Abhilasha Classes Class- XII Date: SOLUTION (Chap - 9,10,12) MM 50 Mob no

Similar documents
VECTORS VECTORS VECTORS VECTORS. 2. Vector Representation. 1. Definition. 3. Types of Vectors. 5. Vector Operations I. 4. Equal and Opposite Vectors

7.2 Volume. A cross section is the shape we get when cutting straight through an object.

MATHEMATICS II PUC VECTOR ALGEBRA QUESTIONS & ANSWER

CISE 301: Numerical Methods Lecture 5, Topic 4 Least Squares, Curve Fitting

2 a Mythili Publishers, Karaikkudi

Chapter Newton-Raphson Method of Solving a Nonlinear Equation

Trigonometry. Trigonometry. Solutions. Curriculum Ready ACMMG: 223, 224, 245.

Module 3: Element Properties Lecture 5: Solid Elements

Learning Enhancement Team

Jens Siebel (University of Applied Sciences Kaiserslautern) An Interactive Introduction to Complex Numbers

CENTROID (AĞIRLIK MERKEZİ )

are coplanar. ˆ ˆ ˆ and iˆ

6 Roots of Equations: Open Methods

Rank One Update And the Google Matrix by Al Bernstein Signal Science, LLC

m m m m m m m m P m P m ( ) m m P( ) ( ). The o-ordinte of the point P( ) dividing the line segment joining the two points ( ) nd ( ) eternll in the r

4. Eccentric axial loading, cross-section core

Partially Observable Systems. 1 Partially Observable Markov Decision Process (POMDP) Formalism

Chapter Newton-Raphson Method of Solving a Nonlinear Equation

COMPLEX NUMBER & QUADRATIC EQUATION

Lecture 7 Circuits Ch. 27

e a = 12.4 i a = 13.5i h a = xi + yj 3 a Let r a = 25cos(20) i + 25sin(20) j b = 15cos(55) i + 15sin(55) j

ragsdale (zdr82) HW6 ditmire (58335) 1 the direction of the current in the figure. Using the lower circuit in the figure, we get

( ) ( )()4 x 10-6 C) ( ) = 3.6 N ( ) = "0.9 N. ( )ˆ i ' ( ) 2 ( ) 2. q 1 = 4 µc q 2 = -4 µc q 3 = 4 µc. q 1 q 2 q 3

HOMEWORK FOR CLASS XII ( )

H (2a, a) (u 2a) 2 (E) Show that u v 4a. Explain why this implies that u v 4a, with equality if and only u a if u v 2a.

Effects of polarization on the reflected wave

ESCI 342 Atmospheric Dynamics I Lesson 1 Vectors and Vector Calculus

" = #N d$ B. Electromagnetic Induction. v ) $ d v % l. Electromagnetic Induction and Faraday s Law. Faraday s Law of Induction

Math1110 (Spring 2009) Prelim 3 - Solutions

INTRODUCTION TO COMPLEX NUMBERS

DCDM BUSINESS SCHOOL NUMERICAL METHODS (COS 233-8) Solutions to Assignment 3. x f(x)

8.3 THE HYPERBOLA OBJECTIVES

THREE DIMENSIONAL GEOMETRY

R(3, 8) P( 3, 0) Q( 2, 2) S(5, 3) Q(2, 32) P(0, 8) Higher Mathematics Objective Test Practice Book. 1 The diagram shows a sketch of part of

EXPECTED ANSWERS/VALUE POINTS SECTION - A

QUESTION PAPER CODE 65/1/2 EXPECTED ANSWERS/VALUE POINTS SECTION - A. 1 x = 8. x = π 6 SECTION - B

Least squares. Václav Hlaváč. Czech Technical University in Prague

SECTION A STUDENT MATERIAL. Part 1. What and Why.?

Thomas Whitham Sixth Form

Fall 2012 Analysis of Experimental Measurements B. Eisenstein/rev. S. Errede. with respect to λ. 1. χ λ χ λ ( ) λ, and thus:

Calculus AB. For a function f(x), the derivative would be f '(

UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS. M.Sc. in Economics MICROECONOMIC THEORY I. Problem Set II

New Algorithms: Linear, Nonlinear, and Integer Programming

CAMBRIDGE UNIVERSITY ENGINEERING DEPARTMENT. PART IA (First Year) Paper 4 : Mathematical Methods

Chemical Reaction Engineering

Exercise sheet 6: Solutions

Chemical Reaction Engineering

Math 497C Sep 17, Curves and Surfaces Fall 2004, PSU

Quiz: Experimental Physics Lab-I

The Ellipse. is larger than the other.

