Electronic Supplementary Information

Similar documents
SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION

Organic Photovoltaic Devices. Hole Transfer Dynamics in. Maxim S. Pshenichnikov. Jan C. Hummelen. Paul H.M. van Loosdrecht. Dmitry Paraschuk (MSU)

Electronic Supplementary Information (ESI)

Controlling Additive Behavior to reveal an Alternative Morphology Formation Mechanism in Polymer:Fullerene Bulk-heterojunctions

Optimization of Conjugated-Polymer-Based Bulk Heterojunctions

Recombination-Limited Photocurrents in Low Bandgap Polymer/Fullerene Solar Cells Lenes, Martijn; Morana, Mauro; Brabec, Christoph J.; Blom, Paul W. M.

Organic Solar Cells. All Organic solar cell. Dye-sensitized solar cell. Dye. τ inj. τ c. τ r surface states D*/D + V o I 3 D/D.

Global warming in the last millennium

Electronic Supplementary Information

Supplementary Information

Vikram Kuppa School of Energy, Environmental, Biological and Medical Engineering College of Engineering and Applied Science University of Cincinnati

Planar Organic Photovoltaic Device. Saiful I. Khondaker

Enhanced Charge Extraction in Organic Solar Cells through. Electron Accumulation Effects Induced by Metal

Investigation of three important parameters on performance of organic solar cells based on P3HT:C 60

Doping a D-A Structural Polymer Based on Benzodithiophene and Triazoloquinoxaline for Efficiency Improvement of Ternary Solar Cells

Keywords: P3HT, Si-PCPDTBT, voltage at open circuit, bimolecular recombination, charge dynamics, power conversion efficiency.

The Physics of Small Molecule Acceptors for Efficient and Stable Bulk Heterojunction Solar Cells

SCAPS Simulation of P3HT:Graphene Nanocomposites-Based Bulk-Heterojunction Organic Solar Cells

POLYMER-FULLERENE BASED BULK HETEROJUNCTION P3HT:PCBM SOLAR CELL: THE INFLUENCE OF PTU AS A CHEMICAL ADDITIVE ON PHOTOVOLTAIC PERFORMANCE

Electronic Supplementary Information. inverted organic solar cells, towards mass production

Improvement of Photovoltaic Properties for Unmodified Fullerene C 60 -Based Polymer Solar Cells by Addition of Fusible Fullerene

High Performance Perovskite Solar Cells based on a PCBM:polystyrene blend electron transport layer

The influence of materials work function on the open circuit voltage of plastic solar cells

Effect of Composition on Conjugation Structure and Energy Gap of P3HT:PCBM Organic Solar Cell

Organic solar cells based on conjugated polymer/fullerene interpenetrating networks

Customized Energy Down-Shift Using Iridium Complexes for Enhanced Performance of Polymer Solar Cells

Ultrafast Electron Transfer and Decay Dynamics in a Small Band Gap Bulk Heterojunction Material**

SUPPORTING INFORMATION

1 Solubility, Miscibility, and the Impact on Solid-State Morphology

IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 60, NO. 1, JANUARY

Electronic Supplementary Information

Device physics of polymer:fullerene bulk heterojunction solar cells Bartesaghi, Davide

Effects of Solvent Mixtures on the Nanoscale Phase Separation in Polymer Solar Cells**

Electronic Supplementary Information (ESI)

Towards a deeper understanding of polymer solar cells

Supporting Information. Benzophenone-based small molecular cathode interlayers with various polar groups for efficient polymer solar cells

Thin Solid Films (2004) precursor. Lenneke H. Slooff *, Martijn M. Wienk, Jan M. Kroon

Organic Electronics. Polymer solar cell by blade coating

The Effect of Polymer Molecular Weight on the Performance of PTB7-Th:O-IDTBR Non-Fullerene Organic Solar Cells

Photoconductive Atomic Force Microscopy for Understanding Nanostructures and Device Physics of Organic Solar Cells

Incomplete Exciton Harvesting from Fullerenes in Bulk Heterojunction Solar Cells

Supporting Information

Charge Extraction from Complex Morphologies in Bulk Heterojunctions. Michael L. Chabinyc Materials Department University of California, Santa Barbara

HKBU Institutional Repository

Modelling MEH-PPV:PCBM (1:4) bulk heterojunction solar cells

University of Groningen

SUPPORTING INFORMATION

University of Groningen. Cathode dependence of the open-circuit voltage of polymer Mihailetchi, V. D.; Blom, P. W. M.; Hummelen, Jan; Rispens, M. T.

