Polariton laser in micropillar cavities

Similar documents
arxiv: v3 [cond-mat.mtrl-sci] 3 Dec 2007

Electrically Driven Polariton Devices

Polariton Condensation

SUPPLEMENTARY INFORMATION

Microcavity Exciton-Polariton

Hydrodynamic solitons in polariton superfluids

Manipulating Polariton Condensates on a Chip

Room temperature one-dimensional polariton condensate in a ZnO microwire

Electron-polariton scattering, beneficial and detrimental effects

Single-mode Polariton Laser in a Designable Microcavity

Dynamical Condensation of ExcitonPolaritons

Vortices and superfluidity

Quantum fluid phenomena with Microcavity Polaritons. Alberto Bramati

Stimulated Polariton Scattering in Semiconductor Microcavities: New Physics and Potential Applications

Quantum coherence in semiconductor nanostructures. Jacqueline Bloch

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 2 Jul 2002

SUPPLEMENTARY INFORMATION

Influence of hyperfine interaction on optical orientation in self-assembled InAs/GaAs quantum dots

Room Temperature Polariton Lasing in All-Inorganic. Perovskite Nanoplatelets

Single-photon nonlinearity of a semiconductor quantum dot in a cavity

Light-Matter Correlations in Polariton Condensates

This is a repository copy of Asymmetric angular emission in semiconductor microcavities.

Stimulated secondary emission from semiconductor microcavities

Driven-dissipative polariton quantum fluids in and out of equilibrium

Parametric polariton amplification in semiconductor microcavities

Nuclear spins in semiconductor quantum dots. Alexander Tartakovskii University of Sheffield, UK

Exciton photon strong-coupling regime for a single quantum dot in a microcavity.

QUANTUM CORRELATIONS IN EXCITON SYSTEMS

Entangled Photon Generation via Biexciton in a Thin Film

Part3:Superfluidity: k Flow via obstacles, Persistent Currents & Quantised Vortices. Marzena Szymanska

Contents Part I Concepts 1 The History of Heterostructure Lasers 2 Stress-Engineered Quantum Dots: Nature s Way

Quantum Dot Lasers. Andrea Fiore. Ecole Polytechnique Fédérale de Lausanne

Microcavity design for low threshold polariton condensation with ultrashort optical pulse excitation

Microcavity polaritons are composite bosons, which are partly

Spectroscopy of. Semiconductors. Luminescence OXFORD IVAN PELANT. Academy ofsciences of the Czech Republic, Prague JAN VALENTA

Quantum Optics in Wavelength Scale Structures

Room temperature polariton lasing vs. photon lasing in a ZnO-based hybrid microcavity

Electromagnetically Induced Transparency (EIT) via Spin Coherences in Semiconductor

Optical Properties of Lattice Vibrations

DECAY OF PERTURBATIONS IN A QUANTUM- DOT-OPTICAL MICROCAVITY MODEL

Photonic Micro and Nanoresonators

Quadratic nonlinear interaction

Electron spins in nonmagnetic semiconductors

Supplementary Figure 1: Reflectance at low detuning. Reflectance as a function of the pump power for a pump-polariton detuning of 0.10meV.

Theory for strongly coupled quantum dot cavity quantum electrodynamics

Supplementary Figure 1: Reflectivity under continuous wave excitation.

GeSi Quantum Dot Superlattices

Statistics of the polariton condensate

Last Lecture. Overview and Introduction. 1. Basic optics and spectroscopy. 2. Lasers. 3. Ultrafast lasers and nonlinear optics

OPTICS II Nanophotonics and quantum optics

Deterministic Coherent Writing and Control of the Dark Exciton Spin using Short Single Optical Pulses

Microscopic Modelling of the Optical Properties of Quantum-Well Semiconductor Lasers

Exciton-polariton condensation in a natural two-dimensional trap

Exciton Polariton Emission from a Resonantly Excited GaAs Microcavity

Fermi polaron-polaritons in MoSe 2

Photonic devices for quantum information processing:

Luminescence basics. Slide # 1

Supplementary material

Polaritonic Bistability in Semiconductor Microcavities

Spectroscopy of a non-equilibrium Tonks-Girardeau gas of strongly interacting photons

Spin selective Purcell effect in a quantum dot microcavity system

Emission Spectra of the typical DH laser

Raman-Induced Oscillation Between an Atomic and Molecular Gas

LONG-LIVED QUANTUM MEMORY USING NUCLEAR SPINS

Noise in voltage-biased scaled semiconductor laser diodes

interband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics

Optical Properties of Semiconductors. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India

External (differential) quantum efficiency Number of additional photons emitted / number of additional electrons injected

Optical Investigation of the Localization Effect in the Quantum Well Structures

David Snoke Department of Physics and Astronomy, University of Pittsburgh

Pairing Phases of Polaritons

Supplementary Figure 1 Level structure of a doubly charged QDM (a) PL bias map acquired under 90 nw non-resonant excitation at 860 nm.

