The Differences Between Birkhoff and Isosceles Orthogonalities in Radon Planes

Similar documents
Ann. Funct. Anal. 2 (2011), no. 2, A nnals of F unctional A nalysis ISSN: (electronic) URL:

Geometrical Constants and. Norm Inequalities in Banach Spaces

Constants and Normal Structure in Banach Spaces

Homogeneity of isosceles orthogonality and related inequalities

Research Article Modulus of Convexity, the Coeffcient R 1,X, and Normal Structure in Banach Spaces

On self-circumferences in Minkowski planes

The Polynomial Numerical Index of L p (µ)

THE DAUGAVETIAN INDEX OF A BANACH SPACE 1. INTRODUCTION

Research Article Another Aspect of Triangle Inequality

On Bisectors for Convex Distance Functions

ON A CHARACTERISATION OF INNER PRODUCT SPACES

TWO MAPPINGS RELATED TO SEMI-INNER PRODUCTS AND THEIR APPLICATIONS IN GEOMETRY OF NORMED LINEAR SPACES. S.S. Dragomir and J.J.

arxiv: v1 [math.fa] 11 Oct 2018

ON SOME RESULTS ON LINEAR ORTHOGONALITY SPACES

BEST APPROXIMATIONS AND ORTHOGONALITIES IN 2k-INNER PRODUCT SPACES. Seong Sik Kim* and Mircea Crâşmăreanu. 1. Introduction

Research Article Some Inequalities Concerning the Weakly Convergent Sequence Coefficient in Banach Spaces

Iterative algorithms based on the hybrid steepest descent method for the split feasibility problem

Geometry of Banach spaces with an octahedral norm

On James and Jordan von Neumann Constants of Lorentz Sequence Spaces

Ginés López 1, Miguel Martín 1 2, and Javier Merí 1

Higher rank numerical ranges of rectangular matrix polynomials

ON A HYBRID PROXIMAL POINT ALGORITHM IN BANACH SPACES

On Conics in Minkowski Planes

Two-Step Iteration Scheme for Nonexpansive Mappings in Banach Space

PROJECTIONS ONTO CONES IN BANACH SPACES

Computers and Mathematics with Applications

ON ψ-direct SUMS OF BANACH SPACES AND CONVEXITY

WEAK CONVERGENCE THEOREMS FOR EQUILIBRIUM PROBLEMS WITH NONLINEAR OPERATORS IN HILBERT SPACES

CONVERGENCE OF APPROXIMATING FIXED POINTS FOR MULTIVALUED NONSELF-MAPPINGS IN BANACH SPACES. Jong Soo Jung. 1. Introduction

Viscosity Iterative Approximating the Common Fixed Points of Non-expansive Semigroups in Banach Spaces

arxiv: v1 [math.fa] 23 Jun 2017

FUNCTIONAL EQUATIONS IN ORTHOGONALITY SPACES. Choonkil Park

On bisectors in Minkowski normed space.

THE SEMI ORLICZ SPACE cs d 1

On the simplest expression of the perturbed Moore Penrose metric generalized inverse

arxiv:math/ v1 [math.ca] 21 Apr 2006

BIRKHOFF-JAMES ǫ-orthogonality SETS IN NORMED LINEAR SPACES

SOME PROPERTIES ON THE CLOSED SUBSETS IN BANACH SPACES

ON SOME GENERALIZED NORM TRIANGLE INEQUALITIES. 1. Introduction In [3] Dragomir gave the following bounds for the norm of n. x j.

LIPSCHITZ SLICES AND THE DAUGAVET EQUATION FOR LIPSCHITZ OPERATORS

Research Article Circle-Uniqueness of Pythagorean Orthogonality in Normed Linear Spaces

A NOTE ON LINEAR FUNCTIONAL NORMS

POLARS AND DUAL CONES

C 1 regularity of solutions of the Monge-Ampère equation for optimal transport in dimension two

PYTHAGOREAN PARAMETERS AND NORMAL STRUCTURE IN BANACH SPACES

CHAPTER 5. Birkhoff Orthogonality and a Revisit to the Characterization of Best Approximations. 5.1 Introduction

Common fixed points for a class of multi-valued mappings and application to functional equations arising in dynamic programming

Convergence to Common Fixed Point for Two Asymptotically Quasi-nonexpansive Mappings in the Intermediate Sense in Banach Spaces

WEAK CONVERGENCE OF RESOLVENTS OF MAXIMAL MONOTONE OPERATORS AND MOSCO CONVERGENCE

L p Spaces and Convexity

MINIMAL GRAPHS PART I: EXISTENCE OF LIPSCHITZ WEAK SOLUTIONS TO THE DIRICHLET PROBLEM WITH C 2 BOUNDARY DATA

ON BURKHOLDER'S BICONVEX-FUNCTION CHARACTERIZATION OF HILBERT SPACES

ON WEAK AND STRONG CONVERGENCE THEOREMS FOR TWO NONEXPANSIVE MAPPINGS IN BANACH SPACES. Pankaj Kumar Jhade and A. S. Saluja

Functional Analysis. Martin Brokate. 1 Normed Spaces 2. 2 Hilbert Spaces The Principle of Uniform Boundedness 32

Banach Algebras of Matrix Transformations Between Spaces of Strongly Bounded and Summable Sequences

Bulletin of the. Iranian Mathematical Society

A LOWER BOUND ON THE SUBRIEMANNIAN DISTANCE FOR HÖLDER DISTRIBUTIONS

A Note on the Class of Superreflexive Almost Transitive Banach Spaces

Introduction to Convex Analysis Microeconomics II - Tutoring Class

Extreme points of compact convex sets

Introducing Preorder to Hilbert C -Modules

ON b-orthogonality IN 2-NORMED SPACES

A FIXED POINT THEOREM FOR GENERALIZED NONEXPANSIVE MULTIVALUED MAPPINGS

THE NEARLY ADDITIVE MAPS

B. Appendix B. Topological vector spaces

Bi-parameter Semigroups of linear operators

Brunn-Minkowski type inequalities for L p Blaschke- Minkowski homomorphisms

Auerbach bases and minimal volume sufficient enlargements

APPROXIMATE ISOMETRIES ON FINITE-DIMENSIONAL NORMED SPACES

SOME REMARKS ON THE SPACE OF DIFFERENCES OF SUBLINEAR FUNCTIONS

PCA sets and convexity

A Note on Nonconvex Minimax Theorem with Separable Homogeneous Polynomials

A fixed point method for proving the stability of ring (α, β, γ)-derivations in 2-Banach algebras

IITII=--IITI! (n=l,2,...).

Renormings of c 0 and the minimal displacement problem

An introduction to some aspects of functional analysis

Relationships between upper exhausters and the basic subdifferential in variational analysis

Math 5052 Measure Theory and Functional Analysis II Homework Assignment 7

Available online at J. Math. Comput. Sci. 4 (2014), No. 1, 1-9 ISSN:

A CHARACTERIZATION OF REFLEXIVITY OF NORMED ALMOST LINEAR SPACES

COMMON FIXED POINT THEOREMS OF CARISTI TYPE MAPPINGS WITH w-distance. Received April 10, 2010; revised April 28, 2010

UNIFORMLY CONTINUOUS COMPOSITION OPERATORS IN THE SPACE OF BOUNDED Φ-VARIATION FUNCTIONS IN THE SCHRAMM SENSE

Deviation Measures and Normals of Convex Bodies

MAT 771 FUNCTIONAL ANALYSIS HOMEWORK 3. (1) Let V be the vector space of all bounded or unbounded sequences of complex numbers.

Functional Analysis. Franck Sueur Metric spaces Definitions Completeness Compactness Separability...