Accurate Measurement and Characterization of Organic Solar Cells**

An azafullerene acceptor for organic solar cells

International Journal of Nano Dimension

Supporting Information

Recent advancement in polymer solar cells

Electronic Supplementary Information. Au/Ag Core-shell Nanocuboids for High-efficiency Organic Solar Cells with Broadband Plasmonic Enhancement

Supporting Information

Fabrication and Characteristics of Organic Thin-film Solar Cells with Active Layer of Interpenetrated Hetero-junction Structure

Supplementary Information of. The Role of Fullerenes in Environmental Stability of Polymer:Fullerene Solar Cells

Enhanced Power Conversion Efficiency of Low Band- Gap Polymer Solar Cells by Insertion of Optimized Binary Processing Additives

Published in: ELECTRONIC PROPERTIES OF NOVEL MATERIALS - PROGRESS IN MOLECULAR NANOSTRUCTURES

Electronic Supplementary Information

Charge Carrier Photogeneration and Transport Properties of a Novel Low-Bandgap Conjugated Polymer for Organic Photovoltaics

Improving Efficiency and Reproducibility of Perovskite Solar Cells through Aggregation Control in Polyelectrolytes Hole Transport Layer

Performance Evaluation of Semi-Transparent Perovskite Solar Cells for Application in Four- Terminal Tandem Cells. Supporting information

Supporting Information

Reducing hole transporter use and increasing perovskite solar cell stability with dual-role polystyrene microgel particles

Light Concentration in Polymer Bulk Heterojunction Solar Cells with Plasmonic Nanoparticles

ARTICLE IN PRESS. Solar Energy Materials & Solar Cells

Hole Selective NiO Contact for Efficient Perovskite Solar Cells with Carbon Electrode

From Binary to Ternary Solvent: Morphology Fine-tuning of D/A Blends in PDPP3T-based Polymer Solar Cells

Charge transport in MDMO-PPV:PCNEPV all-polymer solar cells

Low-temperature-processed inorganic perovskite solar cells via solvent engineering with enhanced mass transport

OPV Workshop September 20, Materials for Polymer Solar Cells: Achievements and Challenges. Wei You

Supporting Information

The influence of doping on the performance of organic bulk heterojunction solar cells

Energy & Environmental Science

Absorbance/Transmittance/Reflectance of PCDTBT:PC 70 BM Organic Blend Layer

Pyridine-functionalized Fullerene Additive Enabling Coordination. Bulk Heterojunction Solar Cells

Effects of Intercalation on the Hole Mobility of Amorphous Semiconducting Polymer Blends

Performance Optimization of Organic Solar Cells

Conjugated Polymers Based on Benzodithiophene for Organic Solar Cells. Wei You

When Function Follows Form: Effects of Donor Copolymer Side Chains on Film Morphology and BHJ Solar Cell Performance

Band Gap Enhancement by Covalent Interactions in P3HT/PCBM Photovoltaic Heterojunction

University of Groningen

Supporting Information

Supporting Information

doi: /

RSC Advances REVIEW. Third-generation solar cells: a review and comparison of polymer:fullerene, hybrid polymer and perovskite solar cells

Supporting Information

Efficient Charge Photogeneration by the Dissociation of PC 70 BM Excitons in Polymer / Fullerene Solar Cells

Supporting Information

Highly Efficient Organic Solar Cells Using Solution-Processed Active Layer with Small Molecule Donor and Pristine Fullerene

Acta Futura 6 (2013) DOI: /AF Organic photovoltaic cells for space applications

General Synthesis of Graphene-Supported. Bicomponent Metal Monoxides as Alternative High- Performance Li-Ion Anodes to Binary Spinel Oxides

Charge-Transfer State Dynamics Following Hole and Electron Transfer in. Organic Photovoltaic Devices

Supporting Information

Optimization of an organic photovoltaic device via modulation of thickness of photoactive and optical spacer layers

Hanyu Wang, 1 Xiao Wang, 1 Pu Fan, 1 Xin Yang, 2 and Junsheng Yu 1,2. 1. Introduction

Supporting Information

Citation for published version (APA): Mihailetchi, V. D. (2005). Device physics of organic bulk heterojunction solar cells s.n.