Three-Dimensional Silicon-Germanium Nanostructures for Light Emitters and On-Chip Optical. Interconnects

Coupling polariton quantum boxes in sub-wavelength grating microcavities

Fabrication / Synthesis Techniques

Unconventional Lasing Mechanisms in Organic Semiconductors

Lecture 2. Electron states and optical properties of semiconductor nanostructures

Investigation on Mode Splitting and Degeneracy in the L3 Photonic Crystal Nanocavity via Unsymmetrical Displacement of Air-Holes

How to measure packaging-induced strain in high-brightness diode lasers?

Intersubband Response:

Energy Band Calculations for Dynamic Gain Models in Semiconductor Quantum Well Lasers

+ - Indirect excitons. Exciton: bound pair of an electron and a hole.

Photonic Crystal Nanocavities for Efficient Light Confinement and Emission

Optical Properties of Solid from DFT

arxiv: v1 [cond-mat.quant-gas] 21 Apr 2017

Optics and Quantum Optics with Semiconductor Nanostructures. Overview

Intraband emission of GaN quantum dots at λ =1.5 μm via resonant Raman scattering

Spin Dynamics in Single GaAs Nanowires

Coherence and optical electron spin rotation in a quantum dot. Sophia Economou NRL. L. J. Sham, UCSD R-B Liu, CUHK Duncan Steel + students, U Michigan

Defense Technical Information Center Compilation Part Notice

Electron Dynamiχ MPRG Fritz-Haber-Institut der Max-Planck-Gesellschaft

Supporting Online Material for

Magnetostatic modulation of nonlinear refractive index and absorption in quantum wires

Effects of polariton squeezing on the emission of an atom embedded in a microcavity

Quantum Dot Lasers. Jose Mayen ECE 355

Lecture 8 Interband Transitions. Excitons

Spin dynamics of cavity polaritons

Optical Nonlinearities in Quantum Wells

SUPPLEMENTARY INFORMATION

High performance THz quantum cascade lasers

Transcription:

Polariton laser in micropillar cavities D. Bajoni, E. Wertz, P. Senellart, I. Sagnes, S. Bouchoule, A. Miard, E. Semenova, A. Lemaître and J. Bloch Laboratoire de Photonique et de Nanostructures LPN/CNRS, Marcoussis, France Outline 2D GaAs cavities : polariton laser or photon laser? D polariton states in micropillars Polariton laser: D versus 2D OPO with D polariton modes Polariton electrical injection

Motivations Cavity polaritons : exciton photon mixed state Strong χ 3 non linearities : OPO (Savvidis PRL2, Stevenson PRL2, C. Diederich Nature2 ) > generation of correlated photon pairs 1.47 upper polariton photon exciton 1.47 lower polariton 4 C. Weisbuch et al., PRL 92 Bosonic statistic : macroscopic occupation of a quantum state BEC (J. Kasprzak Nature2, R. Balili Science27, C. W. Lai Nature27) Polariton laser: Low threshold source of coherent light (S. Christopoulos PRL27, D. Bajoni PRL28) 1 k // (cm )

Reports of Bosonic effects in semiconductor microcavities II VI (CdTe) : Non resonant excitation, Low temperature J. Kasprzak Nature2 GaN: Non resonant excitation, 3 K S. Christopoulos PRL27, G. Christmann APL 28 GaAs: Low temperature Non resonant excitation Trap in real space, R. Balili et al., Science 27 Resonant excitation, 2D Deng et al., Science 22, PRL 27 C. W. Lai,et al., Nature 27

Polariton relaxation under non resonant excitation cw non resonant Pump: high energy electron hole pairs Energy ) 1 + f ( Bosonic stimulation: Γ relaxation (f+1) f 4 2 1 k // (µm ) 2 4 f >>1 : quantum degeneracy; coherence. But we need : Polariton lifetime >> Polariton relaxation time! Relaxation bottleneck