SIMPLE NONLINEAR GRAPHS

AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals

m A 1 1 A ! and AC 6

The Schur-Cohn Algorithm

PROPERTIES OF TRIANGLES

Numerical Analysis Topic 4: Least Squares Curve Fitting

Physics for Scientists and Engineers I

Solutions to Assignment 1

CHAPTER 4: DETERMINANTS

Trigonometry. Trigonometry. Curriculum Ready ACMMG: 223, 224, 245.

12.4 Similarity in Right Triangles

Chapter I Vector Analysis

are coplanar. ˆ ˆ ˆ and iˆ

+ = () i =, find the values of x & y. 4. Write the function in the simplifies from. ()tan i. x x. 5. Find the derivative of. 6.

Math 1313 Final Exam Review

Chapter 9 Definite Integrals

ME306 Dynamics, Spring HW1 Solution Key. AB, where θ is the angle between the vectors A and B, the proof

PAIR OF LINEAR EQUATIONS IN TWO VARIABLES

y z A left-handed system can be rotated to look like the following. z

Mathematics. Area under Curve.

50 AMC Lectures Problem Book 2 (36) Substitution Method

Prerna Tower, Road No 2, Contractors Area, Bistupur, Jamshedpur , Tel (0657) ,

NORMALS. a y a y. Therefore, the slope of the normal is. a y1. b x1. b x. a b. x y a b. x y

Variable time amplitude amplification and quantum algorithms for linear algebra. Andris Ambainis University of Latvia

( β ) touches the x-axis if = 1

April 8, 2017 Math 9. Geometry. Solving vector problems. Problem. Prove that if vectors and satisfy, then.

Representing Curves. Representing Curves. 3D Objects Representation. Objects Representation. General Techniques. Curves Representation

Applications of Definite Integral

GAUSS ELIMINATION. Consider the following system of algebraic linear equations

, MATHS H.O.D.: SUHAG R.KARIYA, BHOPAL, CONIC SECTION PART 8 OF

Section 7.1 Area of a Region Between Two Curves

MCA-205: Mathematics II (Discrete Mathematical Structures)

VECTOR ALGEBRA. Syllabus :

2.4 Linear Inequalities and Interval Notation

Applied Statistics Qualifier Examination

Calculus Cheat Sheet. Integrals Definitions. where F( x ) is an anti-derivative of f ( x ). Fundamental Theorem of Calculus. dx = f x dx g x dx

APPLICATIONS OF DEFINITE INTEGRALS

Section 1.3 Triangles

Chapter Gauss Quadrature Rule of Integration

Review Exercises for Chapter 4

Uniform Circular Motion

The Trapezoidal Rule

PARABOLIC AND ELLIPTIC REFLECTORS

Brander and Lewis (1986) Link the relationship between financial and product sides of a firm.

University of Sioux Falls. MAT204/205 Calculus I/II

ME 501A Seminar in Engineering Analysis Page 1

Physics 121 Sample Common Exam 2 Rev2 NOTE: ANSWERS ARE ON PAGE 7. Instructions:

Concept of Activity. Concept of Activity. Thermodynamic Equilibrium Constants [ C] [ D] [ A] [ B]

1. Twelve less than five times a number is thirty three. What is the number

Lecture 36. Finite Element Methods

Transcription:

hlsh Clsses Clss- XII Dte: 0- - SOLUTION Chp - 9,0, MM 50 Mo no-996 If nd re poston vets of nd B respetvel, fnd the poston vet of pont C n B produed suh tht C B vet r C B = where = hs length nd dreton rtos,, 6 Fnd the vet r The dreton osnes of r re s the poston vet of pont C 6, 6, 6 6 Sne r mkes n ute ngle wth -s, therefe os > 0 e, l > 0 So, dreton osnes of r re,, 6 r ˆ ˆ r 6ˆ 9 ˆ 8kˆ 6 kˆ [usng r r lˆ m ˆ nkˆ ] So, omponents of r long o, o nd oz re 6ˆ, 9 ˆ nd 8kˆ respetvel Fnd the ngle etween the vets wth dreton rtos,, 5 nd,, 5 Let = vet prllel to the vet hvng dreton rtos,, 5 = ˆ ˆ 5kˆ nd = vet prllel to the vet hvng dreton rtos,, 5 = ˆ + ˆ + 5kˆ Let e the ngle etween the gven vets Then os 5 6 9 5 9 6 5 = Thus, the ngle etween the vets wth dreton rtos,, 5 nd,, 5 s 60 Fnd der nd degree of d 5 sn d d e d d d Dfferentl equton Order of DE Degree of DE Sol:

d d sn d d d d 5 e 5 Use vet methods to prove, n the usul notton, n trngle osc Let B, BC, C So tht + + = 0 = + 80 C C = + + os 80 C B gvng the result 6 F n two vets nd prove tht os where sn s the ngle etween nd ddng, os sn Show tht the vets k ; 8 k nd 0 k fm rght-ngled trngle k 8 k 0 k Hene,, fm the sdes of trngle lso k 8 k = 8 + 6 = 0

