROGRAMMING VS ORDINARY FUZZY PROGRAMMING APPROACH FOR MULTI OBJECTIVE PROGRAMMING PROBLEM

Uncertain Models for Bed Allocation

Power law and dimension of the maximum value for belief distribution with the max Deng entropy

General viscosity iterative method for a sequence of quasi-nonexpansive mappings

Yong Joon Ryang. 1. Introduction Consider the multicommodity transportation problem with convex quadratic cost function. 1 2 (x x0 ) T Q(x x 0 )

A PROBABILITY-DRIVEN SEARCH ALGORITHM FOR SOLVING MULTI-OBJECTIVE OPTIMIZATION PROBLEMS

A new Approach for Solving Linear Ordinary Differential Equations

CS : Algorithms and Uncertainty Lecture 17 Date: October 26, 2016

Assortment Optimization under MNL

The lower and upper bounds on Perron root of nonnegative irreducible matrices

A Hybrid Variational Iteration Method for Blasius Equation

Lecture 10 Support Vector Machines. Oct

The Minimum Universal Cost Flow in an Infeasible Flow Network

A New Algorithm for Finding a Fuzzy Optimal. Solution for Fuzzy Transportation Problems

The Expectation-Maximization Algorithm

A New Refinement of Jacobi Method for Solution of Linear System Equations AX=b

A Local Variational Problem of Second Order for a Class of Optimal Control Problems with Nonsmooth Objective Function

Fuzzy Boundaries of Sample Selection Model

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Feature Selection in Multi-instance Learning

DETERMINATION OF TEMPERATURE DISTRIBUTION FOR ANNULAR FINS WITH TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY BY HPM

Chapter 8 Indicator Variables

Neryškioji dichotominių testo klausimų ir socialinių rodiklių diferencijavimo savybių klasifikacija

An Application of Fuzzy Hypotheses Testing in Radar Detection

ECE559VV Project Report

Orientation Model of Elite Education and Mass Education

A Network Intrusion Detection Method Based on Improved K-means Algorithm

Solving Nonlinear Differential Equations by a Neural Network Method

princeton univ. F 17 cos 521: Advanced Algorithm Design Lecture 7: LP Duality Lecturer: Matt Weinberg

The Order Relation and Trace Inequalities for. Hermitian Operators

Solutions to exam in SF1811 Optimization, Jan 14, 2015

TRAPEZOIDAL FUZZY NUMBERS FOR THE TRANSPORTATION PROBLEM. Abstract

Double Layered Fuzzy Planar Graph

Control of Uncertain Bilinear Systems using Linear Controllers: Stability Region Estimation and Controller Design

INAk-out-of-n: G system, there are totally n components,

Hongyi Miao, College of Science, Nanjing Forestry University, Nanjing ,China. (Received 20 June 2013, accepted 11 March 2014) I)ϕ (k)

A New Scrambling Evaluation Scheme based on Spatial Distribution Entropy and Centroid Difference of Bit-plane

Supporting Information

FREQUENCY DISTRIBUTIONS Page 1 of The idea of a frequency distribution for sets of observations will be introduced,

Solutions HW #2. minimize. Ax = b. Give the dual problem, and make the implicit equality constraints explicit. Solution.

Errors in Nobel Prize for Physics (7) Improper Schrodinger Equation and Dirac Equation

AGGREGATION OF FUZZY OPINIONS UNDER GROUP DECISION-MAKING BASED ON SIMILARITY AND DISTANCE

ON A DETERMINATION OF THE INITIAL FUNCTIONS FROM THE OBSERVED VALUES OF THE BOUNDARY FUNCTIONS FOR THE SECOND-ORDER HYPERBOLIC EQUATION

Irene Hepzibah.R 1 and Vidhya.R 2

Color Rendering Uncertainty

Dynamic Slope Scaling Procedure to solve. Stochastic Integer Programming Problem

Investigation of the Relationship between Diesel Fuel Properties and Emissions from Engines with Fuzzy Linear Regression

A Robust Method for Calculating the Correlation Coefficient

Randić Energy and Randić Estrada Index of a Graph

Complement of Type-2 Fuzzy Shortest Path Using Possibility Measure

COS 521: Advanced Algorithms Game Theory and Linear Programming

Calculation of time complexity (3%)

A CHARACTERIZATION OF ADDITIVE DERIVATIONS ON VON NEUMANN ALGEBRAS

A Bayes Algorithm for the Multitask Pattern Recognition Problem Direct Approach

x i1 =1 for all i (the constant ).