Polariton relaxation under non resonant excitation! Relaxation bottleneck, polariton polariton scattering to enhance polariton relaxation Tartakovskii, PRB 2, Senellart PRB 2! Exciton screening at high excitation density : strong coupling > weak coupling R. Houdré, PRB 199, R. Butté PRB 22 Screening of the strong coupling regime, electron hole plasma in the weak coupling regime Vertical Cavity Surface Emitting Laser We need high occupation factors for a moderate total exciton density

Large Rabi splitting GaAs microcavity: 2D Large number of quantum wells Total saturation density N x (one QW saturation density) Overcome relaxation bottleneck? 1 1 pairs 2 pairs Energy (m ev) 3 x 4 GaAs QW 13 12 J. Bloch, APL (1998) HH 1 1 Ω 19 18 14 Same structure as Yamamoto et al. Snoke et al. LH 14 13 12 HH 1 mev 11 Position (mm)

Large Rabi splitting GaAs microcavity: 2D cw Emission at k// Energy at threshold Cavity mode

Large Rabi splitting GaAs microcavity: 2D cw Angle resolved photoluminescence δ 1. mev cavity m ode redshifted cavity m ode H H exciton 11 Lower polariton 1 P 2.2 P th P.3 P th..x 1 In plane wavevector (m )

Large Rabi splitting GaAs microcavity: 2D cw Angle resolved photoluminescence δ 1. mev cavity m ode redshifted cavity m ode H H exciton 11 Dispersion of a cavity mode Lower polariton 1 P 2.2 P th P.3 P th.. x 1 In plane wavevector (m ) Carrier induced refractive index renormalization Regular photon lasing! Too high carrier density

Large Rabi splitting GaAs microcavity: 2D Intensity distribution of the photon laser PL integrated Intensity (arb.u.) δ 1. mev 8 7 4 3 P2.2 P th cw Similarities between photon laser and polariton condensate P.3 P th 1 2 3 4 E E min (m ev) D. Bajoni et al., Phys. Rev. B 7, R213 (27)

Large Rabi splitting GaAs microcavity: 2D New generation of samples : higher finesse Q > 12 1 pairs 2 pairs 3 x 4 GaAs QW 2 pairs 3 pairs (mev) Energy 1 1 Energy at threshold 14 14 Ω 12 12 1 1 2 2 HH 1 mev Strong coupling?! 2 2 1 1 Detuning Detuning(meV) (mev) 1 1

E Selective probe (emission or excitation) of the polariton states z θ k ( cm émission(θ ) θ k (4 cm 1) ) k ω /c sin(θ ) k

Large Rabi splitting GaAs microcavity: 2D New generation of samples : higher finesse 9 8 7 4 3 2 4 m W 3 m W 2 m W m W m W 2 m W 1 m W 12 m W m W 9 mw 8 mw 7 mw mw mw 2 mw 1 mw. m W 1 11 12 12 Energy (m ev) 13 Integrated Intensity (a.u.) Integrated Intensity (a.u.) δ +. mev 11 9 8 7 4 3 2 1 Pump Power (mw )

Large Rabi splitting GaAs microcavity: 2D New generation of samples : higher finesse 1E8 δ +. mev P P th 1E7 13 1 1 12 13 14 1E8 P 1E7 P th P Pth P Pth P.2 Pth 12 1 1 12 13 14 12 2x 1E8 P.2 P th 1E7 1 1 12 13 14 1x 1x 2x 1 k // (m ) 3x 4x x

Large Rabi splitting GaAs microcavity: 2D New generation of samples : higher finesse δ +. mev 9 P P th P P th P,2 P th 8 7 T 4 K Occupancy (a.u.) 13 P Pth P Pth P.2 Pth 12 12 4 2x 2 4 E E min (mev) 1x 1x 2x 1 k // (m ) 3x 4x x

Large Rabi splitting GaAs microcavity: 2D New generation of samples : higher finesse Polariton lifetime >> relaxation time Build up of a large occupancy at k in the strong coupling regime Polariton laser (BEC?) in a GaAs 2D microcavity under NON RESONANT excitation Lateral confinement : D polariton states in the same sample Discussion of 2D versus D for polariton lasing

Photon modes in a micropillars Photons confined along z: kz pπ /Lc Photons confined along x and y: refractive index contrast between air and semiconductor kx pxπ /Lx ky pyπ /Ly Ly Lx Lc << Lx,Ly 194 192 Discrete spectrum : px and py 19 188 18 2 184 EPx, py 182 18 178 17 1. 2. 2. 3. 3. 4. 4. size ( µm)... 2 c pπ p xπ p yπ + + n Lc Lx Ly 2