Application of Measure of Noncompactness for the System of Functional Integral Equations

Some Results on b-orthogonality in 2-Normed Linear Spaces

REAL RENORMINGS ON COMPLEX BANACH SPACES

Rose-Hulman Undergraduate Mathematics Journal

On Systems of Boundary Value Problems for Differential Inclusions

Helly's Theorem and its Equivalences via Convex Analysis

V. Kadets, M. Soloviova. QUANTITATIVE VERSION OF THE BISHOP-PHELPS-BOLLOBÁS THEOREM FOR OPERATORS WITH VALUES IN A SPACE WITH THE PROPERTY β

Convex Analysis and Economic Theory AY Elementary properties of convex functions

Functional Analysis MATH and MATH M6202

Sung-Wook Park*, Hyuk Han**, and Se Won Park***

MA651 Topology. Lecture 10. Metric Spaces.

arxiv: v1 [math.fa] 24 Oct 2018

On Measure of Non-Compactness in Convex Metric Spaces. Ljiljana Gajić

STRONG CONVERGENCE OF AN ITERATIVE METHOD FOR VARIATIONAL INEQUALITY PROBLEMS AND FIXED POINT PROBLEMS

Exercise Solutions to Functional Analysis

Transcription:

E extracta mathematicae Vol. 32, Núm. 2, 173 208 2017) The Differences Between Birkhoff and Isosceles Orthogonalities in Radon Planes Hiroyasu Mizuguchi Student Affairs Department-Shinnarashino Educational Affairs Section, Chiba Institute of Technology, Narashino, Japan hiroyasu.mizuguchi@p.chibakoudai.jp Presented by Javier Alonso Received May 22, 2017 Abstract: The notion of orthogonality for vectors in inner product spaces is simple, interesting and fruitful. When moving to normed spaces, we have many possibilities to extend this notion. We consider Birkhoff orthogonality and isosceles orthogonality. Recently the constants which measure the difference between these orthogonalities have been investigated. The usual orthognality in inner product spaces and isosceles orthogonality in normed spaces are symmetric. However, Birkhoff orthogonality in normed spaces is not symmetric in general. A two-dimensional normed space in which Birkhoff orthogonality is symmetric is called a Radon plane. In this paper, we consider the difference between Birkhoff and isosceles orthogonalities in Radon planes. Key words: Birkhoff orthogonality, Isosceles orthogonality, Minkowski plane, Minkowski geometry, Radon plane. AMS Subject Class. 2010): 46B20, 51B20, 52A21, 26D20. 1.. Introduction We denote by X a real normed space with the norm, the unit ball B X and the unit sphere S X. Throughout this paper, we assume that the dimension of X is at least two. In case of that X is an inner product space, an element x X is said to be orthogonal to y X denoted by x y) if the inner product x, y is zero. In the general setting of normed spaces, many notions of orthogonality have been introduced by means of equivalent propositions to the usual orthogonality in inner product spaces. For example, Roberts [20] introduced Roberts orthogonality: for any x, y X, x is said to be Roberts orthogonal to y denoted by x R y) if x + ty x ty for all t R. Birkhoff [4] introduced Birkhoff orthogonality: x is said to be Birkhoff orthogonal to y denoted by x B y) if x + ty x for all t R. 173

174 h. mizuguchi James [4] introduced isosceles orthogonality: x is said to be isosceles orthogonal to y denoted by x I y) if x + y x y. These generalized orthogonality types have been studied in a lot of papers [1], [2], [8] and so on). Recently, quantitative studies of the difference between two orthogonality types have been performed: { DX) inf inf x + λy : x, y S X, x I y, λ R D X) sup{ x + y x y : x, y S X, x B y, { x + αy x αy BRX) sup : x, y S X, x B y α>0 α { x + y x y sup : x, y X, x, y 0, x B y, y { x + y x y BIX) sup x { infλ R x + λy IBX) inf x see [10], [14], [19]). : x, y X, x, y 0, x B y, : x, y X, x, y 0, x I y. An orthogonality notion is called symmetric if x y implies y x. The usual orthogonality in inner product spaces is, of course symmetric. By the definition, isosceles orthogonality in normed spaces is symmetric, too. However Birkhoff orthogonality is not symmetric in general. Birkhoff [4] proved that if Birkhoff orthogonality is symmetric in a strictly convex normed space whose dimension is at least three, then the space is an inner product space. Day [6] and James [9] showed that the assumption of strict convexity in Birkhoff s result can be released. Theorem 1.1. [2], [6], [9] ) A normed space X whose dimension is at least three is an inner product space if and only if Birkhoff orthogonality is symmetric in X. The assumption of the dimension of the space in the above theorem cannot be omitted. A two-dimensional normed space in which Birkhoff orthogonality is symmetric is called a Radon plane.

difference between orthogonality in radon planes 175 In this paper, we consider the constant IBX) in Radon planes. The inequality 1/2 IBX) 1 holds for any normed space X. Under the assumption that the space X is a Radon plane, an inequality 8/9 IBX) 1 is proved, and the Radon plane in which IBX) 8/9 is characterized. On the other hand, a Radon plane is made by connecting the unit sphere of a two-dimensional normed space and its dual [6], [12], [13]). A collection of normed spaces in which IBX) < 8/9 holds and that constant of the induced Radon plane is equal to 8/9 is obtained. 2.. The difference between two orthogonality types in Radon planes To consider the difference between Birkhoff and isosceles orthogonalities, the results obtained by James in [7] are important. Proposition 2.1. [7]) i) If x 0) and y are isosceles orthogonal elements in a normed space, then x + ky > 1 2 x for all k. ii) If x 0) and y are isosceles orthogonal elements in a normed space, and y x, then x + ky 2 2 1) x for all k. From this, one can has 1/2 IBX) 1 and 2 2 1) DX) 1 for any normed space. For two elements x, y in the unit sphere in a normed space X, the sine function sx, y) is defined by sx, y) inf x + ty t R [22]). V. Balestro, H. Martini, and R. Teixeira [3] showed the following Proposition 2.2. [3]) A two dimensional normed space X is a Radon plane if and only if its associated sine function is symmetric. Thus for elements x, y in the unit sphere in a Radon plane X with x I y we have inf λ R x + λy inf µ R y + µx. Hence the inequality 2 2 1) IBX) 1 holds for a Radon plane X. Using Proposition 2.2 again, we start to consider the lower bound of IBX) in a Radon plane.

176 h. mizuguchi Proposition 2.3. Let X be a Radon plane, an element x S X be isosceles orthogonality to αy for another element y S X and a real number α R. Take numbers k, l R such that x + ky min λ R x + λy min µ R y + µx y + lx. Then, in the estimation of the constant IBX), we may only consider the situation 0 α 1, 0 k and 0 l. In this case, k min{1/2, α and l 1/2 hold. Proof. Since x I αy implies x I αy and y I x/α, we can suppose 0 α 1. From the assumption x + ky min λ R x + λy min µ R y + µx y + lx, we can also suppose 0 k and 0 l. Then it follows from x I αy and x + ky min λ R x + λy that k α. The assumption x+ky min λ R x+λy implies that x+ky is Birkhoff orthogonal to y. From the symmetry of Birkhoff orthogonality in a Radon plane, y is Birkhoff orthogonal to x + ky. Using this fact, one has α + k x + ky α + k)y x αy x + αy x + ky + α k)y x + ky + α k and hence 2k x + ky min λ R x + λy 1. In a similar way, from the fact that x is Birkhoff orthogonal to y + lx, we have 2l y + lx 1. Proposition 2.4. Let X be a Radon plane, an element x S X be isosceles orthogonality to αy for another element y S X and a number α [0, 1]. Take numbers k [0, min{1/2, α] and l [0, 1/2] such that x + ky min λ R x + λy min µ R y + µx y + lx. Then { α + k)1 kl) x + ky max α + k)1 kl) + k1 l)α k), Proof. It follows from 1 + αl)1 kl). 1 + αl)1 kl) + l1 k)1 αl) x αx + ky) + kx αy) α + k