Hene nd re perpendulr The trngle s therefe rght-ngled 8 Let ; k nd k k Determne vet suh tht, nd = 0 It s gven tht Vetll pre multpl oth sdes 0 5; ; Susttutng these vlues n we get, 5 k k, 6 k gvng k 8 9 If nd then prove tht 0 lso 0, nd 0,, re mutull perpendulr vets nd 0 mnufturer of lne of ptent mednes s preprng produton pln on mednes nd B There re suffent ngredents vlle to mke 0, 000 ottles of nd 0,000 ottles of B ut there re onl 5,000 ottles nto whh ether of the mednes n e put Further me, t tkes hours to prepre enough mterl to fll 000 ottles of, t tkes one hour to prepre enough mterl to fll 000 ottles of B nd there re 66 hours vlle f ths operton The proft s Rs 8 per ottle f nd Rs per ottle f B Fmulte ths prolem s lner progrmmng prolem Suppose the mnufturer produes ottles of mednes nd ottles of medne B Sne the proft s Rs 8 per ottle f nd Rs per ottle f B So, totl proft n produng ottles of medne nd ottles of medne B s Rs 8 + Let Z denote the totl proft Then, Z 8 Sne 000 ottles of medne re prepred n hours

So, tme requred to prepre ottles of medne 000 hours It s gven tht 000 ottles of medne B re prepred n hour Tme requred to prepre ottles of medne B = 000 hours Thus, totl tme requred to prepre ottles of medne nd ottles of medne B s 000 000 hours But, the totl tme vlle f ths operton s 66 hours 66 000 000 66000 Sne there re onl 5,000 ottles nto whh the mednes n e put 5, 000 It s gven tht the ngredents re vlle f 0,000 ottles of nd 0,000 ottles of B 0,000 nd 0,000 Sne the numer of ottles n not e negtve Therefe, 0, 0 Hene, the mthemtl fmulton of the gven LPP s s follows: Mmze Z 8 Suet to 66,000; 5,000; 0,000; 0, 000 nd 0, 0 Solve the followng prolem grphll: Mnmze nd mmze Z 9 Suet to the onstrnts 60 0 v 0, 0 v Frst of ll, let us grph the fesle regon of the sstem of lner nequltes to v The fesle regon BCD s shown n the fgure Note tht the regon s ounded The odntes of the ner ponts, B, C nd D re 0, 0, 5, 5, 5, 5 nd 0, 0 respetvel Y 5 = D0, 0 5 C5, 5 0, 0 5 B5, 5 60, 0 X X 0 5 0 5 50 0, 0 + =60 + = 0 Y Cner Pont Crespondng vlues of Z = + 9 0, 0 90 B5, 5 60 C5, 5 80 D0, 0 80

We now fnd the mnmum nd mmum vlue of Z From the tle, we fnd tht the mnmum vlue of Z s 60 t the pont B5, 5 of the fesle regon The mmum vlue of Z on the fesle regon ours t the two ner ponts C 5, 5 nd D0, 0 nd t s 80 n eh se Remrk: Oserve tht n the ove emple, the prolem hs multple optml solutons t the ner ponts C nd D e, the oth ponts produe sme mmum vlue 80 In suh se, ou n see tht ever pont on the lne segment CD onng the two ner ponts C nd D lso gve the sme mmum vlue Sme s lso true n the se f the two ponts produe sme mnmum vlue F emple md-pont of lne onng ponts C nd D s P5/, 5/ whh les on CD Now Z t P5/, 5/ s 80, whh s sme s Z t C nd D Smlrl, ever pont on lne CD gves the sme vlue of Z n ol ompn requres,000, 0,000 nd 5,000 rrels of hgh-grde, medum grde nd low grde ol, respetvel Refner produes 00, 00 nd 00 rrels per d of hgh-grde, medum-grde nd low-grde ol, respetvel, whle refner B produes 00, 00 nd 00 rrels per d of hgh-grde, medum-grde nd low-grde ol, respetvel If refner osts Rs 00 per d nd refner B osts Rs 00 per d to operte, how mn ds should eh e run to mnmze osts whle stsfng requrements The gven dt m e put n the followng tulr fm: Refner Hgh-grde Medum-grde Low-grde Cost per d 00 00 00 Rs 00 B 00 00 00 Rs 00 Mnmum requrement,000 0,000 5,000 Suppose refneres nd B should run f nd ds respetvel to mnmze the totl ost The mthemtl fm of the ove LPP s Mnmze Z 00 00 Suet to 00 00 000, 00 00 0000, 00 00 5000 nd, 0 The fesle regon of the ove LPP s represented the shded regon n fgure 00 + 00 = 0000 B 0, 50 + 00 = 5000 B 0, 60 P60, 0 B 0, 50 0, 0 O 00/, 0 5, 0 00 + 00 = 000 The ner ponts of the fesle regon re 0, 0, 60, 0 nd B 0, 50 P The vlue of the oetve funton t these ponts re gven n the followng tle: Pont, Vlue of the oetve funton Z 00 00 0, 0 Z 00 0 00 0 8000

