Degradation of ferrohexacyanide by advanced oxidation processes

Similar documents
Photolytic Degradation of Rhodamine B in Water Using H 2 O 2 /UV System

Chemical Oxidation Oxidizing agents

CHEMICAL OXIDATION. The use of oxidizing agents without the need of microorganisms for the reactions to proceed

Chapter - III THEORETICAL CONCEPTS. AOPs are promising methods for the remediation of wastewaters containing

DEGRADATION OF REACTIVE RED 2 BY FENTON AND PHOTO-FENTON OXIDATION PROCESSES

Chemical Oxidation and Reduction

Techniques for effluent treatment. Lecture 5

Decolorized of Textile dye waste waters by Hydrogen peroxide, UV and Sunlight

PHOTOCHEMICAL OXIDATION OF p-aminophenol BY FENTON REAGENT

Comparative study of UV-activated processes for the degradation of organic pollutants in

Oxidation of Phenolic Wastewater by Fenton's Reagent

METHOD 9012 TOTAL AND AMENABLE CYANIDE (COLORIMETRIC, AUTOMATED UV)

Reaction Rate Constants for Hydrogen Peroxide Oxidation of Phenol and Chlorinated Phenols in a Continuous Stirred Tank Reactor

Q1. Pentanenitrile can be made by reaction of 1-bromobutane with potassium cyanide.

Kinetics and Mechanism of Oxidation of Alanine and Phenylalanine by Fenton s Reagent

Photo-oxidation of cyanide in aqueous solution by the UV/H 2 O 2 process

METHOD 9012B TOTAL AND AMENABLE CYANIDE (AUTOMATED COLORIMETRIC, WITH OFF-LINE DISTILLATION)

OCR (A) Chemistry A-level. Module 6: Organic Chemistry and Analysis

Physicochemical Processes

3.2.8 Haloalkanes. Nucleophilic Substitution. 267 minutes. 264 marks. Page 1 of 36

Enhanced Ozonation of Phenol in Water

Chemical Kinetics. Kinetics is the study of how fast chemical reactions occur. There are 4 important factors which affect rates of reactions:

UNIT 2 REVISION CHECKLIST. a) understand that reactions are either exothermic or endothermic and apply the sign convention

Chemical Reactions. Writing chemical reactions Types of chemical reactions Reactions in aqueous solutions. (ionic equations and solubility rules)

Photo Catalytic Degradation of Effluent of Iron and Power Plant Industries in Aqueous Solution by Tio 2 Nano Catalyst Using Uv Irradiation

dihalogenoalkane H 2, Nickel Catalyst KOH alcoholic HBr, HCl Br Cl Elimination KOH aqueous heat under reflux Nucleophilic substitution

PHOTOCATALYTIC DEGRADATION OF META- CHLOROPHENOL USING SOLAR AND ARTIFICIAL RADIATION

General A haloalkane is a compound in which one or more H atoms of an alkane are replaced by halogen atoms.

CHEM2. (JAN13CHEM201) WMP/Jan13/CHEM2. General Certificate of Education Advanced Subsidiary Examination January Unit 2 Chemistry in Action

1 (a) Describe a chemical test which shows the presence of water. Describe how water is treated before it is supplied to homes and industry.

In terms of production, nitric acid is the third most widely produced acid across the world.

H C C C C H. Secondary halogenoalkane Two carbons attached to the carbon atom adjoining the halogen

Supporting Information for. The Roles of Reactive Species in Micropollutant Degradation in the UV/Free Chlorine System

Pearson Edexcel Level 3 GCE Chemistry Advanced Paper 2: Advanced Organic and Physical Chemistry

Characteristics of Fenton s Oxidation of 2, 4, 6 Trichlorophenol

The calculation of kinetic parameters would be an integral part of the report.