difference between orthogonality in radon planes 177 and x I αy that For α + k α x + ky + k x αy α x + ky + k x + αy. c α k 1 + α k αl and d 1 kl 1 + α k αl, the equality dx + αy) 1 c)x + ky) + cy + lx) holds, and hence one has Thus, we obtain x + αy α + k x + ky d 1 + α k αl x + ky. 1 kl α + k 1 + α k αl ) x + ky 1 kl α + k)1 kl) + kα k αl + kl) x + ky 1 kl Meanwhile, from the equality α + k)1 kl) + k1 l)α k) x + ky. 1 kl we obtain y l x + αy) + y + lx, 1 + αl 1 + αl y + lx + l x + αy x + ky + l x + αy 1 + l 1 + α k αl ) x + ky 1 kl 1 + αl)1 kl) + l1 k)1 αl) x + ky. 1 kl Let F α, k, l) k1 l)α k) α + k)1 kl) and Gα, k, l) l1 k)1 αl) 1 + αl)1 kl).

178 h. mizuguchi From the above proposition, the inequality holds. It follows from x + ky 1 1 + min { F α, k, l), Gα, k, l) 2.1) 1 l 1 kl 1 k + 1 k kkl 1) that the function F α, k, l) is decreasing on l in the interval [0, 1]. In a similar way, Gα, k, l) is decreasing on k in the interval [0, 1]. Let us consider the upper bound of min{f α, k, l), Gα, k, l). Lemma 2.5. Let 0 α 1, 0 k min{α, 1/2 and k l 1/2. Then min { F α, k, l), Gα, k, l) F α, k, l) k1 k) 1 + k) 2. Proof. Let 0 α 1, 0 k min{α, 1/2 and k l 1/2. For the function Hα, k, l) : Gα, k, l) F α, k, l) ) 1 kl), we have and hence H α Hα, k, l) l1 k) 1 αl k k1 l)α 1 + αl α + k l1 k) α ) 1 αl k1 l) 1 + αl α ) α k α + k 2l2 1 k) 1 + αl) 2 2k2 1 l) α + k) 2 0. This implies that H is decreasing on α. Thus we obtain the inequality Hα, k, l) H1, k, l) l1 k) 1 l k k1 l)1 1 + l 1 + k and so F α, k, l) Gα, k, l) holds. 1 k)1 l)l k) 1 + k)1 + l) 0,

difference between orthogonality in radon planes 179 Using the fact that F α, k, l) is a decreasing function on l, min { F α, k, l), Gα, k, l) F α, k, l) F α, k, k) kα k) 1 + k)α + k). From the fact that the function α k)/α + k) is increasing on α, it follows that kα k) k1 k) 1 + k)α + k) 1 + k) 2, which completes the proof. Lemma 2.6. Let 0 α 1, 0 k min{α, 1/3 and 0 l < k. Then min { F α, k, l), Gα, k, l) k1 k) 1 + k) 2. Proof. Let 0 α 1, 0 k min{α, 1/3 and 0 l < k. Then min { F α, k, l), Gα, k, l) We have that ) k1 k) 1+k) 2 1 k)l F α, k, l) + 1 l)k Gα, k, l) 1 k)l + 1 l)k 2α1 k)k1 l)l α + k)1 + αl) 1 k)l + 1 l)k ) ). if and only if the function fα, k, l) : 2α1 + k) 2 1 l)l α + k)1 + αl) 1 k)l + 1 l)k ) is negative. One can has and hence f k fα, k, l) 2 + α)l 1 ) k 2 + α1 l)4l 1 αl) l1 + αl)1 α) ) k + αl 1 2 + α)l ) 2Ak + B, where A 2 + α)l 1 and B α1 l)4l 1 αl) l1 + αl)1 α). From the fact l < k 1/3, we obtain A 3l 1) 0 and B α1 l)4l 1 αl) l1 α) α1 l)l αl) l1 α) l1 α) α1 l) 1 ) 0.

180 h. mizuguchi Thus the function f is decreasing with respect to k and hence fα, k, l) fα, l, l) This completes the proof. 2α1 + l) 2 1 l)l 2α + l)1 + αl)1 l)l 21 l)l α1 + l) 2 α + l)1 + αl) ) 21 l)l 2 1 α) 2 0. Under the assumption 1/3 < k and l < k, we consider the upper bound of ), too. Lemma 2.7. Let 0 α 1, 1/3 < k min{α, 1/2 and 0 l < k. Then min { F α, k, l), Gα, k, l) 2k1 k) 21 k) k ) 2 1 + k) 21 2k) + k1 k) ) 2. Proof. As in the above lemma, min{f α, k, l), Gα, k, l) is less than The inequality is equivalent to 2α1 k)k1 l)l α + k)1 + αl) 1 k)l + 1 l)k ) ). 2k1 k) 21 k) k ) 2 ) 1 + k) 21 2k) + k1 k) ) 2 gα, k, l) : On this function g, one can see g α α1 l)l α + k)1 + αl) 1 k)l + 1 l)k ) ) 2 21 k) k 1 + k) 21 2k) + k1 k) ) 2. 1 l)l l1 k) + k1 l) α ) α α + k)1 + αl) 1 l)l l1 k) + k1 l) k α 2 l α + k) 2 1 + αl) 2.

difference between orthogonality in radon planes 181 From the assumption k > l, the function g is increasing on α and so gα, k, l) g1, k, l) 1 l)l 1 + k)1 + l) l1 k) + k1 l) ). We have that if and only if g1, k, l) 21 k) k ) 2 1 + k) 21 2k) + k1 k) ) 2 Letting we have and hence P k l) : 21 2k) + k1 k) ) 2 1 l)l 21 k) k ) 21 + l) l1 k) + k1 l) ) 0. l k k k + 2k1 k), l k 1 k) + k1 l k ) k + 1 2k)l k 1 k + 2k1 k) k + k, 2k1 k) 1 + l k ) k + 1 2k)l k ) 1 l k )l k 2k + 2k1 k) ) {1 k + 2k1 k) 2k1 k) 2 2k1 k) + 1 + k 1 k + 2k ) 2. Meanwhile one can easily check 1 k + 2k ) 21 k) k ) 21 2k) + k1 k). Thus we obtain 1 + l k ) l k 1 k) + k1 l k ) ) 1 l k )l k 1 k + 2k ) 2 21 2k) + k1 k) ) 2 21 k) k ) 2,