P 60, 0 B 0, 50 Z 00 60 00 0 000 Z 00 0 00 50 5000 Clerl, Z s mnmum when = 60, = 0 Hene, the mhne should run f 60 ds nd the mhne B should run f 0 ds to mnmze the ost whle stsfng the onstrnts Determne grphll the mnmum vlue of the oetve funton Z 50 0 suet to the onstrnts: 5 v 0, 0 v Frst of ll, let us grph the fesle regon of the sstem of nequltes to v The fesle regon shded s shown n the fgure Oserve tht the fesle regon s unounded We now evlute Z t the ner ponts Y 0 9 8 6 = 5 0, 5, 8, 5 5 + = 0 Cner Pont Z = 50 + 0 0, 5 00 0, 60, 0 50 6, 0 00 smllest X B0,, 0 6, 0 9, 8 9 0 = X + = Y From ths tle, we fnd tht 00 s the smllest vlue of Z t the ner pont 6, 0 Cn we s tht mnmum vlue of Z s 00? Note tht f the regon would hve een ounded, ths smllest vlue of Z s the mnmum vlue of Z theem But here we see tht the fesle regon s unounded Therefe 00 m m not e the mnmum vlue of Z To dede ths ssue, we grph the neqult 50 0 00 e, 5 0 nd hek whether the resultng open hlf plne hs ponts n ommon wth fesle regon not If t hs ommon ponts, then 00 wll not e the mnmum vlue of Z Otherwse, 00 wll e the mnmum vlue of Z s shown n the fgure, t hs ommon ponts Therefe, the gven onstrnts Z 50 0 hs no mnmum vlue suet to

d d Verf tht the funton e s soluton of the dfferentl equton 6 0 d d Gven funton s e Dfferenttng oth sdes of equton wth respet to, we get d e d Now, dfferenttng wth respet to, we hve d 9e d Susttutng the vlues of d, d d d LHS 9 e 6e 9e 9e 0 nd n the gven dfferentl equton, we get e = RHS Therefe the gven funton s soluton of the gven dfferentl equton 5 Solve the dfferentl equton d d e e Seprtng the vrles d d e e e d e d, ntegrtng, the soluton s e e e e C C s n rtrr onstnt 6 Solve the dfferentl equton d d Note:, + re homogeneous n nd of degree one Tkng = v, d d v dv d Susttutng n the gven equton v dv d dv d v v v v v v v v v v v Now, seprtng the vrles v dv v v d log v v log log [ v v ] = onstnt; v v = C = C s therefe the soluton where C s n rtrr onstnt

d Solve the dfferentl equton os d d Here, os d d os d ; ths s n the lner fm Integrtng ft e d log log e Multplng the ntegrtng ft, e d d os d os d d os d d os d os d sn, where s n rtrr onstnt sn d 8 Solve the dfferentl equton d d d On settng = v, the equton s v dv d v v Seprtng the vrles nd ntegrtng, d dv v log Ths smplfes to the fm = Ce / v 9 The surfe re of lloon eng nflted hnges t onstnt rte If ntll ts rdus s unts nd fter seonds, t s 5 unts, fnd the rdus fter t seonds Let r e the rdus nd S e the surfe re of the lloon t n tme t Then S r

ds dt dr 8 r dt It s gven tht ds dt onstnt = k s Puttng ds dt k n, we get dr k 8 r dt 8rdr kdt Integrtng oth sdes, we get r kt C We re gven tht t t 0, r nd t t, r 5 k0 C 6 nd 00 k C C 6 nd k Susttutng the vlues of C nd K n, we otn r t 6 r 8t 9 r 8t 9 0 The slope of the tngent to the urve t n pont s twe the dnte t tht pont The urve psses through the pont, Determne ts equton P, e n pont on the urve Let Then slope of the tngent t P s d d It s gven tht the slope of the tngent t P, s twe the dnte e, d d d d log log C Ce Sne the urve psses through, Therefe Puttng = nd = n, we get f 8 Ce C e 8 Puttng the vlue of C n, we get e 8 Ths s the requred equton of the urve Solve the dfferentl equtons d 0 d d os d d d

d d Integrtng, d d tn tn whh m e lso wrtten s tn tn where C s now rtrr onstnt n whh s lso sed The fm omnng the two terms on the LHS usng the fmul tn tn tn m e redued to + + + C + + = os d d C d d os The soluton s C sn tn sn tn, where s n rtrr onstnt