Exciton Photon coupling in micropillars Photon modes Exciton enveloppe function : p yπ y p xπ x E p x, p y ( x, y ) sin( ) sin( ) Lx Ly p yπ y p xπ x ψ px, p y ( x, y ) sin( ) sin( ) Lx Ly One to one coupling between exciton and photon modes (for lateral size > 2 µm) Ex px, py g g EC px, py G. Panzarini and L. C. Andreani, PRB, 1799 (1999) > Exciton photon mixed states Discrete polariton states

D polariton states in micropillars Fabrication : Electron beam lithography Reactive ion etching 2 pairs 2 2 µm 3 x 4 GaAs QW 3 pairs Cavity wedge > detuning 2 µm

D polariton states in micropillars Microphotoluminescence on a single micropillar PL Intensity (arb. units) 3 Discrete Circular pillar Polariton M odes diameter4 µm M1 M2 M3 T K M4 2 Q>12 µm Exciton Emission 1 1 Discrete spectrum of polariton modes

Another approach for D polaritons R. Idrissi Kaitouni, et al., PHYSICAL REVIEW B 74, 1311 (2) Ounsi El Daif et al., Applied Phys. Lett. 92, 819 (28)

Polariton laser in a micropillar Non resonant optical pumping δ mev PL Intensity (arb. units) 7 µm 2. mw 2 mw 1.2 mw.8 mw.3 mw.1 mw 4 3 2 19 x4 x4 x4 x x2 199 12 1 Blueshift <. mev Strong coupling regime

Polariton laser in a micropillar Non resonant optical pumping PL Intensity (arb. units) 2. mw 2 mw 1.2 mw.8 mw.3 mw.1 mw coupling regime: 4 3 Strong Polariton laser 2 19 x4 x4 x4 x x2 199 µm 7 mw mw 3 mw mw 2. mw 4 PL Intensity (arb. units) δ mev 7 3 2 Weak coupling regime: Photon laser 12 1 19 199 12 1 Onset of photon lasing at higher excitation power D. Bajoni et al., Phys. Rev. Lett., 4741 (28)

Em ission energy (mev) 12 11 9 8 7 Polariton laser Photon laser 1 4 3 2 1 1 µm Measured occupancy Emission integrated intensity (arb. u.) Polariton laser in a micropillar % of the injected electron hole pairs Polariton laser 199 More than polaritons in the same quantum state 198 Photon laser 197.1 1 Excitation power (mw ) D. Bajoni et al., Phys. Rev. Lett., 4741 (28) Estimated exciton density : cm 2/QW

Em ission energy (mev) 12 11 9 8 7 Polariton laser Photon laser 1 198 Photon laser 197.1 1 4 3 2 1 1 Photon laser : non interacting bosons Polariton laser 199 µm Measured occupancy Emission integrated intensity (arb. u.) Polariton laser in a micropillar Excitation power (mw ) Polariton laser : self interaction responsible for the observed blueshift

2 Threshold (x W cm ) Polariton laser in a micropillar Photon laser 1.1 Polariton laser.1 2 4 8 12 14 1 18 2 22 Pillar size (µm ) times lower threshold!!!

Polariton laser in a micropillar PL PL intensity intensity (arb. (arb. u.) u.) Centered Centered.8 mw mw.8.7 mw.7 mw. mw mw..2 mw mw.2 1x 1x 7x 7x Edge 4x 3x 2x 1x 1.3.8.7.2 Diameter µm mw mw mw mw edge excitation: stimulation toward M2, M3 x. 3x 3x Integrated Integrated PL PL intensity intensity xx 44 1 1 1 1 x 3 1 1 Energy (m ev) Energy (m ev) 8 8 M ode1 Mode1 M ode2 Mode2 M ode3 7 7 Mode3 4 4.1.1 11.1 1 power (m W ) Excitation Excitation power (m W ) 8 7 Polariton Lasing with mode competition

Polariton laser in a micropillar: mode competition Large micropilllar Smaller micropilllar 4 µm 4 3 4x 3x 2x 1x 2 mw 1 mw Power (µw ) 17 178 18 Multimode, fragmentation Energy (ev) 1 mw 2 mw 9 8 7 4 3 4x 3x 1 mw Intensity (arb. u.) 7 x Intensity (arb. u.) x 8 Intensity (arb.u.) Integrated intensity (arb. u.) µm 2x 1x. mw Power (µw) 17 178 18 182 184 Lasing on the ground state. mw 1 mw