182 h. mizuguchi which implies P k l k ) 0. We consider the derivation too. For l k, we have and hence P k l) 21 2k) + k1 k) ) 2 1 2l) 21 k) k ) 2 1 k) + 21 2k)l ), 21 2k)k 1 k + 21 2k)l k 1 k + k + 2k1 k) 3k 5k2 + 1 k) 2k1 k) k +, 2k1 k) 1 k + 21 2k)l k 3k 5k2 + 1 k) 2k1 k) 1 2l k k +. 2k1 k) On the other hand, a equality 1 k + 2k ) 2 k + 2k1 k) ) holds. Thus we have 1 + k + 2 2k1 k) ) k + 2k1 k) ) 3k 5k 2 + 1 k) 2k1 k) 1 k + 21 2k)l k 1 2l k 1 k + 2k ) 2 21 2k) + k1 k) ) 2 21 k) k ) 2. This implies P k l k) 0. Combining the fact P k 0) k 21 k) k ) 2 0 with Pk l k ) 0 and P k l k) 0, one can see that P k l) 0 for any real number l. Therefore the inequality holds. min { F α, k, l), Gα, k, l) 2k1 k) 21 k) k ) 2 1 + k) 21 2k) + k1 k) ) 2

difference between orthogonality in radon planes 183 A fundamental derivation implies that the function k1 k)/1 + k) 2 takes maximum 1/8 at k 1/3. Now we let hk) k1 k) 21 k) k) 2 1 + k) 21 2k) + k1 k) ) 2 and consider the maximum of hk). k 21 k) k1 k) ) 2 1 + k) 21 2k) + k1 k) ) 2 Lemma 2.8. The function hk) in the interval [0, 1/2] takes maximum 1/16 at k 1/3. Proof. We can consider the derivation h k) as follows: 1 + k) 2 21 2k) + k1 k) ) 4 h k) [ 21 ) 2 k) k1 k) + 2k 21 k) k1 k) ) 2 1 2k ) ] 2 k1 k) 1 + k) 21 2k) + k1 k) ) 2 ) 2 k 21 k) k1 k) [ 21 ) 2 2k) + k1 k) + 21 + k) 21 2k) + k1 k) ) 2 2 + 1 2k ) ] 2. k1 k) Thus we obtain k1 k)1 + k) 2 21 k) + k1 k) ) 1 21 2k) + k1 k) ) 3 h k) 1 k)2 5k) + 2k k1 k) ) k1 k) + k1 + k) 4 k1 k) 22 k) ) 9k 2 3k + 2) k1 k) 2 2k

184 h. mizuguchi and hence 1 k1 + k) 2 21 k) + k1 k) ) 1 21 2k) + k1 k) ) 3h k) 9k 2 3k + 2) 1 k 2 2k. We note that 9k 2 3k + 2) 1 k 2 2k is positive if and only if 9k 2 3k + 2) 2 1 k) 8k is so. Meanwhile, one has 9k 2 3k + 2) 2 1 k) 8k 3k3k 1) + 2 ) 2 1 k) 8k 9k 2 3k 1) 2 1 k) + 12k3k 1)1 k) + 41 k) 8k 3k 1) 9k 2 3k 1)1 k) + 12k3k 1)1 k) 4 ) 3k 1)1 + 3k 2 )2 3k) 2. Therefore we obtain that the function hk) takes maximum at k 1/3. One can easily have h1/3) 1/16, which completes the proof. From the inequality 2.1) and the above lemmas we have Theorem 2.9. Let X be a Radon plane. Then 8/9 IBX) 1. In addition, we are able to characterize a Radon plane X satisfying IBX) 8/9. For simplicity, we use the notation ẑ as z/ z for any nonzero z X. Theorem 2.10. Let X be a Radon plane. Then IBX) 8/9 if and only if its unit sphere is an affine regular hexagon. Proof. Suppose that X is a Radon plane and the equality IBX) 8/9 holds. Then there exist elements x, y S X and a real number α such that x + αy x αy and min λ R x + λy min µ R y + µx 8/9. For k and l in the above lemmas, all inequalities in the proofs have to turn into equalities and hence k l 1/3. As one of them, the inequality α + k α x + ky + k x αy α x + ky + k x + αy also becomes an equality for α 1 and k 1/3. This implies 4 x 3 1 + 3 y 1 + 3 x y 8 9 + 1 x y 3

difference between orthogonality in radon planes 185 and hence x + y x y 4/3. Using these facts, one has This implies x + y 3 4 x + y) 9 16 1 2 On the other hand, for 1 2 x + 1 ) 3 y + y + 1 ) ) 3 x 1 x + 3 y + y ) + 1 3 x. x + 1 3 y + y + 1 3 x ) x + y 1. x 3 4 x + 1 ) 3 y + 1 x y), 4 from x 1 + 3 y 8 and x y 4 9 3 we have x 2 1 ) x + 3 3 y + 1 3 x y) and hence 2 1 ) x + 3 3 y + 1 3 x y) x 1. In a similar way, the equality 2 1 ) y + 3 3 x + 1 3 x + y) y 1 holds. Thus the three segments [ ] [ ] x y, x + 1 3 y 1, x + 3 y, 1 y + 3 x and [ ] 1 y + 3 x, x + y are contained in the unit sphere S X. Moreover we obtain 1 ) x y) + y + 3 x 3 4 x y) + 9 y + 1 ) 8 3 x 9 x + 1 ) 8 3 y x + 1 3 y.

186 h. mizuguchi Therefore, the unit sphere S X is an affine regular hexagon. Conversely, suppose that S X is an affine regular hexagon and therefore X is a Radon plane). Then there exist u, v S X such that ±u, ±v and ±u + v) are the vertices of S X. Letting x u + 1 3 v and y 1 3 u v, we have x + y 2 3 u v) and x y 4 u + v). 3 Thus x + y 4/3 x y and hence x I y. Meanwhile, one has x + 1 3 y u + 1 3 v + 1 1 ) 3 3 u v 8 9 u. Therefore, the inequality { infλ R x + λy IBX) inf x holds. This implies IBX) 8/9. : x, y X, x, y 0, x I y 8 9 3.. Practical Radon planes and a calculation A Radon plane is made by connecting the unit sphere of a normed plane and its dual [6]). Hereafter, we make a collection of the space X in which the unit sphere S X is a hexagon, the constant IBX) is less than 8/9 and that of the induced Radon plane coincides with 8/9. A norm on R 2 is said to be absolute if a, b) a, b ) for any a, b) R 2, and normalized if 1, 0) 0, 1) 1. Let AN 2 denote the family of all absolute normalized norm on R 2, and Ψ 2 denote the family of all continuous convex function ψ on [0, 1] such that max{1 t, t ψt) 1 for all t [0, 1]. As in [5, 21], it is well known that AN 2 and Ψ 2 are in a one-to-one correspondence under the equation ψt) 1 t, t) for t [0, 1] and ) b a + b )ψ if a, b) 0, 0), a, b) ψ a + b 0 if a, b) 0, 0). Let ψ denote an absolute normalized norm associated with a convex function ψ Ψ 2.

difference between orthogonality in radon planes 187 For ψ Ψ 2, the dual function ψ on [0, 1] is defined by { 1 t)1 s) + ts ψ s) sup : t [0, 1] ψt) for s [0, 1]. It is known that ψ Ψ 2 and that ψ AN 2 is the dual norm of ψ, that is, R 2, ψ ) is identified with R 2, ψ ) cf. [16, 17, 18]). Meanwhile, for ψ Ψ 2, the function ψ Ψ 2 is defined by ψt) ψ1 t) for any t [0, 1]. One can easily check ψ ). ) ψ So we write it ψ. According to [6], [12] and [13], for any ψ Ψ 2, the Day-James space l ψ -l ψ becomes a Radon plane. For any c [0, 1], let { ct + 1 if 0 t 1 + c) 1, ψ c t) t if 1 + c) 1 t 1. Then the norm of a, b) R 2 is computed by { a + 1 c) b if a c b, a, b) ψc b if a c b. The dual function is calculated as follows: Proposition 3.1. Let c [0, 1]. Then ψc s) 1 s if 0 s 1 c 2 c, 1 c)s + c if 1 c 2 c s 1. Proof. Fix s [0, 1]. We define the function f c,s t) from [0, 1] into R by f c,s t) 1 t)1 s) + ts. ψ c t) We note that ψc s) max{f c,s t) : 0 t 1 and calculate the maximum of f c,s on [0, 1]. By the definition of ψ c, we have 1 s + 2s 1)t if 0 t 1 + c) 1, ct + 1 f c,s t) 2s 1 + 1 s if 1 + c) 1 t 1. t