DEGRADATION OF FAST GREEN FCF USING IMMOBILIZED PHOTO-FENTON REAGENT

Chemical Oxidation Overview. Jim Jacobs Tel:

CHEM5 (JUN13CHEM501) General Certificate of Education Advanced Level Examination June Unit 5 Energetics, Redox and Inorganic Chemistry

Ch 7 Chemical Reactions Study Guide Accelerated Chemistry SCANTRON

COMBUSTION CHEMISTRY COMBUSTION AND FUELS

Based on the kinetic molecular theory of gases, which one of the following statements is INCORRECT?

THE UNITED REPUBLIC OF TANZANIA NATIONAL EXAMINATIONS COUNCIL CERTIFICATE OF SECONDARY EDUCATION EXAMINATION

CHERRY HILL TUITION AQA CHEMISTRY A2 PAPER Section A (2 marks) (1 mark) (Extra space) Property

CHLORINE THEORY & MEASUREMENT

Lecture 11 Notes: Abiotic Chemical Transformations (Chapter 2)

CHEM Chemical Kinetics

Properties of Compounds

CLASS 12th. Chemical Kinetics

dihalogenoalkane H 2, KOH alcoholic heat under reflux Elimination PCl 5, PBr 3, PI 3 Heat under reflux substitution KOH aqueous heat under reflux

3.2.5 Group VII. Trends in Physical Processes. 70 minutes. 70 marks. Page 1 of 7

Catalytic materials for plasma-based VOC removal

OCR AS Chemistry A H032 for first assessment in Complete Tutor Notes. Section: Boomer Publications

Suggested Answers to Chemical Kinetics Revision Exercise. The results of some investigations of the rate of this reaction are shown below.

SYNERGETIC EFFECT OF UV LIGHT ON TOLUENE DECOMPOSITION BY DIELECTRIC BARRIER DISCHARGE

Chapter 16. Rate Laws. The rate law describes the way in which reactant concentration affects reaction rate.

TYPES OF CATALYSIS Reading Supplement

CHEMICAL KINETICS (RATES OF REACTION)

Contribution to the Study of Quantum Efficiency of Photocatalytic Reaction of 2,6-Dichloroindophenol

CHEMICAL KINETICS. Collision theory and concepts, activation energy and its importance VERY SHORT ANSWER QUESTIONS

CHM 5423 Atmospheric Chemistry Notes on kinetics (Chapter 4)

Unit-8 Equilibrium. Rate of reaction: Consider the following chemical reactions:

Optimization of In-Situ Chemical Oxidation Design Parameters

CEL 795- Water and Wastewater Treatment Unit Processes 1 st -Semester Disinfection Dr. Arun Kumar

Organic Chemistry Review: Topic 10 & Topic 20

Mechanisms. . CCl2 F + Cl.

1.11 Redox Equilibria

Chapter 10: Carboxylic Acids and Their Derivatives

ALE 1. Chemical Kinetics: Rates of Chemical Reactions

3.2.1 Energetics. Bond Enthalpy. 98 minutes. 96 marks. Page 1 of 16

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY

AP CHEMISTRY 2009 SCORING GUIDELINES

A-LEVEL TRANSITION COURSE SUMMER 2018 PART 2: USING CHEMICAL EQUATIONS

Chemistry Assessment Unit AS 2

Generation and loss of reactive oxygen species in low-temperature atmospheric-pressure RF He + O2 + H2O plasmas

Energy transfer process in the reaction system NH 2 OH-NaOH-Cu(II)-Eu(III)/thenoyltrifluoroacetone

Chapter 4. The Major Classes of Chemical Reactions 4-1

Degradation of Organophosphorus Pesticides in Water during UV/H 2 O 2 Treatment: Role of Sulphate and Bicarbonate Ions

THE RATE EQUATION. might have a rate equation like this r = k [A] [B] 2

AP CHEMISTRY 2009 SCORING GUIDELINES

Q1. Ammonia is used in the production of fertilisers. The flow diagram shows the main stages in the manufacture of ammonia.

