CMOS Technology for Computer Architects

Similar documents
CMPEN 411 VLSI Digital Circuits. Lecture 04: CMOS Inverter (static view)

ENGR890 Digital VLSI Design Fall Lecture 4: CMOS Inverter (static view)

CMOS Inverter (static view)

EEE 421 VLSI Circuits

THE INVERTER. Inverter

Digital Integrated Circuits

The CMOS Inverter: A First Glance

DC and Transient Responses (i.e. delay) (some comments on power too!)

ECE 438: Digital Integrated Circuits Assignment #4 Solution The Inverter

CMOS INVERTER. Last Lecture. Metrics for qualifying digital circuits. »Cost» Reliability» Speed (delay)»performance

Integrated Circuits & Systems

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor

CPE/EE 427, CPE 527 VLSI Design I L06: CMOS Inverter, CMOS Logic Gates. Course Administration. CMOS Inverter: A First Look

Miscellaneous Lecture topics. Mary Jane Irwin [Adapted from Rabaey s Digital Integrated Circuits, 2002, J. Rabaey et al.]

CMOS Inverter: CPE/EE 427, CPE 527 VLSI Design I L06: CMOS Inverter, CMOS Logic Gates. Course Administration. CMOS Properties.

MOS Transistor Theory

VLSI Design and Simulation

ECE 546 Lecture 10 MOS Transistors

Fig. 1 CMOS Transistor Circuits (a) Inverter Out = NOT In, (b) NOR-gate C = NOT (A or B)

The CMOS Inverter: A First Glance

MOS Transistor Theory

Today s lecture. EE141- Spring 2003 Lecture 4. Design Rules CMOS Inverter MOS Transistor Model

Lecture 11 VTCs and Delay. No lab today, Mon., Tues. Labs restart next week. Midterm #1 Tues. Oct. 7 th, 6:30-8:00pm in 105 Northgate

5.0 CMOS Inverter. W.Kucewicz VLSICirciuit Design 1

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

2007 Fall: Electronic Circuits 2 CHAPTER 10. Deog-Kyoon Jeong School of Electrical Engineering

ENEE 359a Digital VLSI Design

Lecture 12 Digital Circuits (II) MOS INVERTER CIRCUITS

Midterm. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Lecture Outline. Pass Transistor Logic. Restore Output.

ECE 342 Solid State Devices & Circuits 4. CMOS

EE5311- Digital IC Design

Lecture 5: DC & Transient Response

ECE 342 Electronic Circuits. Lecture 6 MOS Transistors

CMPEN 411 VLSI Digital Circuits Spring 2011 Lecture 07: Pass Transistor Logic

EEC 116 Lecture #3: CMOS Inverters MOS Scaling. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ECE 342 Electronic Circuits. 3. MOS Transistors

Lecture 12 Circuits numériques (II)

EE5311- Digital IC Design

Lecture 4: CMOS Transistor Theory

Topic 4. The CMOS Inverter

Lecture 4: DC & Transient Response

MOSFET: Introduction

Digital Integrated Circuits A Design Perspective

Lecture 6: DC & Transient Response

ECE321 Electronics I

Important! EE141- Fall 2002 Lecture 5. CMOS Inverter MOS Transistor Model

EE5780 Advanced VLSI CAD

Digital Microelectronic Circuits ( ) The CMOS Inverter. Lecture 4: Presented by: Adam Teman

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

Name: Answers. Grade: Q1 Q2 Q3 Q4 Q5 Total. ESE370 Fall 2015

CPE/EE 427, CPE 527 VLSI Design I Delay Estimation. Department of Electrical and Computer Engineering University of Alabama in Huntsville

Lecture 14 - Digital Circuits (III) CMOS. April 1, 2003

The Physical Structure (NMOS)

9/18/2008 GMU, ECE 680 Physical VLSI Design

Lecture 13 MOSFET as an amplifier with an introduction to MOSFET small-signal model and small-signal schematics. Lena Peterson

4.10 The CMOS Digital Logic Inverter

MOS Transistor I-V Characteristics and Parasitics

Lecture 4: CMOS review & Dynamic Logic

ECE 497 JS Lecture - 12 Device Technologies

Lecture 5: DC & Transient Response

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, Devices.