Mode competition: 2D versus D II VI 2D cavity Laser without power fluctuation: multimode polariton lasing Reduced dimensionality : A unique system for quantum degeneracy in a well controled quantum state

OPO with D polaritons Parametric scattering between discrete D polariton modes PL Intensity (arb. Units) 4 3 3 2 Energy conservation: Ei Ep Ep Es Square pillar 4 µm side T4K 1 s 14 Symmetry conservation: P 2 14 i 14 E 147 147 148 G. Dasbach et al., PRB 4 R2139 (21) * Pump * 4 ( r )E Pump ' ( r ) Esignal ( r ) Eidler ( r )d r

OPO with D polaritons E Px, py Energy conservation: Ei Ep Ep Es c n 2 pπ p xπ p yπ + + Lc Lx Ly (2,2) E + 8 Econf (2,1),(1,2) E + Econf (1,1) E + 2 Econf 2 2 Spectral Equidistance

OPO with D polaritons (2,2) Energy conservation: Ei Ep Ep Es (2,1) + (1,2) Symmetry conservation: * 2 * E ( r ) E ( r ) E ( r ) E ( r Pump Pump ' signal idler )d r (1,1)

OPO in micropillars 3. µm square T K Intensity (arb. u.) M1 M2 M2 M3 194 19 198 1 Energy (m ev) 12 1. x 7. x M1 Pump M3 P P P P P P 1 m W 9 m W 7 m W 1 m W 2 m W mw. 194 D. Bajoni et al., Applied Phys. Lett. 9, 17 (27) 19 198 1 12

OPO in micropillars 3. µm square T K 7 4 M2 M1 M3 Intensity (arb. u.) Integrated Intensity (a. u.) 1.x 7.x M1 Pump M3 P P P P P P 1 m W 9 m W 7 m W 1 m W 2 m W mw. 194 1 Pum p Power (mw ) 19 198 1 First observation of parametric oscillations on a single micropillar 12

OPO with microcavity polaritons Idler Signal pump idler 9 signal Pump : 17 Idler at very large angle and weakly coupled to the external field P.G. Savvidis et al. PRL 84 147 (2) R. M. Stevenson et al. PRL 8 38 (2) Micropillars Multiple cavities (collaboration J. Tignon and A. Bramati) Same intensity for signal and idler

Polariton electrical injection D. Bajoni et al., Phys. Rev. B 77, 11333 (28)

Polariton electrical injection 1482 1482 148 148 1478 1478 147 147 Log(EL intensity) Log(EL intensity) (arb. units) (arb. units) 11 22 33 44 T TKK I1 I1m maa 1474 1474 1484 1484 1482 1482 148 148 1484 1484 1478 1478 Log(EL intensity) Log(EL intensity) (arb. units) (arb. units) 33 44 T TKK I7 I7mmAA 147 147 Cavity mode 1474 1474 1472 1472 1472 1472 147 147 147 147 148 148 148 148 14 14 14 14 11 22 22 Angle Angle(degrees) (degrees) Bleaching of the strong coupling 11 22 22 Angle Angle(degrees) (degrees)

Polariton electrical injection T K Three groups : A. Khalifa et al., Appl. Phys. Lett. 92, 17 (28) T K D. Bajoni et al., Phys. Rev. B 77, 11333 (28) T K S. I. Tsintzos et al., Nature 43. 372 (28) T 23 K Further optimisation : polariton laser under electrical injection

Summary GaAs cavities : High finesse + Many QWs 7 PL Intensity (arb. units) Polariton lasing (BEC?) under non resonant excitation in 2D and in D 4 3 2 x4 x4 x4 x x2 Multimode lasing in 2D and pillars > µm 2. m W 2 mw 1.2 m W.8 m W.3 m W.1 m W 19 199 12 1 Energy (m ev) Small micropillars (< µm): quantum degeneracy of a well controlled polariton state OPO with discrete polariton states.x 148 1478 147 1484 Lo g(el intensity) (arb. u nits) 1482 1 m W 9 m W 7 m W 1 m W 2 m W mw 1 2 3 148 T K I1 m A 1474 1472. 194 19 198 1 12 1478 4 T K I7 m A 1474 1472 147 148 148 14 RTN Clermont II 3 147 147 Electrical injection of polaritons L og(el intensity) (arb. u nits) 1482 4 1.x Intensity (arb. u.) 1484 P P P P P P 7 14 1 2 Angle (degrees) 2 1 2 Angle (degrees) 2