188 h. mizuguchi The function 2s 1 + 1 s)/t is clearly decreasing on t. If 0 s 1 c)/2 c), then the function f c,s t) is decreasing on [0, 1 + c) 1 ]. Hence we have ψc s) f c,s 0) 1 s. Suppose that 1 c)/2 c) s 1. Then the function f c,s t) is increasing on [0, 1 + c) 1 ]. Thus we have ψ c s) f c,s 1 1 + c Therefore we obtain this proposition. From this result, one has ) 1 c)s + c. Proposition 3.2. Let c [0, 1]. Then { a if b 1 c) a, a, b) ψ c c a + b if 1 c) a b. Thus the Radon plane l ψc -l ψ induced by ψ c is the space R 2 with the norm c a + 1 c) b if c b a and ab 0, a, b) ψc, ψ b if 1 c) b a c b and b 0, c b if 1 c) b a c b and b 0, a + c b if 1 c) b a and ab 0. Therefore the unit sphere of this space is an affine regular hexagon with the vertices ±1, 0), ±1 c, 1), ± c, 1) and hence the constant IBl ψc -l ψ c ) coincide with 8/9 by the Theorem 2.10. Next, we calculate the constants IBR 2, ψc )) and IBR 2, ψ c )). Then we obtain that the values are smaller than IBl ψc -l ψ c ) 8/9 and equal to 8/9 only when c 1/2. We note that ψ c ψ 1 c and it is enough to calculate IBR 2, ψc )) for c [0, 1]. To do this, we need to recall the Dunkl-Williams constant defined in [11]: { x + y DW X) sup x x y x y y : x, y X, x, y 0, x y { u + v sup 1 t)u + tv : u, v S X, 0 t 1.

difference between orthogonality in radon planes 189 The unit sphere of R 2, ψc ) and R 2, ψ c ). The unit sphere of Radon plane l ψc -l ψ c. For any normed space, the equality 2 DW X) 4 holds. In [14], it is shown that the equality IBX)DW X) 2 holds for any normed space X. One can find a formula to calculate this constant in the paper [15]. For each x S X and for each y X with x B y, we put { mx, y) sup x + λ + µ y 2 : λ 0 µ, x + λy x + µy. We define the positive number Mx) by Mx) sup { mx, y) : x B y. Using these notions, the Dunkl-Williams constant can be calculated as DW X) 2 sup { Mx) : x S X 2 sup { Mx) : x frbx ),

190 h. mizuguchi where frb X ) is the frame of unit ball. An element x S X is called an extreme point of B X if y, z S X and x y + z)/2 implies x y z. The set of all extreme points of B X is denoted by extb X ). Suppose that the space X has two-dimension. Then the above calculation method is turned into DW X) 2 sup { Mx) : x extb X ). Here, we reduce the amount of calculation a little more. As in Section 2, we use the notation ẑ. Proposition 3.3. Let X be a two-dimensional normed space. Then { u + v DW X) sup 1 t)u + tv : u extb X), v S X, 0 t 1. Proof. Take arbitrary elements u, v S X \ extb X ). If the segment [u, v] belongs to the unit sphere S X, then u + v 1 t)u + tv 2 for any t [0, 1]. So we may assume [u, v] S X. Then we have t 0 [0, 1] such that min 0 t 1 1 t)u + tv 1 t 0)u + t 0 v. Letting x 1 t0 )u + t 0 v and y û v, we have four elements u 1, u 2, v 1, v 2 S X such that at least two elements among them belong to extb X ) and satisfying u [u 1, u 2 ] S X, v [v 1, v 2 ] S X and u 1 v 1 y u 2 v 2. For these elements, from the fact that three vectors u v, u 1 v 1 and u 2 v 2 are parallel each other, we can take numbers s 0 0, 1) satisfying u 1 s 0 )u 1 +s 0 u 2, v 1 s 0 )v 1 +s 0 v 2. Meanwhile there exist t 1, t 2 0, 1) such that min 1 t)u 1 + tv 1 1 t 1 )u 1 + t 1 v 1, 0 t 1 min 0 t 1 1 t)u 2 + tv 2 1 t 2 )u 2 + t 2 v 2. It follow from x B y and u 1 v 1 y u 2 v 2 that 1 t 2 )u 2 + t 2 v 2 x and 1 t 1 )u 1 + t 1 v 1 ±x. In case of 1 t 1 )u 1 + t 1 v 1 x, the element u 1 belongs to the arc between v 1 and x. Letting v 3 u 1, we

difference between orthogonality in radon planes 191 can take element u 3 satisfying 1 t 1 )u 1 + t 1 v 1 x. Then the equalities and u 3 v 3 y, again. Hence we may consider 1 t 0 )u + t 0 v 1 s 0 ) 1 t 1 )u 1 + t 1 v 1 ) + s0 1 t2 )u 2 + t 2 v 2 ) 1 t 0 )u + t 0 v 1 s 0 ) 1 t 1 )u 1 + t 1 v 1 + s 0 1 t 2 )u 2 + t 2 v 2 holds. Thus, using triangle inequality and the fact that an inequality { 1 α)a + αb a 1 α)c + αd max c, b d holds for α [0, 1] and positive numbers a, b, c, d, we obtain u + v 1 t 0 )u + t 0 v 1 s 0 )u 1 + s 0 u 2 + 1 s 0 )v 1 + s 0 v 2 1 s 0 ) 1 t 1 )u 1 + t 1 v 1 + s 0 1 t 2 )u 2 + t 2 v 2 This completes the proof. 1 s 0 ) u 1 + v 1 + s 0 u 2 + v 2 1 s 0 ) 1 t 1 )u 1 + t 1 v 1 + s 0 1 t 2 )u 2 + t 2 v 2 { u 1 + v 1 max 1 t 1 )u 1 + t 1 v 1, u 2 + v 2 1 t 2 )u 2 + t 2 v 2 { u + v sup 1 t)u + tv : u extb X), v S X, 0 t 1. Thus, to obtain the value of the Dunkl-Williams constant, in the above calculation method, for x extb X ) and y X with x B y, the value mx, y) can be computed as { mx, y) sup x + λ + µ y 2 : λ 0 µ, x + λy x + µy,. x + λy extb X )

192 h. mizuguchi 4.. The constant IBX) in hexagonal planes Now, we start to compute DW R 2, ψc )) and IBR 2, ψc )) for c [0, 1]. For simplicity we write X c and for R 2, ψc ) and ψc, respectively. First we suppose 1/2 c. Let e 1 1, 0), u c, 1). Then, by [15, Proposition 2.5], DW X c ) 2 max{me 1 ), Mu). Putting v t t, 1) and w t 1 t) e 1 ) + t c, 1) 1 + t ct, t) for t [0, 1], we have e 1 B v t for t [0, 1 c], u B v t for t [1 c, c] and u B w t for t [0, 1]. By [15, Theorem 2.9 and Corollary 2.10], one has Me 1 ) sup { me 1, v t ) : t 0, 1 c) and Mu) max { sup{mu, v t ) : t 1 c, c), sup{mu, w t ) : t 0, 1) \ {1/2. Lemma 4.1. Let c [1/2, 1]. Then, in X c, Me 1 ) 1 + 1 c 1 + 2c) 2. Proof. Let t 0, 1 c). Then the norm of e 1 + λv t is computed as λ if λ c t) 1, 1 1 c + t)λ if c t) 1 λ 0, e 1 + λv t 1 + 1 c t)λ if 0 λ c + t) 1, λ if c + t) 1 λ. From the inequality e 1 + 1 c + t v t 1 + 1 c t c + t < 1 + 1 c + t c t e 1 1 c t v t, we can find real numbers p t c t) 1, 0) and q t more than c + t) 1 such that e 1 + p t v t e 1 + 1 c + t v t and e 1 + q t v t e 1 1 c t v t,