Transcription:

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 017 Electronic Supplementary Information Understanding the correlation and balance between miscibility and optoelectronic properties for polymer-fullerene solar cells Chaohong Zhang a *, Stefan Langner a, Alexander V. Mumyatov b, Denis V. Anokhin b,c,d, Jie Min e,a, José Darío Perea a, Kirill L. Gerasimov d, Andres Osvet a, Dimitri A. Ivanov c,d,f, Pavel Troshin g,b,* Ning Li a,* and Christoph J. Brabec a,h * a Institute of Materials for Electronics and Energy Technology (i-meet), Friedrich-Alexander University Erlangen-Nürnberg, Martensstrasse 7, 91058 Erlangen, Germany b Institute for Problems of Chemical Physics of Russian Academy of Sciences, Semenov Prospect 1, Chernogolovka, 1443, Russia. c Moscow Institute of Physics and Technology (State University), Institutskiy per. 9, Dolgoprudny, 141700, Russia d Moscow State University, Faculty of Fundamental Physical and Chemical Engineering, GSP-1, 1-51 Leninskie Gory, Moscow, 119991, Russia e The Institute for Advanced Studies, Wuhan University, Wuhan 43007, China f Institut de Sciences des Matériaux de Mullhouse, CNRS UMR 7361, 15 Jean Starcky, F-68051 Mulhouse, France g Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Nobel st. 3, Moscow, 14306, Russian Federation h Bavarian Center for Applied Energy Research (ZAE Bayern), Haberstrasse a, 91058 Erlangen, Germany * Author to whom correspondence should be addressed. E-mail: chaohong.zhang@fau.de; ning.li@fau.de; christoph.brabec@fau.de; p.troshin@skoltech.ru

J sc (ma cm - ) 0 - -4-6 1: 0.8 1: 1 1: 1.5 1: 1: 3 J sc (ma cm - ) 0 - -4-6 1: 0.8 1: 1 1: 1.5 1: 1:3-8 -8 pddp5t-: PyF5-10 0.0 0. 0.4 0.6 pdpp5t-: FAP1-10 0.0 0. 0.4 0.6 Voltage (V) Voltage (V) 60 pdpp5t-: PyF5 pdpp5t-: PyF5 pdpp5t-: FAP1 pdpp5t-: FAP1 4 pdpp5t-:pyf5 pdpp5t-:fap1 FF (%) 50 40 PCE (%) 3 1 30 1:0.8 1:1 1:1.5 1: 1:3 Donor-acceptor weight ratios 1:0.8 1:1 1:1.5 1: 1:3 Donor-acceptor weight ratios Figure S1. a) Current density-voltage (J-V) curves of pdpp5t-:pyf5 and pdpp5t-:fap1; PCE (b) and FF (c) as a function of D:A ratios; Table S1. Photovoltaic properties of pdpp5t- : fullerenes organic solar cells Active layer pdpp5t- : PyF 5 pdpp5t- : FAP1 Weigh t V OC [V] J SC [ma/cm ] FF [%] PCE [%] ratios 1:0.8 0.67±0.01 4.9±0.1 38±0.5 1.±0.1 1:1 0.66±0.01 6.1±0.1 43±0.5 1.7±0.1 1:1.5 0.66±0.01 8.5±0.5 48±.0.7±0. 1: 0.67±0.01 9.5±0.4 5±1.4 3.3±0.1 1:3 0.65±0.01 7.8±0.3 60±0.6 3.0±0.1 1:0.8 0.65±0.01 6.8±0.5 43±.1 1.9±0.1 1:1 0.66±0.01 7.1±0.5 44±0.7.1±0. 1:1.5 0.67±0.01 9.5±0.3 51±.0 3.±0.3 1: 0.67±0.01 9.3±0.4 57±1.5 3.6±0.1

1:3 0.66±0.01 8.4±0.1 60±0. 3.4±0. Figure S. The dark J-V characteristics of (a) PCBM, PyF5 and FAP1 pristine electron-only devices and (b-g) PTB7-Th: fullerenes electron-only devices. The solid line represent the best fitting using the space-charge-limited current (SCLC) modified Mott-Gurney model. Table S. Electron mobilities of pristine fullerenes and PTB7-Th: fullerene composites determined from SCLC measurements Materials Weigh t ratios Electron mobility [cm V -1 s -1 ] PTB7-Th:PCBM 0:1 4.5 10-3 1:1.5 9.0 10-5 1:1 9.8 10-5 PTB7-Th : PyF5 0:1 4.0 10-3 1:3 8.8 10-5 1:1 8.5 10-7 PTB7-Th : FAP1 0:1 4.4 10-3 1:3 9.3 10-5 1:1 4.4 10-7

Figure S3. (a) D GIWAXS patterns of PTB7-Th; in-plane (b) and Out-of-plane (c) cuts of pristine PTB7-Th, PCBM, PyF5 and FAP1 films. Figure S4. D patterns of GIWAXS of PTB7-Th:PCBM, PTB7-Th:PyF5 and PTB7-Th:FAP1 blends at 70 C and 150 C.