KINETICS DEGRADATION OF CARBOFURAN BY OZONATION IN THE PRESENCE OF ACTIVATED CARBON

F321: Atoms, Bonds and Groups Group 7

PHOTOLYSIS OF THE AZIDE ION IN AQUEOUS SOLUTION

Elements in the Periodic Table show a periodic trend in atomic radius. In your answer you should use appropriate technical terms, spelled correctly.

CHEMISTRY. Section II (Total time 95 minutes) Part A Time 55 minutes YOU MAY USE YOUR CALCULATOR FOR PART A.

For the element X in the ionic compound MX, explain the meaning of the term oxidation state.

What does rate of reaction mean?

Chemistry 40S Chemical Kinetics (This unit has been adapted from

Unit 6: React ions & St oichiom et ry, Chapt er s 11 & 12. Nam e: Period: Description Reaction Types Activty

AP Chemistry Summer Assignment

CHAPTER 3 MATERIALS AND METHODS

INSTRUCTIONS ON EVERY AP EXAM:

Elementary Reactions

1. A. Define the term rate of reaction. The measure of the amount of reactants being converted into products per unit amount of time

Oxidation Power of Various Reactive Species (Chlorine=1) Oxidation Power of Various Reactive Species (Chlorine=1)

Complete and balance these equations to show the reactions during electrolysis. Na Na (2)

MOI HIGH SCHOOL - KABARAK

Development of Simplified M odels for Advanced Oxidation Processes. Xin Guo, Daisuke Minakata, and John C. Crittenden

Case Study: The Industrial Manufacture of Ammonia The Haber Process

Transcription:

Indian Journal of Chemical Technology Vol. 12, January 2005, pp. 19-24 Degradation of ferrohexacyanide by advanced oxidation processes Sarla Malhotra a*, M Pandit a & D K Tyagi b a Centre for Fire, Explosive and Environment Safety, Brig. S.K. Mazumdar Road, Timarpur, Delhi 110 054, India b M M Modi College, Modi Nagar, Uttar Pradesh, India Received 29 January 2004; revised received 20 August 2004; accepted 22 September 2004 Degradation of ferrohexacyanide in aqueous solution by advanced oxidation processes was studied. Advanced oxidation processes included ozone and its combination with H 2 O 2 and ultraviolet radiation (UV). Results demonstrated that UV alone was not sufficient to degrade cyanide ion but an oxidant was required for complete degradation. Degradation of 100 mg/l cyanide in aqueous solution was pseudo-first order reaction at ph 11.0. Lower ph was avoided due to formation of HCN gas but higher ph favoured the degradation. A comparison of three systems i.e. O 3, O 3 /H 2 O 2 and UV/O 3 /H 2 O 2 showed that UV/O 3 /H 2 O 2 was the best system. The experimental results showed that the optimum conditions for UV/O 3 /H 2 O 2 process for total cyanide degradation were obtained at λ = 365 nm (400 W medium pressure UV lamp), ozone concentration = 35 mg/l and H 2 O 2 = 88.2 mm. Keywords: Degradation, ferrohexacyanide, UV-radiation, ozone, hydrogen peroxide IPC Code: C07B 33/00 Advanced oxidation processes use a combination of oxidizing agent such as ozone or hydrogen peroxide, radiation such as UV or ultrasound and catalyst such as metal ions or photocatalyst to generate hydroxyl radicals 1. These hydroxyl radicals do not possess any charge and have high affinity for electrons, they can quickly strip weak acid dissociable cyanides such as sodium cyanide as well as strong acid dissociable cyanides like ferrihexacyanide and ferrohexacynides, thus causing their oxidation. Biological oxidation processes are very slow and unattractive for the treatment of toxic and refractory pollutants. Electrochemical processes are inefficient after cyanide falls below certain level and require high current. Classical oxidation processes have also been proved inefficient for the destruction of ferrohexacyanide. These hexacyanides do not undergo chlorination at all 2. The direct reactions of ozone involving molecular ozone are highly selective and relatively slow as compared with reactions involving free hydroxyl radicals. The free radical is considered to be the principal reactive species involved in the destruction of organic and inorganic toxicants 3. Ozone is a powerful oxidizing agent having oxidationreduction potential of 2.07 V. Ozone in combination with H 2 O 2 generates hydroxyl radicals which are responsible for fast degradation of cyanide. Present study has been focused on using ozone and its *For correspondence (E-mail: sarlamalhotra@lycos.com; Fax: +91-11-23819547) combination with UV and H 2 O 2 at higher ph to degrade ferrohexacyanide. Experimental Procedure Experimental set-up used for this study consisted of a reactor, ozone generator and potassium iodide absorbers (Fig. 1). Experiments were carried out in an annular type batch reactor (length = 550 mm, O.D. = 95 mm, wall thickness = 2.5 mm) made up of borosilicate glass. The reactor assembly is shown in Fig. 2. The effective volume of the reactor was 1000 ml. A double walled immersion well (O.D. of 75 mm) made of high purity quartz was placed inside the glass reactor fitted with a standard joint at the top. UV lamp was housed inside the immersion well. Water was circulated through the annular space of the immersion well to remove heat generated by UV lamp. Cyanide solution was taken inside the glass reactor for photooxidation studies. O 3 was bubbled into the reactor solution through the bottom inlet. A sintered disc (Grade 2 Borosil, pore dia. 40-90 μm) was provided for producing small bubbles. There was a sampling port at the middle of the reactor, so that periodic samples could be withdrawn for analysis. A teflon coated thermocouple was introduced into the reactor solution and it was fitted with a temperature indicator outside. The reactor was covered with a safety hood, so the person working was not affected by harmful UV radiation. UV lamp was removed while working with O 3 and O 3 /H 2 O 2 processes.