difference between orthogonality in radon planes 193 respectively. To obtain me 1, v t ), it is enough to consider e 1 + 1 p t + 1 ) v t and 2 c + t e 1 + 1 1 ) 2 c + t + q t v t. Since the equality q t e 1 + q t v t e 1 1 c t v t 1 + 1 c + t c t 1 c t holds, one has c t) 1 ) + q t /2 0. On the other hand, from the equality 1 1 c + t)p t e 1 + p t v t e 1 + 1 c + t v t 1 + 1 c t, c + t we have 1 c t p t 1 c + t)c + t) and hence 1 p t + 1 ) 2 c + t t 1 c + t)c + t). It follows from 0 < t 1 c + t)c + t) 1 p t + 1 ) < 1 2 c + t c + t that e 1 + 1 p t + 1 ) 1 c t)t v t 1 + 2 c + t 1 c + t)c + t). This implies that me 1, v t ) 1 + 1 c t)t 1 c + t)c + t). Letting one can figure out F c t) 1 c t)t 1 c + t)c + t), 1 c + t) 2 c + t) 2 F ct) 2t + 1 c)1 c + t)c + t) 2t + 1)1 c t)t 2 c)t 2 2c1 c)t + c1 c) 2.

194 h. mizuguchi Let t 0 be the larger solution of the equation 2 c)t 2 2c1 c)t+c1 c) 2 0. Then c1 c) t 0 0, 1 c) 2c + c and F c takes maximum at t 0. This t 0 satisfies the equality 2t 0 + 1 c)1 c + t 0 )c + t 0 ) 1 c t 0 )t 0 2t 0 + 1), too. Thus we obtain Me 1 ) 1 + 1 c t 0)t 0 1 c + t 0 )c + t 0 ) 1 + 2t 0 + 1 c 2t 0 + 1 1 + 2c1 c) + 2c + c)1 c) 2c1 c) + 2c + c 1 + 1 c 1 + 2c ) 2. Lemma 4.2. Let c [1/2, 1]. Then, in X c, sup { mu, v t ) : t 1 c, c) 2c. Proof. Let t 1 c, c). Then the norm of u + λv t is calculated by 1 + λ) if λ 2c/c t), 2c 1 {t + 1 c)λ if 2c/c t) λ 1, u + λv t 1 {t 1 c)λ if 1 λ 0, 1 + λ if 0 λ. There exist two real numbers α t, β t satisfying 0 < α t < β t, u + α t v t u v t and u + β t v t u 2c c t v t. It is enough to consider u + 1 2 1 + α t)v t and u + 1 2c ) 2 c t + β t v t.

difference between orthogonality in radon planes 195 From the equality 1 + α t u + α t v t u v t 1 + t 1 c) ), we have α t t 1 c) and hence 1+α t )/2 2 t+c) ) /2. Meanwhile, it follows from 1 + β t u + β t v t u 2c c t v t 1 2c ) c t that By the inequality 1 2 2c c t + β t 1 2c ) 2 c t + β t 1. ) 1 < 2 t + c) ) /2 1 + α t )/2 < 0, we obtain mu, v t ) u v t t+c and hence sup{mu, v t ) : t 1 c, c) 2c. Next, for t 0, 1), the norm of u + λw t is calculated by 2c 1 λ if λ 1/t, 1 {1 21 c)tλ if 1/t λ 0, u + λw t 1 + tλ if 0 λ 2c/1 t), 2c 1) + λ if 2c/1 t) λ. In particular we have u + 2c 1 t w t 1 + 2c 1 t t, u 1 t w t 1 21 c)t 1 +, t and hence u 1 t w t u + 2c 1 t w t 1 t) 1 21 c)t ) 2ct 2 t1 t) 1 2t) 1 + 2c 1)t ). t1 t)

196 h. mizuguchi From this equality, we obtain that if t 0, 1/2) then u + 2c 1 t w t < u 1 t w t and that if t 1/2, 1) then u 1 t w t < u + 2c 1 t w t. Lemma 4.3. Let c [1/2, 1 + 5)/4]. Then, in X c, sup { mu, w t ) : t 0, 1/2) { 1 max 2 + c, 1 + c {1 +. 21 c) 2 Proof. Let t 0, 1/2). Then there exist two numbers γ t 1/t, 0) and δ t greater than 2c/1 t) satisfying u + γ t w t u + 2c 1 t w t and u + δ tw t u 1 t w t, respectively. To obtain mu, w t ) it is enough to consider u + 1 γ t + 2c ) w t and 2 1 t u + 1 1 ) 2 t + δ t w t. From the equality 2c 1) + δ t u + δ t w t u 1 t w t 2c 1 1 ), t one has 1 1 ) 2 t + δ t 2c 1. It is easy to check 2c 1 < 2c/1 t) and hence we obtain u + 1 1 ) 2 t + δ t w t 1 + 2c 1)t. Under the assumption t 0, 1/2), this function takes the supremum 1/2 + c. Meanwhile, it follows from 1 1 21 c)t ) γ t u + γ t w t u + 2c 1 t w t 1 + 2ct 1 t

difference between orthogonality in radon planes 197 that Hence we have 1 γ t + 2 2ct γ t ). 1 21 c)t 1 t) 2c ) 1 t c 1 3 2c)t ) 1 t) 1 21 c)t ) and u + 1 γ t + 2c ) w t 1 + ct 1 3 2c)t ) 2 1 t 1 t) 1 21 c)t ). We note that 1 3 2c)t > 1 3 2c)/2 c 1/2 > 0. Letting t 1 3 2c)t ) G c t) 1 t) 1 21 c)t ) in the interval [0, 1/2], we have 1 21 c)t ) 21 t) 2 G ct) 23 2c)t + 1 ) 1 t) 1 21 c)t ) 41 c)t 3 2c) ) t 1 3 2c)t ) 3 2c) 2 21 c) ) t 2 23 2c)t + 1 We note that 3 2c) 2 21 c) 4c 2 10c+7 4c 5/4) 2 +3/4 > 0. Let t 1 be the smaller solution of equality 3 2c) 2 21 c) ) t 2 23 2c)t + 1 0, i.e., 1 t 1 3 2c + 21 c). If c < 1 + 5)/4, then this t 1 belongs to the interval 0, 1/2). Thus G c t) takes the maximum 1 G c t 1 ) ) 2. 1 + 21 c) This implies that takes maximum u + 1 γ + 2c ) w t 2 1 t 1 + c 1 + 21 c) ) 2.

198 h. mizuguchi In case of 1 + 5)/4 c, the solution t 1 is more than 1/2 and hence the function G c t) takes the maximum at t 1/2. One can follow the above proof except for this part, and obtain the following: Lemma 4.4. Let c [1 + 5)/4, 1]. Then, in X c, sup { mu, w t ) : t 0, 1/2) 1/2 + c. Next we consider sup{mu, w t ) : t 1/2, 1). Lemma 4.5. Let c [1/2, 1]. Then, in X c, sup { mu, w t ) : t 1/2, 1) 9 8 2c if 1 2 c 9 16, if 9 16 c 1. Proof. Let t 1/2, 1). Then from u 1 t w t < u + 2c 1 t w t one can take γ t less than 1/t and δ t 0, 2c/1 t)) satisfying u + γ t w t u + 2c 1 t w t and u + δ tw t u 1 t w t, respectively. From the equality 2c 1 γ t u + γ t w t u + 2c 1 t w t 2c 1) + 2c 1 t, we have The fact implies that u + 1 2 γ t + 1 γ t + 2c ) 2c 1. 2 1 t 0 2c 1 1 2 γ t + 2c ) < 2c 1 t 1 t 2c ) w t u + 2c 1)w t 1 + 2c 1)t. 1 t