ECE 415/515 ANALOG INTEGRATED CIRCUIT DESIGN

EE115C Digital Electronic Circuits Homework #3

Digital Integrated Circuits 2nd Inverter

Lecture 3: CMOS Transistor Theory

CMOS logic gates. João Canas Ferreira. March University of Porto Faculty of Engineering

Power Dissipation. Where Does Power Go in CMOS?

EECS 427 Lecture 11: Power and Energy Reading: EECS 427 F09 Lecture Reminders

DC & Transient Responses

Integrated Circuit Design ELCT 701 (Winter 2017) Lecture 2: Resistive Load Inverter

EEC 118 Lecture #5: CMOS Inverter AC Characteristics. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

CPE/EE 427, CPE 527 VLSI Design I Pass Transistor Logic. Review: CMOS Circuit Styles

Chapter 5. The Inverter. V1. April 10, 03 V1.1 April 25, 03 V2.1 Nov Inverter

P. R. Nelson 1 ECE418 - VLSI. Midterm Exam. Solutions

CHAPTER 15 CMOS DIGITAL LOGIC CIRCUITS

Announcements. EE141- Fall 2002 Lecture 7. MOS Capacitances Inverter Delay Power

Introduction to CMOS VLSI. Chapter 2: CMOS Transistor Theory. Harris, 2004 Updated by Li Chen, Outline

EE141Microelettronica. CMOS Logic

CHAPTER 5 MOS FIELD-EFFECT TRANSISTORS

EE 434 Lecture 33. Logic Design

L ECE 4211 UConn F. Jain Scaling Laws for NanoFETs Chapter 10 Logic Gate Scaling

5. CMOS Gate Characteristics CS755

ECE 342 Electronic Circuits. Lecture 35 CMOS Delay Model

COMBINATIONAL LOGIC. Combinational Logic

Integrated Circuits & Systems

SECTION: Circle one: Alam Lundstrom. ECE 305 Exam 5 SOLUTIONS: Spring 2016 April 18, 2016 M. A. Alam and M.S. Lundstrom Purdue University

Digital Integrated Circuits Designing Combinational Logic Circuits. Fuyuzhuo

Chapter 2 CMOS Transistor Theory. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan

Lecture 13 - Digital Circuits (II) MOS Inverter Circuits. March 20, 2003

B.Supmonchai July 5th, q Quantification of Design Metrics of an inverter. q Optimization of an inverter design. B.Supmonchai Why CMOS Inverter?

Lecture 5: CMOS Transistor Theory

Check course home page periodically for announcements. Homework 2 is due TODAY by 5pm In 240 Cory

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: 1st Order RC Delay Models. Review: Two-Input NOR Gate (NOR2)

Practice 3: Semiconductors

MOS Inverters. Digital Electronics - INEL Prof. Manuel Jiménez. With contributions by: Rafael A. Arce Nazario

ECE 305: Fall MOSFET Energy Bands

DC and Transient. Courtesy of Dr. Daehyun Dr. Dr. Shmuel and Dr.

VLSI GATE LEVEL DESIGN UNIT - III P.VIDYA SAGAR ( ASSOCIATE PROFESSOR) Department of Electronics and Communication Engineering, VBIT

and V DS V GS V T (the saturation region) I DS = k 2 (V GS V T )2 (1+ V DS )

Transcription:

CMOS Technology for Computer Architects Recap Technology Trends Lecture 2: Transistor Inverter Iakovos Mavroidis Giorgos Passas Manolis Katevenis FORTH-ICS (University of Crete) 1 2 Recap Threshold Voltage Concept Recap FinFET and Tri-gate V s V G V GS < V T V D V GS > V T V s V G V D Traditional Planar L G 3D Tri-gate third dimension! H fin L G W fin W G V B V B The value of V GS where strong inversion occurs is called the threshold voltage, V T 3 4 1