Single-Facility Scheduling over Long Time Horizons by Logic-based Benders Decomposition

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Research Article Global Sufficient Optimality Conditions for a Special Cubic Minimization Problem

Determine the Optimal Order Quantity in Multi-items&s EOQ Model with Backorder

Proceedings of the 10th WSEAS International Confenrence on APPLIED MATHEMATICS, Dallas, Texas, USA, November 1-3,

THIS paper considers the following generalized linear

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal

Amiri s Supply Chain Model. System Engineering b Department of Mathematics and Statistics c Odette School of Business

Generalized Linear Methods

Chapter 2 Robust Covariance Intersection Fusion Steady-State Kalman Filter with Uncertain Parameters

Integrals and Invariants of Euler-Lagrange Equations

Parameter Estimation for Dynamic System using Unscented Kalman filter

Group Analysis of Ordinary Differential Equations of the Order n>2

Communication Complexity 16:198: February Lecture 4. x ij y ij

on the improved Partial Least Squares regression

MEM 255 Introduction to Control Systems Review: Basics of Linear Algebra

On the Global Linear Convergence of the ADMM with Multi-Block Variables

Uncertainty and auto-correlation in. Measurement

Global Sensitivity. Tuesday 20 th February, 2018

Beyond Zudilin s Conjectured q-analog of Schmidt s problem

The Analytical Solution of a System of Nonlinear Differential Equations

International Conference on Advanced Computer Science and Electronics Information (ICACSEI 2013) equation. E. M. E. Zayed and S. A.

Some Comments on Accelerating Convergence of Iterative Sequences Using Direct Inversion of the Iterative Subspace (DIIS)

Feature Selection: Part 1

Lecture 3. Ax x i a i. i i

On an Extension of Stochastic Approximation EM Algorithm for Incomplete Data Problems. Vahid Tadayon 1

CHAPTER-5 INFORMATION MEASURE OF FUZZY MATRIX AND FUZZY BINARY RELATION

Fixed point method and its improvement for the system of Volterra-Fredholm integral equations of the second kind

EEE 241: Linear Systems

PHYS 705: Classical Mechanics. Calculus of Variations II

Transcription:

Chapter 2 A Class of Robust Soluton for Lnear Blevel Programmng Bo Lu, Bo L and Yan L Abstract Under the way of the centralzed decson-makng, the lnear b-level programmng (BLP) whose coeffcents are supposed to be unknown but bounded n box dsturbance set s studed. Accordngly, a class of robust soluton for lnear BLP s defned, and the orgnal uncertan BLP was converted to the determnstc trple level programmng, then a solvng process s proposed for the robust soluton. Fnally, a numercal example s shown to demonstrate the effectveness and feasblty of the algorthm. Keywords Box dsturbance Lnear blevel programmng Robust optmzaton Robust soluton 2.1 Introducton Blevel programmng (BLP) s the model wth leader-follower herarchcal structure, whch makes the parameter optmzaton problems as the constrants (Dempe 2002). In ts decson framework, the upper level programmng s connected wth not only the decson varables n ts level but also wth the optmal soluton n the lower level programmng, whle the optmal soluton n the lower lever programmng s affected by decson varables n the upper level B. Lu B. L Y. L School of Management, Tanjn Unversty, Tanjn, Chna B. Lu (&) School of Informaton Scence and Technology, Shhez Unversty, Xnjang, Chna e-mal: lubo.ce@163.com Y. L School of Scence, Shhez Unversty, Xnjang, Chna E. Q et al. (eds.), The 19th Internatonal Conference on Industral Engneerng and Engneerng Management, DOI: 10.1007/978-3-642-38391-5_2, Ó Sprnger-Verlag Berln Hedelberg 2013 11