difference between orthogonality in radon planes 199 It is clear that the function 1 + 2c 1)t takes the supremum 2c. On the other hand, it follows from 1 + tδ t u + δ t w t u 1 t w 1 21 c)t t 1 + t that and hence δ t 1 21 c)t t 2 1 1 ) 2 t + δ 1 3 2c)t t 2t 2. Under the assumption c [1/2, 1], one can easily check 3 2c) 1 1/2, 1). In case of t 1/2, 3 2c) 1 ], from the inequality 1 3 2c)t 0 2t 2 1 1 ) 2 t + δ t < δ t < 2c 1 t, we have u + 1 1 ) 2 t + δ t w t 1 + 1 3 2c)t. 2t It is easy to check that this function takes the supremum 1/2 + c. Suppose that t 3 2c) 1, 1). Then, from the inequality 1 t < 1 1 ) 2 t + δ 3 2c)t 1 t 2t 2 < 0, one has u + 1 2 1 ) ) ) 1 21 c)t 3 2c)t 1 t + δ t w t 1 + 2t 2. Considering the function H c t) in the interval [1/2, 1] defined by ) ) 1 21 c)t 3 2c)t 1 we figure out H c t) t 2, t 4 H ct) 41 c)3 2c)t + 5 4c ) t 2 2 1 21 c)t ) 3 2c)t 1 ) t

200 h. mizuguchi and hence t 3 H ct) 41 c)3 2c)t + 5 4c ) t 2 1 21 c)t ) 3 2c)t 1 ) 5 4c)t + 2. Since the function 5 4c)t + 2 is decreasing, we have the following: If c < 3/4, then one has 2/5 4c) 3 2c) 1, 1) and hence max { H c t) : t 3 2c) 1, 1) ) 2 H c 5 4c ) ) 5 4c) 41 c) 23 2c) 5 4c) 4 1 4. This implies that u + 1 2 1 ) t + δ t w t takes the maximum 9/8 at t 2/5 4c). Meanwhile, 9/8 is greater than 2c only when c < 9/16. In case of 3/4 c, from 1 2/5 4c) one has that H c t) is increasing. Hence we have max { H c t) : t 3 2c) 1, 1) H1) 21 c)2c 1) This implies that u + 1 2 1 ) t + δ t w t takes the supremum 1 + 1 c)2c 1). We note that 1 + 1 c)2c 1) < 1 + 2c 1) 2c. Therefore we obtain the following proposition.

difference between orthogonality in radon planes 201 Proposition 4.6. Let c [1/2, 1]. Then IBX c ) 1 DW X c )/2 coincide with { 1 c max 1 + {1 + 2c, 1 + c 2 {1 + 21 c), 9 1 if 2 8 2 c 9 16, { max 1 + { max 1 + 1 c {1 + 2c, 1 + c 2 1 c {1 + 2c 2, 2c {1 + 21 c), 2c 2 if if 9 16 < c < 1 + 5, 4 1 + 5 4 c 1. Hereafter we suppose c < 1/2. Similarly to the above paragraph, DW X c ) 2 max{me 1 ), Mu) holds. On the other hand, for v t and w t, Birkhoff orthogonality relations differ from the above paragraph. We have e 1 B v t for t [0, c], e 1 B w t for t [1/21 c), 1] and u B w t for t [0, 1/21 c)]. By [15, Theorem 2.9 and Corollary 2.10], one figure out Me 1 ) max { sup{me 1, v t ) : t 0, c), sup{me 1, w t ) : t 1/21 c), 1) and Mu) sup { mu, w t ) : t 0, 1/21 c)) \ {1/2. Lemma 4.7. Let c [0, 3 5)/4]. Then in X c, sup { me 1, v t ) : t 0, c) 3 2 c. Proof. Let t 0, c). Then in a similar way to the proof of Lemma 4.1, we have 1 c t)t me 1, v t ) 1 + 1 c + t)c + t). Moreover letting we also have F c t) 1 c t)t 1 c + t)c + t), 1 c + t) 2 c + t) 2 F ct) 2 c)t 2 2c1 c)t + c1 c) 2

202 h. mizuguchi again. From c [0, 3 5)/4], it is more than 2 c)c 2 2c1 c)c + c1 c) 2 c4c 2 6c + 1) 0. From this fact, F c t) increases and hence sup { me 1, v t ) : t 0, c) 1 + F c c) 3 2 c. Suppose that c 3 5)/4, 1/2). Then for t 0 defined in the same formula to the proof of Lemma 4.1, we have t 0 0, c) and F ct 0 ) 0. Hence we obtain Lemma 4.8. Let c 3 5)/4, 1/2). Then in X c, sup { me 1, v t ) : t 0, c) 1 + 1 c 1 + 2c ) 2. Lemma 4.9. Let c [0, 1/2). Then in X c, sup { me 1, w t ) : t 1/21 c), 1) 21 c). Proof. Let t 1/21 c), 1). Then the norm of e 1 + λw t is calculated as 1 λ if λ 0, 1 + 21 c)t 1 ) λ if 0 λ 1 1 2c)t ) 1, e 1 + λw t tλ if 1 1 2c)t ) 1 λ 1 t) 1, 1 + λ if 1 t) 1 λ. One can take two real numbers s t, r t satisfying s t < r t < 0, e 1 + r t w t e 1 + 1 1 2c)t ) 1 wt and e 1 + s t w t e 1 + 1 t) 1 w t. It is enough to consider e1 + 1 2 rt + 1 1 2c)t ) 1) wt and e1 + 1 2 st + 1 t) 1) w t. From the equality 1 r t e 1 + r t w t e1 + 1 1 2c)t ) 1 wt 1 + 21 c)t 1 1 1 2c)t, one has r t 21 c)t 1 1 1 2c)t

difference between orthogonality in radon planes 203 and hence It follows from 1 r t + 2 ) 1 1 1 2c)t 1 1 c)t 1 1 2c)t. 1 s t e 1 + s t w t e 1 + 1 t) 1 w t 1 + 1 1 t that 1 2 s t + 1 t) 1 ) 1. Since the inequality holds, we obtain me 1, w t ) e 1 + This implies 0 < 1 1 c)t 1 1 2c)t < 1 < 1 1 1 2c)t s t + 1 ) w t 1 + 21 c)t 1 ) 1 21 c)t. 1 t sup { me 1, w t ) : t 1/21 c), 1) 21 c). For t 0, 1/21 c)) the norm of u + λw t is calculated in a similar way to the case of c [1/2, 1]. Now we suppose c [0, 1/2) and so 1/2 1/21 c) < 1 holds. Thus we have to consider the following two cases again: If t 0, 1/2) then u + 2c 1 t w t < u 1 t w t. If t 1/2, 1) then u 1 t w t < u + 2c 1 t w t. Lemma 4.10. Let c [0, 1/2). Then, in X c { sup { mu, w t ) : t 0, 1/2) max 21 c), 1 + c 1 + 21 c) ) 2.