Figure S5. 1D GIWAXS patterns of measured out-of-plane for pure donor and acceptor components and their 1:1 blend before and after annealing: a) PTB7-Th:PCBM;b) PTB7- Th:PyF5; c) PTB7-Th:FAP1. 0.6 PTB7-Th:PCBM 1:1.5 PTB7-Th:PyF5 1:3 PTB7-Th:FAP1 1:3 Absorbance 0.4 0. 0.0 400 500 600 700 800 Wavelength (nm) Figure S6. Absorption spectra of ~80 nm thick PTB7-Th:PCBM (1:1.5), PTB7-Th:PyF5 (1:3) and PTB7-Th:FAP1(1:3) thin films.

Figure S7. (a) and (c): Solubility of GEN- and TQ1 in mixed solvents using chlorobenzene as the good solvent; (b) and (d): Hansen Space and a sphere-fit matching the solubility limit of 10 mg ml -1 of GEN- and TQ1.

Table S3. Hansen solubility parameters ( d, p, and hb ) and Hildebrand solubility parameter ( ) of representative polymers and fullerenes Materials d (MPa 1/ ) p (MPa 1/ ) hb (MPa 1/ ) (MPa 1/ ) a) References PCPDTBT 19.60 3.60 8.80 1.78 1 MDMO-PPV 19.06 5.6 5.8 0.56 MEH-PPV 19.06 5.38 5.44 0.53 TQ1 19.0 4.50 4.80 0.30 b) pdpp5t- 19.00 3.00.00 19.30 3 GEN- 18.50 3.90 3.10 19.16 b) PffBT4T-OD 18.56 4.07.31 19.14 4 P3HT 18.50 4.60 1.40 19.11 5 PTB7-Th 18.56.30 3.1 18.98 6 PCBM 0.6 4.93 4.3 1.60 7 PC 71 BM 0.95.80 1.64 1.0 7 PyF5 0.9.15 0.19 1.03 6 FAP1 0.75.60 0.33 0.91 6 a) δ T = δ d + δ p + δ hb b) The Hansen solubility parameters (δ d, δ p, and δ hb ) of GEN- and TQ1 were determined via the binary solvent gradient method, which was employed to probe the surface of the Hansen sphere for a set of four different solvent mixtures. 5, 8 First the solubility of each polymer was measured stepwise from good solvent to non-solvent. Therefore, chlorobenzene was employed as good solvent, while acetone, propylene carbonate, -propanol and cyclohexane were used as nonsolvents (low solubility of the polymers). Because of different weak forces of the non-solvents (propylene carbonate highly polar or cyclohexane less polar), blends with altered interaction relative to the solute are created. This results in a controlled change in solubility (Figure S7). Next, the Hansen solubility parameters of each solvent blend were calculated by following equation: HSP blend = φ S1 HSP S1 + φ S HSP S (S1.1) with ϕ S1 and ϕ S as the volume fraction of chlorobenzene and non-solvent, respectively. This allows us to transfer the solubility data into HSP data, which are then plotted in the Hansen-space. By using a solubility limit of 10 mg ml -1, a 0-1 scoring of the HSP data was made, whereby blend with higher solubility were marked as 1, otherwise 0. Finally a sphere fit was performed by

the software HSPiP. The program evaluates the input data using a quality-of-fit function with the form: DATAFIT = (A 1 A A ) 1 n (S1.) With n as the number of solvents and A i = e (error distance) i (S1.3) where the error distance is the distance of the solvent in error to the sphere boundary. 5 The center of the sphere represents then the Hansen solubility parameters of the polymers.

Table S4. Interaction parameters of polymer:fullerenes and the corresponding Acceptor:Donor ratios from literatures Polymer:fullerene x 1 /v 0 (δ 1 δ ) Optimized devices (10-3 cm -3 mol) (MPa) A:D ratio Reference s PCPDTBT:PCBM 0.014 0.034 3.6:1 9 MDMO-PPV:PCBM 0.44 1.08 4:1 10 MEH-PPV:PCBM 0.45 1.13 5:1 11 TQ1:PCBM 0.69 1.70 3:1 1 pdpp5t-:pcbm.06 5.11 :1 13 GEN-:PCBM.40 5.96 1.5:1 14 PffBT4T-OD:PCBM.44 6.05 1.:1 15 P3HT:PCBM.49 6.18 1:1 16 PTB7-Th:PCBM.78 6.89 1.5:1 this work PCPDTBT:PC 71 BM 0.14 0.34 3:1 18 MDMO-PPV:PC 71 BM 0.16 0.41 4:1 10 TQ1:PC 71 BM 0.33 0.8 3:1 1 pdpp5t-:pc 71 BM 1.40 3.46 :1 13 PffBT4T- 1.71 4.4 1.:1 15 OD:PC 71 BM P3HT:PC 71 BM 1.75 4.35 1:1 16 PTB7-Th:PC 71 BM.00 4.95 1.5:1 17 pdpp5t-: FAP1 0.98.44 :1 this work PTB7-Th: FAP1 1.49 3.70 :1 this work pdpp5t-: PyF5 1.11.76 :1 this work PTB7-Th: PyF5 1.65 4.10 :1 this work