Lecture Contents Definitions (Voltages and Current) Transistor Operation Modes I D Inverter Static behavior V DS, GND V GS = V G - V S V DS = V D - V S V T I D 5 6 Channel Length and Width Channel Length and Width gate Top View gate Top View L Source W Drain Source W Drain H fin L eff L eff W fin L L L eff = L 2 * L eff = L 2 * L eff = L 2 * W eff = W fin + 2 * H fin 7 8 2

Channel Length and Width Voltage-Current Relation: Cutoff gate Top View L Source W Drain H fin L eff W fin L L eff = L 2 * Source Cross section Drain L eff = L 2 * W eff = W fin + 2 * H fin C ox = ox /t ox V GS < V T 9 10 Voltage-Current Relation: Cutoff Voltage-Current Relation: Cutoff V T V T Sub-threshold current Lower threshold voltage and lower supply voltage V GS < V T I D I 0 e [q (V GS -V T )/nkt] V GS < V T I D I 0 e [q (V GS -V T )/nkt] 11 12 3

Threshold Voltage Threshold Voltage small V DS small V DS large V DS S S V T,lin = Linear threshold voltage V T,lin = Linear threshold voltage V T,sat = Saturation Threshold Voltage V T,sat < V T,lin 13 14 Tri-gate and Threshold Voltage Tri-gate and Corner Effect Simulated roll-off curve for a planar and Tri-Gate transistor (WFin = 25 nm, HFin = 20 nm) T. Bauldauf et. al., Sem. Conf. Dresden 2011. Electron density in the channel Vd=1V, Vg=0.4 R = radii of curvature Lg=30nm B. Doyle et. al., VLSI Technology, 2003 15 16 4

Voltage-Current Relation: Linear Mode When V GS > V T and V DS (1-κ) (V GS V T ) I D = k n W/L [(V GS V T )V DS V DS2 /2] where κ = 0 for long channel (L > 0.25 micron) and 0 < κ < 1 for short channel (SCE) k n = n C ox = n ox /t ox = is the process transconductance ( n is the carrier mobility) Voltage Current Relation : Saturation When a strong enough electric field is applied (i.e. V DS is high), the carrier velocity saturates V DS > (1-κ) (V GS V T ) For small V DS, there is a linear dependence between V DS and I D ( k n W/L (V GS V T )V DS ), hence the name resistive or linear region The current remains constant (transistor saturates) 17 18 Voltage Current Relation : Saturation Velocity Saturation Effects For long channel devices when V DS V GS V T 10 I DSAT = k n /2 W/L (V GS V T ) 2 I D For short channel devices when V DS (1 - κ) (V GS V T ) I DSAT = κu SAT C ox W (V GS V T ) 0 V DS Velocity Saturation I DSAT has a linear dependence wrt V GS 19 20 5

Short Channel I D -V D Characteristics (NMOS) Short Channel I D -V GS Characteristics (1 - κ) (V GS V T ) early saturation Linear V DS (V) Saturation (for 180nm TSMC process) current still increases X 10-4 6 5 4 3 2 1 0 0 0,5 1 1,5 2 2,5 V GS (V) (for V DS = 2.5V, W/L = 1.5) V GS (V) (for 45nm technology, V DS = 250mV) Realov et.al. Symposium on VLSI Circuits, 2011. Velocity-saturation causes the short-channel device to saturate at substantially smaller values of V DS 21 22 Current Determinates CMOS Inverter: A First Look For a fixed V DS and V GS (> V T ), I DS is a function of the distance between the source and drain L the channel width W the threshold voltage V T the thickness of the SiO 2 t ox the dielectric of the gate insulator (e.g., SiO 2 ) ox the carrier mobility for nfets: n = 500 cm 2 /V-sec for pfets: p = 180 cm 2 /V-sec V S(PMOS) V D(PMOS) V D(NMOS) V S(NMOS) C L V S(PMOS) = V D(PMOS) = V D(NMOS) V S(NMOS) = 0 V GS(NMOS) = V DS(NMOS) = V GS(PMOS) = - V DS(NMOS) = - 24 25 6