204 h. mizuguchi Proof. Let t 0, 1/2). In a similar way to Lemma 4.3, one can take δ t and figure out that this constant satisfy u + 1 2 1/t + δ t)w t 1 + 1 2c) 1 21 c)t ) and that this function of t takes the supremum 21 c). We also have γ t and that 1 2 γ t + 2c ) 1 t c 1 3 2c)t ) 1 t) 1 21 c)t ). Now we are considering the case of c [0, 1/2) and so 1/3 2c) 0, 1/2). If t 0, 1/3 2c)), then we have 0 < 1 γ t + 2c ) < 2c 2 1 t 1 t and hence u + 1 γ t + 2c ) w t 1 + ct 1 3 2c)t ) 2 1 t 1 t) 1 21 c)t ). For t 1 defined by same formula to Lemma 4.3, we have t 1 0, 1/3 2c)) and that the function u + 1 γ t + 2c ) w t 2 1 t takes maximum 1 + c/ 1 + 21 c) ) 2 at t1. Assume that t 1/3 2c), 1/2). Then from the inequality 1 t < γ t < 1 γ t + 2c ) c 3 2c)t 1 ) 2 1 t 1 t) 1 21 c)t ) < 0, we obtain u + 1 2 γ t + 2c ) w t 1 + c 3 2c)t 1 ). 1 t 1 t This function of t is increasing and hence less than 1 + c 3 2c)/2 1 ) 1 c)1 + 2c) < 21 c). 1 1/2 Thus we obtain u + 1 γ t + 2c ) w t < 21 c), 2 1 t which completes the proof.

difference between orthogonality in radon planes 205 Lemma 4.11. Let c [0, 1/2). Then, in X c, sup { mu, w t ) : t 1/2, 1/2 c)) 1 c)1 + 2c) if 0 < c 1 4, { max 1 c)1 + 2c), 9 if 1 8 4 < c < 1 2. Proof. Let t 1/2, 1/2 c)). In a similar way to Lemma 4.5, we take γ t less than 1/t and δ t 0, 2c/1 t)). Then we have 1 γ t + 2c ) 1 2c) 2 1 t It follows from 1/t < 21 c) < 1 2c) < 0 that u + 1 γ t + 2c ) w t 1 + 1 2c) 1 21 c)t ) 2 1 t In the situation t 1/2, 1/2 c)), it takes supremum 1 + c1 2c) 1 c)1 + 2c). In addition, we have 1 t < 1 1 ) 2 t + δ 3 2c)t 1 t 2t 2 < 0. Hence the equality u + 1 1 ) ) ) 1 21 c)t 3 2c)t 1 2 t + δ t w t 1 + 2t 2 holds. As in Lemma 4.5, one can consider the following two cases: If 0 < c < 1/4, then the above function is decreasing and hence takes the supremum ) ) 1 21 c)/2 3 2c)/2 1 1 + 21/2) 2 1 + c1 2c) 1 c)1 + 2c) When 1/4 c < 1/2, we have that the above function takes maximum 9/8 at t 2/5 4c). Indeed, 1 c)1 + 2c) is less than 21 c) for any c [0, 1/2). Meanwhile, it is easy to see that 21 c) < 9/8 only if c > 7/16. Therefore we have

206 h. mizuguchi Proposition 4.12. Let c [0, 1/2]. Then IBX c ) 1 DW X c )/2 coincide with { c max 21 c), 1 + ) 2 if 0 c 3 5, 1 + 21 c) 4 max max { { 21 c), 1 + 1 + c 1 + 21 c) ) 2, 1 + 1 c ) 2 1 + 2c c 1 c ) 2, 1 + ) 2, 1 + 21 c) 1 + 2c 9 8 if if 3 5 4 7 16 c 1 2. < c < 7 16, Considering the symmetry of the functions c 1 + 21 c) ) 2 and 1 c 1 + 2c ) 2 and that these function takes value 1/8 at t 1/2, we finally obtain Theorem 4.13. Let c [0, 1] and put d max{c, 1 c. DW X c ) and DW Xc ) coincide with 2 max { 2d, 1 + d ) 2. 1 + 21 d) Then both This is more than DW l ψc -l ψ c ) 9/4 and the equality holds only when c 1/2. Theorem 4.14. Let c [0, 1] and put d max{c, 1 c. IBX c ) and IBXc ) coincide with { ) 2 1 1 + 21 d) min 2d, d + 1 + 21 d) ) 2. Then both This is less than IBl ψc -l ψ c ) 8/9 and the equality holds only when c 1/2.

difference between orthogonality in radon planes 207 The graphs of the functions y 2x, y 21 x), y 1 + y 1 + 1 x 1 + 2x ) 2 and y 9 8 on the interval [0, 1]. x 1 + 21 x) ) 2, Acknowledgements The author would like to thank the anonymous referee for the careful reading, valuable comments and suggestions to improving this paper. References [1] J. Alonso, H. Martini, S. Wu, On Birkhoff orthogonality and isosceles orthogonality in normed linear spaces, Aequationes Math. 83 1-2) 2012), 153 189. [2] D. Amir, Characterization of Inner Product Spaces, Operator Theory: Advances and Applications 20, Birkhauser Verlag, Basel, 1986. [3] V. Balestro, H. Martini, R. Teixeira, Geometric properties of a sine function extendable to arbitrary normed planes, Monatsh. Math. 182 4) 2017), 781 800.

208 h. mizuguchi [4] G. Birkhoff, Orthogonality in linear metric spaces, Duke Math. J. 1 2) 1935), 169 172. [5] F.F. Bonsall, J. Duncan, Numerical Ranges II, London Mathematical Society Lecture Note Series 10, Cambridge University Press, New York- London, 1973. [6] M.M. Day, Some characterizations of inner-product spaces, Trans. Amer. Math. Soc. 62 1947), 320 337. [7] R.C. James, Orthogonality in normed linear spaces, Duke Math. J. 12 1945), 291 302. [8] R.C. James, Orthogonality and linear functionals in normed linear spaces, Trans. Amer. Math. Soc. 61 1947), 265 292. [9] R.C. James, Inner product in normed linear spaces, Bull. Amer. Math. Soc. 53 1947), 559 566. [10] D. Ji, S. Wu, Quantitative characterization of the difference between Birkhoff orthogonality and isosceles orthogonality, J. Math. Anal. Appl. 323 1) 2006), 1 7. [11] A. Jiménez-Melado, E. Llorens-Fuster, E.M. Mazcuñán- Navarro, The Dunkl-Williams constant, convexity, smoothness and normal structure, J. Math. Anal. Appl. 342 1) 2008), 298 310. [12] H. Martini, K.J. Swanepoel, The geometry of Minkowski spaces a survey, II, Expo. Math. 22 2) 2004), 93 144. [13] H. Martini, K.J. Swanepoel, Antinorms and Radon curves, Aequationes Math. 72 1-2) 2006), 110 138. [14] H. Mizuguchi, The constants to measure the differences between Birkhoff and isosceles orthogonalities, Filomat 30 2016), 2761 2770. [15] H. Mizuguchi, K.-S. Saito, R. Tanaka, On the calculation of the Dunkl- Williams constant of normed linear spaces, Cent. Eur. J. Math. 11 7) 2013), 1212 1227. [16] K.-I. Mitani, K.-S. Saito, Dual of two dimensional Lorentz sequence spaces, Nonlinear Anal. 71 11) 2009), 5238 5247. [17] K.-I. Mitani, K.-S. Saito, T. Suzuki, Smoothness of absolute norms on C n, J. Convex Anal. 10 1) 2003), 89 107. [18] K.-I. Mitani, S. Oshiro, K.-S. Saito, Smoothness of ψ-direct sums of Banach spaces, Math. Inequal. Appl. 8 1) 2005), 147 157. [19] P.L. Papini, S. Wu, Measurements of differences between orthogonality types, J. Math. Aanl. Appl. 397 1) 2013), 285 291. [20] B.D. Roberts, On the geometry of abstract vector spaces, Tôhoku Math. J. 39 1934), 42 59. [21] K.-S. Saito, M. Kato, Y. Takahashi, Von Neumann Jordan constant of absolute normalized norms on C 2, J. Math. Anal. Appl. 244 2) 2000), 515 532. [22] T. Szostok, On a generalization of the sine function, Glas. Mat. Ser. III 3858) 1) 2003), 29 44.