INSTRUMENTATION ECE Fourth Semester. Presented By:- Sumit Grover Lect., Deptt. of ECE

Similar documents
Part 2. Sensor and Transducer Instrument Selection Criteria (3 Hour)

Sensors and Transducers. mywbut.com

Unit 3 Transducers. Lecture_3.1 Introduction to Transducers

Transducer. A device to which change or converts physical quantity in a more easily measurable quantity. Transducer. (Input) Sensor.

SENSORS AND TRANSDUCERS

I. MEASUREMENT OF TEMPERATURE

MCT151: Introduction to Mechatronics Lecture 10: Sensors & Transduction Mechanisms

ECE421: Electronics for Instrumentation MEP382: Design of Applied Measurement Systems Lecture #2: Transduction Mechanisms

Control Engineering BDA30703

1. Distinguish the important characteristics of instrument that are totally electrical and totally electronic in nature. [16]

Unit 57: Mechatronic System

e453.eps 1 Change (or the absolute value) in the measured physical variable 2 Change in the sensor property is translated into low-power-level

Overview. Sensors? Commonly Detectable Phenomenon Physical Principles How Sensors Work? Need for Sensors Choosing a Sensor Examples

Slide 1. Temperatures Light (Optoelectronics) Magnetic Fields Strain Pressure Displacement and Rotation Acceleration Electronic Sensors

INSTRUMENTATION AND CONTROL SYSTEMS LAB

Transducers. EEE355 Industrial Electronics

Chapter 3. Lecture 3 Chapter 3 Basic Principles of Transducers. Chapter 3 - Definitions. Chapter 3. Chapter 3 7/28/2010. Chapter 3 - Definitions.

e453.eps 1 Change (or the absolute value) in the measured physical variable 2 Change in the sensor property is translated into low-power-level

REPORT ON TRANSDUCERS TRANSDUCERS

Transducers. ME 3251 Thermal Fluid Systems

Temperature Measurement

ECNG3032 Control and Instrumentation I

2. (a) Differentiate between rare metal thermocouples and base metal thermocouples.

Strain Gauge Application and Measurement of Unknown Load

VALLIAMMAI ENGINEERING COLLEGE

Force and Displacement Measurement

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

VTU NOTES QUESTION PAPERS NEWS RESULTS FORUMS Fig. 1 Data acquisition block diagram

ME 515 Mechatronics. Overview of Computer based Control System

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad DEPARTMENT OF ECE QUESTION BANK. : G.Lakshminarayana, Asst.

Optics Definitions. The apparent movement of one object relative to another due to the motion of the observer is called parallax.

SENSORS and TRANSDUCERS

BME/EECS Biomedical Instrumentation & Design Matt O Donnell

Overview. Sensors? Commonly Detectable Phenomenon Physical Principles How Sensors Work? Need for Sensors Choosing a Sensor Examples

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

5) Define Instrumental error These are the errors inherent in measuring instrument because of their mechanical structure.

Electric Fields. Basic Concepts of Electricity. Ohm s Law. n An electric field applies a force to a charge. n Charges move if they are mobile

Biosensors and Instrumentation: Tutorial 2

Module I Module I: traditional test instrumentation and acquisition systems. Prof. Ramat, Stefano

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

STRAIN GAUGES YEDITEPE UNIVERSITY DEPARTMENT OF MECHANICAL ENGINEERING

Module 3 Electrical Fundamentals

III B.Tech. II Semester Regular Examinations, April/May INSTRUMENTATION & CONTROL SYSTEMS (Mechanical Engineering) Time: 3 Hours Max Marks: 75

coil of the circuit. [8+8]

Objective Type Questions Instrumentation System & Devices (IDS)

Lecture 19. Measurement of Solid-Mechanical Quantities (Chapter 8) Measuring Strain Measuring Displacement Measuring Linear Velocity

1 Written and composed by: Prof. Muhammad Ali Malik (M. Phil. Physics), Govt. Degree College, Naushera

The secondary winding have equal no. of turns. The secondary windings are placed identically on either side of the primary winding.

DEFINITIONS. Linear Motion. Conservation of Momentum. Vectors and Scalars. Circular Motion. Newton s Laws of Motion

ELECTRICITY AND MAGNETISM, A. C. THEORY AND ELECTRONICS, ATOMIC AND NUCLEAR PHYSICS

15. Compare the result with the value you have taken above Compare the calculated pressure value with the actual pressure value that you have

Objective of Lecture Discuss resistivity and the three categories of materials Chapter 2.1 Show the mathematical relationships between charge,

An ion follows a circular path in a uniform magnetic field. Which single change decreases the radius of the path?