20 INDIAN J. CHEM. TECHNOL., JANUARY 2005 process 4. Ozone concentration was measured by iodometric method before and after the experiment. Materials and reagents A medium pressure lamp of 400 W was used. In medium pressure lamp 31% radiation is emitted at 365 nm. The lamp was obtained from M/s Heber Scientific, Chennai. Silver nitrate, 4-dimethylaminobenzylidene rhodanine, sodium hydroxide, pyridine, barbituric acid, hydrogen peroxide, potassium titanium oxalate and other reagents of highest purity were obtained from E. Merck Ltd. Fig. 1 Experimental set-up for ozonation Analytical method Reactor was filled with potassium ferrocyanide containing CN 100 mg/l. UV lamp was inserted in the immersion well. Time when the UV lamp was switched on was taken as zero. Samples were taken at different time interval and analyzed immediately to avoid any further reaction. Total cyanide concentration was determined after distillation by colorimetric method. Cyanate concentration was determined by hydrolyzing to ammonia at acidic ph (1.5 to 2.0). Ammonia was measured by Nesslerisation method 5. H 2 O 2 concentration was determined colorimetrically using potassium titanium oxalate solution at 398.9 nm. Results and Discussion Ozonation Degradation of ferrohexacyanide by ozonation was studied at ph 7.0 and 11.0. At ph 7.0 only 30% degradation occurred. Oxidation of cyanide was fast at alkaline ph 11.0. Results are presented in Table 1 and Fig. 3. Complete degradation took place in 1 h and 45 min by ozone concentration of 35 mg/l at 1.0 LPM for ferrohexacyanide. After 35 mg/l if the ozone concentration was increased rate of cyanide degradation decreased. This anamoly cropped up probably due to excess of O 3 acting as OH radical scavenger. At alkaline ph O 3 decomposes into hydroxyl radicals according to Eqs (1-2) 6. Fig. 2 Reactor An aqueous solution of potassium ferrocyanide containing CN 100 mg/l was prepared in distilled water. Tests were performed by bubbling ozone at 1.0 LPM at a concentration of 25-40 mg/l through 1000 ml solution for a given period of time. Ozone was produced from pure oxygen by corona discharge O 3 + OH O 2 + O 2 (1) O 3 + H 2 O 2 OH + O 2 (2) Hydroxyl radicals are the major oxidation species. Ozonation at alkaline conditions has been classified as advanced oxidation process 7,8. OH ions act as catalyst. Ozone decomposition catalysed by OH ions