12 B. Lu et al. programmng. Due to the leader-follower herarchcal structure problems wdely exst n the realstc decson-makng envronment, the scholars have been payng great attenton to BLP and have brought about good results on the theory and algorthms (Balas and Karwan 1982; Fortuny-Amat and McCarl 1981; Matheu et al. 1994; La 1996). Some degree of uncertanty exsts n realstc decsonmakng envronment, such as the nevtable error of measurng nstrument n data collecton, ncompleteness n data nformaton, the approxmate handle for the model and other factors; hence t s necessary to study on the uncertan Blevel programmng. For the uncertanty problem, the fuzzy optmzaton and stochastc optmzaton have been appled wdely. However, t s dffcult for decson-makers to gve the precse dstrbuton functons or membershp functons whch are requred n above methods. Thus, the robust optmzaton become an mportant method, because t can seek for the best soluton for the uncertan nput wthout consderng the parameter dstrbuton of uncertan parameters and s mmune from the uncertan data (Soyster 1973). For the uncertan BLP, the defnton of robust soluton s nfluenced by the dependent degree of the upper and lower levels n the decson-makng process. When the dependent degree s relatve ndependence, the robust soluton to the uncertan BLP s defned by the way of the decentralzed decson-makng (L and Du 2011); when the dependent degree s relatve dependence, the robust soluton to the uncertan BLP s defned by the way of the centralzed decson-makng, that s, when the lower level seeks ts own robust soluton, t consders the nfluence to the robust soluton of the upper level frstly. In the paper, the latter case wll be dscussed, and the coeffcents of BLP are supposed to be unknown but bounded n box dsturbance set. By the transform of the uncertan model, the robust soluton of BLP s obtaned. Fnally, a numercal example s shown to demonstrate the effectveness and feasblty of the algorthm. 2.2 The Defnton of Robust BLP 2.2.1 The Model and the Defnton In ths paper we consder Lnear BLP formulated as follows: mn Fðx; yþ ¼c T x 1 x þ dt 1 y s:t: where y solves mn f ðx; yþ ¼c T y 2 x þ dt 2 y s:t: Ax þ By h x; y 0 ð2:1þ

2 A Class of Robust Soluton for Lnear Blevel Programmng 13 In model (2.1), x 2 R m1 ; y 2 R n1 ; c l 2 R m1 ; d l 2 R n1 ; l 2f1; 2g; A 2 R rm ; B 2 R rn ; h 2 R r1 ; there s some uncertanty or varaton n the parameters c 1 ; d 1 ; c 2 ; d 2 ; A; B; h. Let ðc 1 ; d 1 ; c 2 ; d 2 ; A; B; hþ 2l, l s a gven uncertanty set n Box dsturbance as follows: 8 >< l :¼ ðc l ; d l ; A; B; hþ >: j 2 c l ¼ c l þ ð u c l d lj ¼ dlj þ ð u d l a k ¼ a k þ ð u A b kj ¼ b kj þ ð u B h k ¼ h k þ ð u h Þ ; ðu cl Þ j ; ðu dl Þ k ; ðu A Þ kj ; ðu B Þ ð u c l Þ j ð u d l Þ ðu cl Þ Þ j ðu dl Þ j ð u AÞ k ðu A ð u BÞ kj ðu B Þ k ; ðu h Þ k ð u hþ k ðu h l ¼f1; 2g; 2 f1;...; mg; f1;...; ng; k ¼ f1;...; rg: Þ k 9 >= >; ð2:2þ For l ¼f1; 2g; 2 f1;...; mg; j 2 f1;...; ng; k ¼ f1;...; rg, c l ; d lj ; a k ; d kj ; h k are the gven data, and ðu cl Þ ; ð u d l Þ j ; ð u A ; ð u B ; ð u hþ k are the gven nonnegatve data. Under the way of the centralzed decson-makng, the robust soluton of uncertan BLP (1) s defned as follows: Defnton 1 (1) Constrant regon of the lnear BLP (1): X ¼ fðx; yþjax þ By h; x; y 0; ða; B; hþ 2lg (2) Feasble set for the follower for each fxed x XðxÞ ¼fyAxþ j By h; x; y 0; ða; B; hþ 2lg (3) Follower s ratonal reacton set for each fxed x ( ( MðxÞ ¼ yy2arg mn ct 2 x þ )) dt 2 y; y 2 XðxÞ; ða; B; hþ 2l (4) Inducble regon: IR ¼ fðx; yþjðx; yþ 2X; y 2 MðxÞg:

14 B. Lu et al. Defnton 2 Let ( F :¼ ðx; y; tþ 2R m R n c T 1 R x þ dt 1 y t ) ðx; yþ; ðc 1 ; d 1 Þ2l The programmng mnftjðx; y; tþ 2Fg ð2:3þ x;y;t s defned as robust counterpart of uncertan lnear BLP(1); F s defned as the robust feasble set of uncertan lnear BLP(1). 2.2.2 The Transform of Uncertan BLP Model Under the way of the centralzed decson-makng, based on the orgnal dea of robust optmzaton that the objectve functon can get the optmal soluton even n the worst and uncertan stuaton, the transform theorem can be descrbed as followngs: Theorem The robust lnear BLP (1) wth ts coeffcents unknown but bounded n box dsturbance set l s equvalent to Model (2.4) wth certan coeffcents as followngs: mn x Fðx; yþ ¼ Xm s:t: where d 2 solves X m max c 1 þ l c d 1 2 c 1 þ l c 1 d1j þ l d 1 d1j þ l d 1 j y j s:t: d2j ð u d 2 Þ j d 2j d2j þ ð u d 2 Þ j ; j ¼f1;...; ng; where y solves mn f ðx; yþ ¼d T y 2 y s:t: Xm a k ð l A k ¼ f1;...; rg x; y 0: b kj ð l B j y j y j h k þðl hþ k ; ð2:4þ Proof (1) Frstly, the constrant regon X of the lnear BLP (1) s transformed nto the certan regon. Consder the constrant regon of the lnear BLP (1):

2 A Class of Robust Soluton for Lnear Blevel Programmng 15 X ¼ fðx; yþjax þ By h; x; y 0; ða; B; hþ 2lg Accordng to the process of the transformaton (Lobo et al. 1998), we can obtan Ax þ By h; ða; B; hþ 2l 8 ><, 0 mn l A ;l B ;l h, 0 Xm >< þ mn l A ;l B ;l h >: X m a k x þ Xn 8 >: X m a k x þ Xn b kj y j h k ðu A Þ k x þ Xn x;y 0, 0 Xm a k ð u A 8k2f1;...;rg, Xm a k ð u A a k ¼ a k þ u 9 ð AÞ k ; ðu A ð u AÞ k ðu A ; b kj ¼ b kj þ ð u BÞ kj ; ðu B b kj y j h ð u BÞ kj ðu B ; >= k h k ¼ h k þ ð u hþ k ; ðu h Þ k ð u hþ k ðu h Þ k ; 2f1;...; mg; j 2f1;...; ng; >; k 2f1;...; rg ðu B ðu A ð u AÞ k ðu A Þ 9 k ðu B ð u BÞ kj ðu B >= Þ k ðu h Þ k ð u hþ k ðu h Þ k 2f1;...; mg; j 2f1;...; ng; >; k 2f1;...; rg b kj ð u B y j h k þ ð u h Þ kj y j ðu h b kj ð u B Þ k y j h k þ ð u hþ k ; k 2f1;...; rg So the lnear BLP (1) s transformed nto the model (2.6) as followngs: ð2:5þ

16 B. Lu et al. mn Fðx; yþ ¼c T x 1 x þ dt 1 y s:t: where y solves mn f ðx; yþ ¼c T y 2 x þ dt 2 y s:t: Xm a k ð u A k ¼ f1;...; rg x; y 0 b kj ð u B y j h k þ ð u h Þ k ð2:6þ (2) Next, accordng the equvalent form (Lobo et al. 1998) mn f ðxþ x s:t: x 2 D, mn x;t t s:t: f ðxþt x 2 D and the K-T method, the model (2.6) can be transform-ed nto the model (2.7) (L and Du 2011): mn Fðx; yþ ¼ t x;t s:t: c T 1 x þ dt 1 y t where y solves mn f ðx; yþ ¼c T y 2 x þ dt 2 y s:t: Xm a k ðu AÞ k k ¼ f1;...; rg x; y 0 b kj ðu B y j h k þðu hþ k ð2:7þ (3) Smlar to the transformaton (2.5), c T 1 x þ dt 1 y t; ðc x;y 0 Pm 1; d 1 Þ2l, c 1 þ l c 1 x þ Pn d 1j þ l d 1 j So the model (2.7) can be transformed to the model (2.8) as follows: y j t