PHYSICS : CLASS XII ALL SUBJECTIVE ASSESSMENT TEST ASAT

LABORATORY MANUAL MEASUREMENTS & INSTRUMENTATION (ME- 318-F)

CHAPTER 9: TEMPERATURE, PRESSURE, STRAIN AND MOTION MEASUREMENTS

Scheme & Solutions of 14EI 505 (OCT-2018)

SENSORS and TRANSDUCERS


Physics Higher level Paper 1

CBSE_2014_SET_3 Physics

CBSE Examination Paper

5. You may use the following values of physical constants wherever necessary. Class XII Physics (042) Sample Question Paper

EET LAB MANUAL. Term-062 UNIVERSITY DIPLOMA PROGRAM ELECTRONIC EQUIPMENT MAINTENANCE

Sensors Lecture #5: Position and Displacement using Resistive, Capacitive and Inductive Sensors

PhysicsAndMathsTutor.com

Measurement Techniques for Engineers. Motion and Vibration Measurement

DUBLIN INSTITUTE OF TECHNOLOGY Kevin Street, Dublin 8.

Strain, Force, and Pressure

Measurements in Mechatronic design. Transducers

QUESTION BANK DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING UNIT I - INTRODUCTION SYLLABUS

Earlier Lecture. In the earlier lecture, we have seen non metallic sensors like Silicon diode, Cernox and Ruthenium Oxide.

REVISED HIGHER PHYSICS REVISION BOOKLET ELECTRONS AND ENERGY

Course Name: Sensor and Transducer Course Code: EE 802B Credit: 3

Section 2: Physics m/s

Physics (Theory) There are 30 questions in total. Question Nos. 1 to 8 are very short answer type questions and carry one mark each.

INSTRUMENTATION AND CONTROL

Preview from Notesale.co.uk Page 4 of 35

Sample Question Paper. Class XII -Physics. (Applicable for March 2016 Examination) Time Allowed: 3 Hours Maximum Marks: 70

AISSCE 2016 EXPECTED (SURE SHORT) QUESTIONS WEIGHTAGE-WISE 2016

KCSE 2009 PHYSICS PAPER 2

Temperature Measurements

Section 7. Temperature Measurement

MAGNETIC FIELDS & UNIFORM PLANE WAVES

Siddharth Institute of Engineering & Technology

Electromagnetics in COMSOL Multiphysics is extended by add-on Modules

Roll No. :... Invigilator s Signature :.. CS/B.Tech (EIE)/SEM-5/EI-501/ INDUSTRIAL INSTRUMENTATION II

Sensing, Computing, Actuating

I m. R s. Digital. R x. OhmmetersxSeries Shunt Digital. R m

Induction_P1. 1. [1 mark]

Subject: BT6008 Process Measurement and Control. The General Control System

2. be aware of the thermal properties of materials and their practical importance in everyday life;

CBSE QUESTION PAPER. PHYSICS (Theory)

Lecture 20. Measuring Pressure and Temperature (Chapter 9) Measuring Pressure Measuring Temperature MECH 373. Instrumentation and Measurements

Dimension measurement. By Mr.Vuttichai Sittiarttakorn

Prof. S.K. Saha. Sensors 1. Lecture 5 June 11, Prof. S.K. Saha. Purpose Classification Internal Sensors. External Sensors.

SELAQUI INTERNATIONAL SCHOOL, DEHRADUN

Capacitors. Charging a Capacitor. Charge and Capacitance. L05: Capacitors and Inductors

UNIT 2 STRAIN MEASURMENTS, FORCE MEASUREMENTS. Therefore, resistance strain gauges are also known as piezo-resistive gauges.

Force Sensors. What is a force sensor?

Transcription:

INSTRUMENTATION ECE Fourth Semester Presented By:- Sumit Grover Lect., Deptt. of ECE

Detailed Contents Objectives Sensors and transducer Classification of transducers Temperature transducers Resistance transducers Capacitive transducers Inductive transducers 2

Objectives Ability to understanding the definition, functions & categories of transducers. List the classes and types and examples of transducers. Operations and applications for each transducers 3

Sensor and transducer Sensor' is `a device that detects a change in a physical stimulus and turns it into a signal which can be measured or recorded. E.g. : Thermistor Transducer' is 'a device that transfers power from one system to another in the same or in the different form'. E.g. Thermistor with it associate circuit convert heat to electricity. As a comparison Sensor' for the sensing element itself and 'transducer' for the sensing element plus any associated circuitry. All transducers would thus contain a sensor and most (not all) sensors would also be transducers. 4

Sensing process

Definition of a transducer Transducer is any device that converts energy in one form to another energy. The majority either convert electrical energy to mechanical displacement or convert some non-electrical physical quantity, such as temperature, sound or light to an electrical signal. 6