MALHOTRA et al.: DEGRADATION OF FERROHEXACYANIDE BY ADVANCED OXIDATION PROCESSES 21 Table 1 Oxidation of ferrohexacyanide by ozone Ozone Reaction time Initial Final % Removal concentration CN concentration CN concentration (mg/l) (mg/l) (mg/l) 25 2 h 45 min 100 1.0 99 30 2 h 30 min 100 1.0 99 35 1 h 45 min 100 <M.D.L 99.99 40 2 h 15 min 100 1.0 99 M.D.L (Minimum detection limit) = 0.02 μg/l Fig. 3 Effect of O 3 concentration on oxidation of ferrohexacyanide favours cyanide to cyanate oxidation as well as hydrolysis of the latter. Kinetics of various ozone concentrations is presented in Fig. 4. Roques 2 has reported that 1 mole of O 3 converts 1 mole of CN to CNO. Oxidation of CNO by O 3 is slow reaction compared to cyanide and, therefore, cyanate accumulates while cyanide is almost oxidized. Mechanism of ozonation Ozonation for cyanide destruction has been examined extensively because it is a superior oxidant to oxygen 9. Ozone reacts rapidly with free and many stable metal cyanide complexes. Ozone reacts according to the following reactions: CN + O 3 + H 2 O OCN + O 2 + H 2 O (3) The oxidative/hydrolytic destruction proceeds slowly upon continuous treatment with ozone. OCN + OH + H 2 O CO 3 2 + NH 3 (4) Continuous ozone treatment of cyanide containing waste involves consecutive oxidation reactions, the Fig. 4 Reaction kinetics of ferrohexacyanide by ozone first of which involves direct oxidation of cyanide to cyanate. Ozone reacts with cyanide to produce cyanate. Two mechanisms have been proposed 10 : CN + O 3 OCN + O 2 (5) 3CN + O 3 3OCN (6) which are referred to as simple and catalytic ozonation, respectively. Simple ozonation yields oxygen which can further oxidize cyanide. Catalytic ozonation represents a high efficiency and has been observed at high addition rates. If excess of ozone is used, cyanate can be oxidized to nitrogen and carbonate or bicarbonate depending on the ph according to Eq. (7). 2OCN + H 2 O +3O 3 2HCO 3 + N 2 + 3O 2 (7) Under basic conditions the CNO hydrolyses to yield ammonia which is then oxidized by ozone to nitrate according to the reaction proposed by Singer and Zilli 11,