CMOS Inverter: Steady State Response The Ideal Inverter VDD Gain = 0 R p Gain = - = 1 = 0 R n Gain = 0 VDD/2 VDD = 0 = infinite gain in the transition region a gate threshold located in the middle of the logic swing high and low noise margins equal to half the swing input and output impedances of infinity and zero, resp. 26 27 = f( )? = f( )? V S(PMOS) V S(PMOS) = V D(PMOS) = V D(NMOS) V S(NMOS) = 0 V S(PMOS) I D(PMOS) V S(PMOS) = V D(PMOS) = V D(NMOS) V S(NMOS) = 0 V D(PMOS) V D(NMOS) C L V GS(NMOS) = V DS(NMOS) = V GS(PMOS) = - V DS(NMOS) = - V D(PMOS) V D(NMOS) I D(NMOS) C L V GS(NMOS) = V DS(NMOS) = V GS(PMOS) = - V DS(PMOS) = - V S(NMOS) V S(NMOS) At equilibrium point: I D(NMOS) = - I D(PMOS) 28 29 7

(V) Transforming PMOS I-V Lines CMOS Inverter Load Lines I Dn V DSn V DS(NMOS) = = V DS(PMOS) + I Dp -I Dp = 0 = 1.5 V DSp Move and mirror around x-axis V GSp = -1 V GSp = -2.5 30 31 CMOS Inverter Load Lines CMOS Inverter VTC = Switching Threshold V M (V) 32 33 8

(V) CMOS Inverter VTC Simulated VTC NMOS off PMOS linear NMOS sat PMOS linear Saturation : V DS V GS V T NMOS sat PMOS sat NMOS linear PMOS sat NMOS linear PMOS off (V) 0.25um, W p /W n = 3 34 35 Voltage Mapping Voltage Mapping g = -1 "1" undefined V IH g = -1 V IL "0" V IL V IH V IH and V IL that represent the points on the VTC curve where the gain = -1 36 37 9

V (volts) Noise Margins The Regenerative Property v 0 v 1 v 2 v 3 v 4 v 5 v 6 Noise Margin High Noise Margin Low Gnd Gate Output NM H = - V IH NM L = V IL - "1" V IH Undefined Region V IL "0" Gnd Gate Input For robust circuits, want the 0 and 1 intervals to be as large as possible 38 5 3 1 v 0 v 1 v 2-1 0 2 4 6 8 10 t (nsec) A gate with regenerative property ensure that a disturbed signal converges back to a nominal voltage level 39 Relative Transistor Sizing and V M Relative Transistor Sizing and V M V M is derived from the equation: I n ( =V M ) = -I p ( = V M ) or k n /2 W n /L n (V M V T ) 2 = k p /2 W p /L p (V M V GS V T ) 2 Setting V M = / 2 and L n = L p we have: W p = (k n / k p ) W n 3 W n.1 ~3.4 (W/L) p /(W/L) n Note: x-axis is semilog V M is relatively insensitive to variations in device ratio: setting the ratio to 3, 2.5 and 2 gives V M s of 1.22V, 1.18V, and 1.13V Setting W n 2 W n is still ok and saves area. 40 41 10

(V) (V) Impact of Sizing Impact of Process Variation on VTC Curve Wider PMOS Good PMOS Bad NMOS Wider NMOS Symmetrical Bad PMOS Good NMOS Nominal (V) Transistor sizing cause a shift in the switching threshold (V) Process variations cause a shift in the switching threshold 42 43 Standard CMOS Properties Always a path to V dd or GND in steady state Logic levels not dependent upon the relative device sizes transistors can be minimum size ratioless Full rail-to-rail swing high noise margins Extremely high input resistance (gate of MOS transistor is near perfect insulator) nearly zero steady-state input current No direct path steady-state between power and ground no static power dissipation Regenerative property Propagation delay function of load capacitance and resistance of transistors (next lecture) 44 11