Functions of transducer 1. To sense the presence, magnitude, change in, and frequency of some measurand. 2. To provide an electrical output that, when appropriately processed and applied to readout device, gives accurate quantitative data about the measurand Measurand Transducer Electrical output Excitation Measurand refers to the quantity, property or condition which the transducer translates to an electrical signal. 7

Classification of transducers Transducer can be classified according to their application, based primarily on the physical quantity, property, or condition that is measured. The transducer can be categories into: A) Passive transducer: - requires an external power - output is a measure of some variation, such resistance and capacitance. E.g. : condenser microphone B) Self generating transducer: - not require an external power, and they produce analog voltage or current when stimulated by some physical form of energy. E.g. : Thermocouple 8

Selecting a transducers 1. 2. 3. 4. 5. 6. 7. 8. Operating range Sensitivity Frequency response and resonant frequency Environmental compatibility Minimum sensitivity measurand. Accuracy Usage and ruggedness Electrical parameter 9

Transducers to be covered Temperature transducers Resistive Position Transducer Capacitive Transducer Inductive Transducer Strain Gauge LVDT Photoelectric 10

Temperature Transducers Temperature transducers can be divided into four main categories: 1. Resistance Temperature Detectors (RTD) 2. Thermocouples 3. Thermistor 4. Ultrasonic transducers 11

1) Resistance Temperature Detector (RTD) Detectors of wire resistance temperature common employ platinum, nickel or resistance wire elements, whose resistance variation with temperature has high intrinsic accuracy. They are available in many configurations and size and as shielded or open units for both immersion and surface applications. The relationship between temperature and resistance of conductors can be calculated from the equation: R R 0 (1 T ) where R R0 α ΔT = the resistance of the conductor at temperature t (0C) = the resistance at the reference temperature, usually 200C = the temperature coefficient of resistance = the difference between the operating and the reference temperature 12

2) Thermocouple It consists of two wires of different metals are joined together at one end, a temperature difference between this end and the other end of wires produces a voltage between the wires. The magnitude of this voltage depends on the materials used for the wires and the amount of temperature difference between the joined ends and the other ends. 13

Cont d The emf of the thermocouple : E = c(t1 T2) + k(t12 T22) Where c and k T1 T2 = constant of the thermocouple materials = The temperature of the hot junction = The temperature of the cold or reference junction 14

3) Thermistor A thermistor is a semiconductor made by sintering mixtures of metallic oxide, such as oxides of manganese, nickel, cobalt, copper and uranium. Termistors have negative temperature coefficient (NTC). That is, their resistance decreases as their temperature rises. Types of thermistor Disc Washer Rod Resistance 1 to 1MΩ 1 to 50kΩ high resistance 15

This figure shows resistance versus temperature for a family thermistor. The resistance value marked at the bottom end of each curve is a value at 250C Note! The resistance decreases as their temperature rises-ntc 16

Advantages of thermistor Small size and low cost Fast response over narrow temperature range Good sensitivity in Negative Temperature Coefficient (NTC) region Cold junction compensation not required due to dependence of resistance on absolute temperature. Contact and lead resistance problems not encountered due to large resistance 17

Limitations of thermistor Non linearity in resistance vs temperature characteristics Unsuitable for wide temperature range Very low excitation current to avoids self heating Need of shielded power lines, filters, etc due to high resistance 18

Resistive Position Transducer The principle of the resistance transducer is that the physical variable under measurement causes a resistance change in the sensing element. A common requirement in industrial measurement and control work is to be able to sense the position of an object or distance it has moved. R. L A Potentiometer R: resistance change : density L: Length A: area 19

Cont d FIG 1 (a) FIG 1 (b) Figure shows the construction of a displacement transducer uses a resistance element with a sliding contact or wiper linked to the object being monitored. The resistance between the slider and one end of the resistance element depends on the position of the object. The output voltage depends on the wiper position and therefore is a function of the shaft position 20

Consider Fig 1 (b), if the circuit is unloaded, the output voltage V0 is a certain fraction of VT, depending on the position of the wiper: V0 R2 VT R1 R2 This equation shows that the output voltage is directly proportional to the position of the wiper, if the resistance of the transducer is distributed uniformly along the length of travel of the wiper EXAMPLE 1 A displacement transducer with a shaft stroke of 4 in. is used in the circuit of figure 1 (b). R1 +R2 is 1000 Ω and VT = 4 V. The wiper is 1.5 in from B. Find V0? 21

Capacitive Transducer The capacitance of a parallel plate capacitor is given by ka 0 C ( Farads ) d where k A εo d = dielectric constant = the area of the plate, in m2 = 8.854 x 10-12 F/m = the plate placing in m 22

Cont d Forms of Capacitance Transducers Rotary plate capacitor Rectilinear Capacitance Transducer Thin diaphragm 23