22 INDIAN J. CHEM. TECHNOL., JANUARY 2005 NH 3 + 4O 3 NO 3 + H 2 O + 4O 2 + 2H + (8) Prolonged ozonation can lead to conversion of nitrate to nitrogen. Cyanide oxidation is enhanced by O 3 oxidation rate. Cyanide ion decreases with time and degradation increases proportionately with O 3 addition. However, it was observed that abundance of O 3 in this case (40 mg/l) reduced the cyanide degradation probably due to reduction in OH radicals. Ozone/H 2 O 2 process Experiments were conducted to investigate the effect of combination of ozone and H 2 O 2 with different concentration of hydrogen peroxide. It was observed that 88.2 mm H 2 O 2 was the optimum dose along with ozone concentration of 35 mg/l (Table 2). It has been reported 12,13, that, H 2 O 2 can initiate the decomposition of O 3 by single electron transfer, where the initiating species is the hydroperoxide ion HO 2 H 2 O 2 = HO 2 + H + (9) The hydroperoxide ion reacts with ozone to produce the ozonide ion O 3 and hydroperoxide radical HO 2, HO 2 + O 3 HO 2 = H + + O 2 O 3 + HO 2 (10) (11) These products can form OH radicals through the following initiation steps, O 2 + O 3 O 3 +O 2 (12) Table 2 Ferrohexacyanide degradation by O 3 /H 2 O 2 process Ozone concentration = 35 mg/l H 2 O 2 concentration = 88.2 mm Time (min) CN concentration (mg/l) % removal 0 100 0 5 75 25 10 60 40 15 49 51 30 25 75 45 7 93 60 3.3 96.7 75 <M.D.L 99.99 O 3 + H + HO 3 (13) HO 3 OH + O 2 (14) Once the hydroxyl radical is formed, the following propagation steps generate hydroxyl radicals by autocatalytic mechanism, O 3 + OH O 2 + HO 2 (15) O 3 + HO 2 2O 2 + OH (16) Cyanide reacts with hydroxyl radicals and cyanate is formed which again reacts with OH radicals to form bicarbonate. CN + 2 OH OCN + H 2 O (17) OCN + 3 OH HCO 3 +1/2N 2 + H 2 O (18) Cyanide destruction by hydrogen peroxide (88.2 mm) and ozone (35 mg/l) occurred in 1 h 15 min. UV process Experiments were conducted by medium pressure lamp of 400 W. It was found that 35% degradation took place in 3 h by 400 W medium pressure lamp. Direct photolysis occurs according to Eqs (19-20). hv 4 3 Fe(CN) 6 Fe(CN) 6 +e (19) Fe(CN) 6 3 + H 2 O [Fe(CN) 5 H 2 O] 2 + CN (20) UV/O 3 /H 2 O 2 process Generation of OH radicals by UV/O 3 /H 2 O 2 process takes place 14,15 according to Eqs (21-25). H 2 O 2 + H 2 O O 3 + H 2 O 2 H 3 O + + HO 2 O 2 + OH + HO 2 (21) (22) O 3 + HO 2 OH + O 2 + O 2 (23) O 3 + O 2 O 3 + H 2 O O 3 + O 2 (24) OH + OH + O 2 (25) Cyanide ion is attacked by OH radicals generated from the photolysis of H 2 O 2. The rate of photolysis of H 2 O 2 has been reported to be ph dependent and

MALHOTRA et al.: DEGRADATION OF FERROHEXACYANIDE BY ADVANCED OXIDATION PROCESSES 23 increases in alkaline conditions 16. As the molar ratio of H 2 O 2 to CN increased more OH radicals were available and the rate of degradation was increased. Addition of H 2 O 2 results in enhancement of dominant production of OH radicals 17,18. With 35 mg/l O 3, 88.2 mm H 2 O 2 and 400 W medium pressure lamp CN disappeared in 25 min (Table 3). UV light induced photolysis of O 3 and the subsequent production of OH radicals 19 results in the degradation of CN to CNO. H 2 O 2 is also a very strong oxidizing agent. The combination of H 2 O 2 and UV can create a very fast and efficient process for water treatment by producing hydroxyl radicals according to the given Eq., hv H 2 O 2 2OH (26) The decomposition occurred at 365 nm. The hydroxyl radicals are very reactive free radicals and one of the most powerful oxidizing agents (E 0 = 2.8V) second after fluorine (E 0 = 2.87V). These radicals have one electron efficiency and due to their excited state they tend to react very fast with other molecules. Initially cyanate was formed which was subsequently oxidized to bicarbonate, water and other non-toxic gaseous products. CN, CNO profile during this process is shown in Fig. 5. Cyanate was completely oxidized in 2 h and 30 min. Effect of ph Since at acidic ph CN is released as HCN which is highly toxic so the experiments were carried out at alkaline ph (11.0). At alkaline ph hydroperoxyl anion attacks CN ion to break the triple bond thereby enhancing the rate of photodegradation. d CN /dt = k obs C CN - (28) where C CN - is the cyanide concentration and k obs is the pseudo first order rate constant. According to Eq. (28) linear plots of -ln C t /C 0 verses time are plotted from which slopes k obs can be evaluated (Fig. 6). Rate constants for O 3, O 3 /H 2 O 2 and UV/O 3 / H 2 O 2 processes are listed in Table 4. Rate constant for UV/O 3 /H 2 O 2 process is the maximum as more OH radicals are available to attack CN ion as compared to O 3 and O 3 /H 2 O 2 process. Fig. 5 CN, CNO profile during UV/O 3 /H 2 O 2 process CN + OOH CNO + OH (27) Reaction kinetics of cyanide oxidation Cyanide oxidation is considered to be pseudo-first order reaction. Kinetic equation can be expressed as, Table 3 Ferrohexacyanide degradation by UV/O 3 /H 2 O 2 process Ozone concentration = 35 mg/l H 2 O 2 concentration = 88.2 mm Time (min) CN concentration (mg/l) % removal 0 100 0 5 44.5 55.5 10 24.6 75.4 15 9.8 90.2 20 2.5 97.5 25 <M.D.L 99.99 Fig. 6 Comparison of advanced oxidation processes Table 4 Reaction rate constants of the ferrohexacyanide degradation by different advanced oxidation processes Advanced oxidation process k 1 10 2 (min 1 ) O 3 5.2 O 3 /H 2 O 2 5.7 UV/O 3 /H 2 O 2 17.7