2 A Class of Robust Soluton for Lnear Blevel Programmng 17 mn Fðx; yþ ¼ Xm c x;t 1 þ l c 1 s:t: where y solves mn f ðx; yþ ¼c T y 2 x þ dt 2 y s:t: Xm a k ð u A k 2f1;...; rg; x; y 0 b kj ð u B d1j þ l d 1 j y j y j h k þ ð u hþ k ; ð2:8þ (4) Next, because the optmal soluton of BLP (1) s not nfluenced by the value of c 2, we only consder how to choose the value of d 2. Based on the orgnal dea of robust optmzaton, the model (2.8) s transformed nto the model (2.4) above. 2.3 Solvng Process of the Model The determnstc trple level programmng (2.4) can be wrtten as the followng programmng (2.9) by the K-T method. mn x max d 2 ;y;u;v s:t: d 2j ¼ Xr Fðx; yþ ¼Xm u k b kj ð u B k¼1 c 1 þ l c 1 þ v j d1j þ l d 1 j y j d2j ð u d 2 Þ j d 2j d2j þ ð u d 2 Þ j " # X m u k a kj ð l AÞ x þ Xn b kj ð l B y j ðh k þ ð l hþ k Þ ¼ 0 ¼j v j y j ¼ 0 X m a k ð l A j ¼ f1;...; ng; k ¼ f1;...; rg; x; y; u; v 0: b kj ð l B y j h k þ ð l hþ k ; ð2:9þ Accordng to the lterature (Wang 2010), the model (2.9) can be transformed nto the model (2.10) as follows

18 B. Lu et al. mn t x;d 2 ;y;u;v s:t: Xm d 2j ¼ Xr c 1 þ l c 1 u k k¼1 b kj ð u B d1j þ l d 1 þ v j ; j y j t d2j ð u d 2 Þ j d 2j d2j þ ð u d 2 Þ j " ; # X m u k a k ð l A b kj ð l B y j h k þ ð l h ¼ 0; v j y j ¼ 0; X m a k ð l A j ¼ f1;...; ng; k ¼ f1;...; rg; x; y; u; v 0: b kj ð l B y j h k þ ð l hþ k ; Þ k ð2:10þ By ntroducng a large constant M, the model (2.10) above can be transformed nto a mxed nteger programmng as follows (Fortuny-Amat and McCarl 1981): mn t x;d 2 ;y;u;v;t;w s:t: Xm c 1 þ l c 1 d 2j ¼ Xr u k k¼1 b kj ð u B d1j þ l d 1 þ v j ; d2j ð u d 2 Þ j d 2j d2j þ ð u d 2 Þ j ; y j Mt j ; v j M 1 t j ; u k Mw k ; X m a k ð l A b kj ð l B X m a k ð l A h b kj ð l B j y j t y j h k þ ð l h Þ k y j h k þ ð l hþ k ; j ¼ f1;...; ng; k ¼ f1;...; rg; t j 2 f0; 1g; w k 2 f0; 1g; x; y; u; v 0: The model (2.11) can be solved by the software Lngo 9.0 M ð 1 wk Þ ð2:11þ

2 A Class of Robust Soluton for Lnear Blevel Programmng 19 2.4 A Numercal Example We gve a numercal example to demonstrate the proposed approach as follows: mn F ¼ c 11 x þ d 11 y 1 þ d 12 y 2 x s:t: 2:5 x 8 where y 1 ; y 2 solve mn f ¼ d 21 y 1 þ d 22 y 2 y 1 ;y 2 s:t: a 11 x 1 þ b 11 y 1 þ b 12 y 2 h 1 a 21 x 1 þ b 21 y 1 þ b 22 y 2 h 2 a 31 x 1 þ b 31 y 1 þ b 32 y 2 h 3 a 41 x 1 þ b 41 y 1 þ b 42 y 2 h 4 y 1 0; y 2 0 where a 11 ¼ 0; b 21 ¼ 1; a 31 ¼ 0; a 41 ¼ 0; b 41 ¼ 0; b 42 ¼ 1: And the others are the uncertan data, the gven varables and dsturbances are c 11 ¼ 1:5; d 11 ¼ 1:5; d 12 ¼ 2; d 21 ¼ 1:5; d 22 ¼ 3:5; b 11 ¼ 1:75; b 12 ¼ 1:15; h 1 ¼ 2:5; a 21 ¼ 3:5; b 22 ¼ 1:5; h 4 ¼ 5:75: h 2 ¼ 11; b 31 ¼ 3:5; b 32 ¼ 1:25; h 3 ¼ 23; ðu c1 Þ 1 ¼ 0:5; ð u d 1 Þ 1 ¼ 0:5; ð u d 1 Þ 2 ¼ 3; ð u d 2 Þ 1 ¼ 0:5; ð u d 2 Þ 2 ¼ 0:5; ðu b ðu b Þ 11 ¼ 0:25; ð u bþ 12 ¼ 0:15; ð u hþ 1 ¼ 0:5; ðu a Þ 31 ¼ 0:5; ð u b Þ 21 ¼ 0:5; ð u b Þ 22 ¼ 0:5; ð u hþ 2 ¼ 1; Þ 32 ¼ 0:25; ð u hþ 3 ¼ 1; ð u hþ 4 ¼ 0:25: Accordng to the theorem and these data above, robust model transformed s demonstrated as