Cont d Rotary plate capacitor: The capacitance of this unit proportional to the amount of the fixed plate that is covered, that shaded by moving plate. This type of transducer will give sign proportional to curvilinear displacement or angular velocity. 24

Cont d Rectilinear capacitance transducer: It consists of a fixed cylinder and a moving cylinder. These pieces are configured so the moving piece fits inside the fixed piece but insulated from it. 25

Cont d Thin diaphragm: A transducer that varies the spacing between surfaces. The dielectric is either air or vacuum. Often used as Capacitance microphones. 26

Cont d Advantages: 1. Has excellent frequency response 2. Can measure both static and dynamic phenomena. Disadvantages: 1. Sensitivity to temperature variations 2. the possibility of erratic or distortion signals owing to long lead length Applications: 1. As frequency modulator in RF oscillator 2. In capacitance microphone 3. Use the capacitance transducer in an ac bridge circuit 27

Inductive Transducer Inductive transducers may be either of the self generating or passive type. The self generating type utilises the basic electrical generator principle, i.e, a motion between a conductor and magnetic field induces a voltage in the conductor (generator action). This relative motion between the field and the conductor is supplied by changes in the measurand. An inductive electromechanical transducer is a device that converts physical motion (position change) into a change in inductance. Transducers of variable inductance type work upon one of the following principles: 1. Variation of self inductance 2. Variation of mutual inductance 28

Cont.. Inductive transducers are mainly used for the measurement of displacement. The displacement to be measured is arranged to cause variation in any of three variables: 1. Number of turns 2. Geometric configuration 3. Permeability of the magnetic material or magnetic circuits 29

Strain Gauge The strain gauge is an example of a passive transducer that uses electric resistance variation in wires to sense the strain produced by a force on wires. It is a very versatile detector and transducer for measuring weight, pressure, mechanical force, or displacement. The construction of a bonded strain gauge (see figure) shows a fine wire element looped back and forth on a mounting plate, which is usually cemented to the member undergoing stress. A tensile stress tends to elongate the wire and thereby increase its length and decrease its cross-sectional area. 30

The combined effect is an increase in resistance: Where, L R A ρ: the specific resistance of the conductor material in ohm meters L : length of conductor (meters) A : area of conductor (m2) As consequence of strain, 2 physical qualities are particular interest: 1) The change in gauge resistance 2) The change in length The relationship between these two variables called gauge factor, K, is expressed mathematically as 31

R / R K L / L Where K= the gauge factor R=the initial resistance in ohms (without strain) R= the change in initial resistance in ohms L= the initial length in meters (without strain) L=the change in initial length in meters L/L same unit with G, therefore R / R K G 32

From Hooke theory, stress, S, is defined as internal force/area. F S A Where S= the stress in kilograms per square meter F= the force in kilograms A= area in square meters Then the modulus of elasticity of material E or called Young s modulus (Hooke s Law) is written as: S E G Where, E= Young modules in kg per square meter S= the stress in kilograms per square meter G= the strain (no units) 33

Metallic strain gauge formed from thin resistance wire or etched from thin sheets of metal foil. Wire gauge (small) to minimum leakage for high T applications Semiconductor strain gauge high output transducers as load cells Strain gauge is generally used as one arm of bridge 34

LINEAR VARIABLE DIFFERENTIAL TRANSFORMER (LVDT) It consists basically of a primary winding and two secondary windings, wound over a hollow tube and positioned so the primary winding is between two secondaries. In figure shows the construction of the LVDT. An iron core slides within the tube and therefore affects the magnet coupling between the primary and the two secondaries. When the core is in the centre, voltage induced in the two secondaries is equal. When the core is moved in one direction from centre, the voltage induced in one winding is increased and that in the other is decreased. Movement in the opposite direction reverses this effect 35

Cont.. 36

Cont.. 37

What s Photoelectric Effect? -is the emission of electrons from matter upon the absorption of electromagnetic radiation, such as ultraviolet radiation or x-rays.-refers to the emission, or ejection, of electrons from the surface of, generally, a metal in response to incident light. 38

Photoelectric Transducer Can be categorized as: photoemissive, photoconductive, or photovoltaic. No. Types Characteristics 1. Photoemmisive radiation falling into a cathode causes electrons to be emitted from cathode surface. 2. Photoconductive the resistance of a material is change when it s illuminated. 3. Photovoltaic Generate an output voltage proportional to radiation intensity 39

Examples of Photoelectric Transducer (i) The Photomultiplier Tube (ii) Photoconductive Cells OR Photocells the electrical resistance of the materials varies with the amount of light striking. (iii) The Photovoltaic Cell or solar cell - produce an electrical current when connected to the load. 40

THANKS 41