24 INDIAN J. CHEM. TECHNOL., JANUARY 2005 Conclusion The effect of advanced oxidation processes on the degradation of CN ion was studied using potassium ferrocyanide solution at CN concentration 100 mg/l. Ozone process is expensive as it requires ozone generator but ensures no secondary by-products formed which are toxic to environment. O 3 /UV/H 2 O 2 process is safe, as H 2 O 2 does not load any pollutant. Complete degradation of cyanide occurred in 25 min and intermediate cyanate was formed which was subsequently oxidised to bicarbonate and nitrogen. References 1 Legrini O, Oliveros E & Braun A M, Chem Rev, 93(2) (1993) 671. 2 Roques H, Chemical Water Treatment Principles and Practice (VCH Publishers Inc., New York), 1996. 3 Glaze W H & Kang J W, JAWWA (May, 1988). 4 Masschelein J, Unit Processes in Drinking Water Treatment (Willy Publication, U.K), 1992, 67. 5 APHA, Standard methods for the examination of water and waste water, 19 th edition (1995) Am. Pub. Health Association Washington D.C. 6 Hoigne J & Badar H, Water Res, 10 (1976) 377. 7 Hang W R & Hoigne J, Environ Sci Technol, 17(5) (1983) 261. 8 Games I M & Staubach J, Environ Sci Technol, 14 (1980) 57. 9 Zeevalkink J A, Viser D C, Amoldy T & Boelhover C, Water Res, 14 (1980) 1375. 10 Novak F & Sukes G, Ozone Sci Eng, 3 (1981) 61. 11 Singer P C & Zilli W B, Water Res, 9(2) (1975) 127. 12 Formi L, Bahmnemann D & Hart E J, J Phys Chem, 86 (1982) 255. 13 Buhler R F, Staehelin J & Hoigne J, J Phys Chem, 80 (1984) 2560. 14 Burnet R, Bourbigot M M & Dore M, Ozone Sci Eng, 6 (1984) 163. 15 Glaze W H & Kang J W, Ind Eng Chem Res, 28 (1989) 1573. 16 Palliard H, Brunet R & Dore M, Water Res, 22(1) (1988) 91. 17 Guittoneau S, de Laat J, Dore M, Duget J P & Bonnel C, Rev Sci Eau, (1-2) (1988) 35. 18 Wallace J L, Valadi B, Fernandes J B & Boyden B H, Ozone Sci Eng, 10 (1988) 103. 19 Glaze W H, Kang J W & Chapin D H, Ozone Sci Eng, 9 (1987) 335.