20 B. Lu et al. mn t x;y;u;v;g;z s:t: 2x y 1 þ y 2 t 2:5 x 8; y 2 5:5; 1:5y 1 1:3y 2 3; 4x þ y 1 2y 2 10; 4y 1 1:5y 2 22; 1 1:5u 1 þ u 2 4u 3 þ v 1 2; 4 1:3u 1 2u 2 1:5u 3 u 4 þ v 2 3; y 1 Mg 1 ; y 2 Mg 2 ; v 1 Mð1 g 1 Þ; v 2 Mð1 g 2 Þ; u k Mz k ; k ¼ 1; 2; 3; 4: 1:5y 1 1:3y 2 3 ð1 z 1 Þ; 4x þ y 1 2y 2 þ 10 ð1 z 2 Þ; 4y 1 1:5y 2 þ 22 ð1 z 3 Þ; y 2 þ 5:5 ð1 z 4 Þ; x; y; u; v; g; z 0; g 1 ; g 2 2 f0:1g; z k 2 f0:1g; k ¼ 1; 2; 3; 4: By the software Lngo 9.0, the robust soluton s obtaned as follows: ðx; y 1 ; y 2 Þ¼ð2:5201; 4:6443; 2:2819Þ; The robust optmal value s F mn ¼ 2:6779. 2.5 Concluson and Future Work Under the way of the centralzed decson-makng, a class of robust soluton for uncertan lnear BLP s defned, whch expands further the applcaton of BLP n dfferent crcumstances. And based on the orgnal dea of robust optmzaton, the uncertan BLP was converted to the determnstc trple level programmng. The solvng process s proposed to obtan the robust soluton of uncertan lnear BLP. Fnally, a numercal example s shown to demonstrate the effectveness and feasblty of the algorthm.

2 A Class of Robust Soluton for Lnear Blevel Programmng 21 References Balas WF, Karwan MH (1982) On two-level optmzaton. IEEE Trans Autom control AC- 27(1):211 214 Dempe S (2002) Foundatons of blevel programmng. Kluwer Academc Publsher, Boston Fortuny-Amat J, McCarl B (1981). A representaton and economc nterpretaton of two-level programmng problem. J Oper Res Soc 32:783 792 Fortuny-Amat J, McCarl BA (1981) Representaton and economc nterpretaton of two-level programmng problem. J Oper Res Soc 32(7): 83 792 La YJ (1996) Herarchcal optmzaton: a satsfactory soluton. Fuzzy Sets and Syst 77:321 335 L Y, Du G (2011) Robust lnear blevel programmng under ellpsodal uncertanty. Syst Eng 11:96 100 Lobo MS, Vandenberghe L, Boyd S, Lebret H (1998) Applcaton of second-order cone programmng. Lnear Algebra Appl 284:193 228 Matheu R, Pttard L, Anandalngam G (1994) Genetc algorthm based approach to b-level lnear programmng. Oper Res 28:1 21 Soyster AL (1973) Convex programmng wth set-nclusve constrants and applcatons to nexact lnear programmng. Oper Res 21:1154 1157 Wang J (2010) Research on the methods of nterval lnear b-level programmng, pp 54 55. Tanjn Unversty, Tanjn

http://www.sprnger.com/978-3-642-38390-8