Acceptor:donor ratios 7 6 5 4 3 1 1 1 good Miscibility 3 Polymer:PCBM Polymer:PC 71 BM Other fullerenes A guild to the eye 3 MDMO-PPV PTB7-Th PffBT4T-OD 0 1 3 4 5 6 7 ( ) MPa Figure S8. Fullerene acceptor: polymer donor ratios as a function of polymer-fullerene miscibility References 1. F. Machui, S. Abbott, D. Waller, M. Koppe and C. J. Brabec, Macromolecular chemistry and Physics, 011, 1, 159-165.. D. T. Duong, B. Walker, J. Lin, C. Kim, J. Love, B. Purushothaman, J. E. Anthony and T. Q. Nguyen, Journal of Polymer Science Part B: Polymer Physics, 01, 50, 1405-1413. 3. J. G. Tait, T. Merckx, W. Li, C. Wong, R. Gehlhaar, D. Cheyns, M. Turbiez and P. Heremans, Advanced Functional Materials, 015, 5, 3393-3398. 4. N. Li, J. D. Perea, T. Kassar, M. Richter, T. Heumueller, G. J. Matt, Y. Hou, N. S. Güldal, H. Chen and S. Chen, Nature Communications, 017, 8. 5. F. Machui, S. Langner, X. Zhu, S. Abbott and C. J. Brabec, Solar Energy Materials and Solar Cells, 01, 100, 138-146. 6. C. Zhang, A. Mumyatov, S. Langner, J. D. Perea, T. Kassar, J. Min, L. Ke, H. Chen, K. L. Gerasimov and D. V. Anokhin, Advanced Energy Materials, 016. 7. J. D. Perea, S. Langner, M. Salvador, J. Kontos, G. Jarvas, F. Winkler, F. Machui, A. Görling, A. Dallos, T. Ameri and C. J. Brabec, The Journal of Physical Chemistry B, 016, 10, 4431-4438. 8. I. Burgués-Ceballos, F. Machui, J. Min, T. Ameri, M. M. Voigt, Y. N. Luponosov, S. A. Ponomarenko, P. D. Lacharmoise, M. Campoy-Quiles and C. J. Brabec, Advanced Functional Materials, 014, 4, 1449-1457.

9. J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante and A. J. Heeger, Science, 007, 317, -5. 10. S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Fromherz and J. C. Hummelen, Applied Physics Letters, 001, 78, 841-843. 11. S. Alem, R. de Bettignies, J.-M. Nunzi and M. Cariou, Applied physics letters, 004, 84, 178-180. 1. E. Wang, L. Hou, Z. Wang, S. Hellström, F. Zhang, O. Inganäs and M. R. Andersson, Advanced Materials, 010,, 540-544. 13. V. S. Gevaerts, A. Furlan, M. M. Wienk, M. Turbiez and R. A. Janssen, Advanced Materials, 01, 4, 130-134. 14. N. Li, D. Baran, K. Forberich, F. Machui, T. Ameri, M. Turbiez, M. Carrasco-Orozco, M. Drees, A. Facchetti and F. C. Krebs, Energy & Environmental Science, 013, 6, 3407-3413. 15. Y. Liu, J. Zhao, Z. Li, C. Mu, W. Ma, H. Hu, K. Jiang, H. Lin, H. Ade and H. Yan, Nat Commun, 014, 5, 593. 16. M. T. Dang, L. Hirsch and G. Wantz, Advanced Materials, 011, 3, 3597-360. 17. Z. He, B. Xiao, F. Liu, H. Wu, Y. Yang, S. Xiao, C. Wang, T. P. Russell and Y. Cao, Nature Photonics, 015, 9, 174-179. 18. M. M. Wienk, J. M. Kroon, W. J. Verhees, J. Knol, J. C. Hummelen, P. A. van Hal and R. A. Janssen, Angewandte Chemie, 003, 115, 3493-3497.