Modular forms, combinatorially and otherwise

Similar documents
DIVISIBILITY PROPERTIES OF THE 5-REGULAR AND 13-REGULAR PARTITION FUNCTIONS

ARITHMETIC OF THE 13-REGULAR PARTITION FUNCTION MODULO 3

Divisibility of the 5- and 13-regular partition functions

Applications of modular forms to partitions and multipartitions

DEDEKIND S ETA-FUNCTION AND ITS TRUNCATED PRODUCTS. George E. Andrews and Ken Ono. February 17, Introduction and Statement of Results

DIVISIBILITY AND DISTRIBUTION OF PARTITIONS INTO DISTINCT PARTS

CONGRUENCES FOR POWERS OF THE PARTITION FUNCTION

PARITY OF THE PARTITION FUNCTION. (Communicated by Don Zagier)

CHIRANJIT RAY AND RUPAM BARMAN

THE ANDREWS-STANLEY PARTITION FUNCTION AND p(n): CONGRUENCES

Congruences for the Coefficients of Modular Forms and Applications to Number Theory

CONGRUENCES FOR BROKEN k-diamond PARTITIONS

CONGRUENCE PROPERTIES FOR THE PARTITION FUNCTION. Department of Mathematics Department of Mathematics. Urbana, Illinois Madison, WI 53706

PARITY OF THE COEFFICIENTS OF KLEIN S j-function

Mock and quantum modular forms

q-series IDENTITIES AND VALUES OF CERTAIN L-FUNCTIONS Appearing in the Duke Mathematical Journal.

HECKE OPERATORS ON CERTAIN SUBSPACES OF INTEGRAL WEIGHT MODULAR FORMS.

Congruences for Fishburn numbers modulo prime powers

ON THE POSITIVITY OF THE NUMBER OF t CORE PARTITIONS. Ken Ono. 1. Introduction

THE NUMBER OF PARTITIONS INTO DISTINCT PARTS MODULO POWERS OF 5

CONGRUENCES RELATED TO THE RAMANUJAN/WATSON MOCK THETA FUNCTIONS ω(q) AND ν(q)

Congruences of Multipartition Functions Modulo Powers of Primes

Basic Background on Mock Modular Forms and Weak Harmonic Maass Forms

#A22 INTEGERS 17 (2017) NEW CONGRUENCES FOR `-REGULAR OVERPARTITIONS

CONGRUENCES RELATED TO THE RAMANUJAN/WATSON MOCK THETA FUNCTIONS ω(q) AND ν(q)

arxiv: v1 [math.nt] 7 Oct 2009

SOME RECURRENCES FOR ARITHMETICAL FUNCTIONS. Ken Ono, Neville Robbins, Brad Wilson. Journal of the Indian Mathematical Society, 62, 1996, pages

A MODULAR IDENTITY FOR THE RAMANUJAN IDENTITY MODULO 35

NON-VANISHING OF THE PARTITION FUNCTION MODULO SMALL PRIMES

Spaces of Weakly Holomorphic Modular Forms in Level 52. Daniel Meade Adams

Congruences of Multipartition Functions Modulo Powers of Primes. Tianjin University, Tianjin , P. R. China

Ramanujan-type Congruences for Broken 2-Diamond Partitions Modulo 3

A Motivated Introduction to Modular Forms

SHIMURA LIFTS OF HALF-INTEGRAL WEIGHT MODULAR FORMS ARISING FROM THETA FUNCTIONS

SHIMURA LIFTS OF HALF-INTEGRAL WEIGHT MODULAR FORMS ARISING FROM THETA FUNCTIONS

Quadratic Forms and Congruences for l-regular Partitions Modulo 3, 5 and 7. Tianjin University, Tianjin , P. R. China

RECENT WORK ON THE PARTITION FUNCTION

SOME CONGRUENCES FOR PARTITIONS THAT ARE p-cores. Frank G. Garvan

Polygonal Numbers, Primes and Ternary Quadratic Forms

INFINITELY MANY CONGRUENCES FOR BROKEN 2 DIAMOND PARTITIONS MODULO 3

Ramanujan s last prophecy: quantum modular forms

RANK AND CONGRUENCES FOR OVERPARTITION PAIRS

The part-frequency matrices of a partition

TATE-SHAFAREVICH GROUPS OF THE CONGRUENT NUMBER ELLIPTIC CURVES. Ken Ono. X(E N ) is a simple

Moonshine: Lecture 3. Moonshine: Lecture 3. Ken Ono (Emory University)

The Arithmetic of Noncongruence Modular Forms. Winnie Li. Pennsylvania State University, U.S.A. and National Center for Theoretical Sciences, Taiwan

INDEFINITE THETA FUNCTIONS OF TYPE (n, 1) I: DEFINITIONS AND EXAMPLES

GUO-NIU HAN AND KEN ONO

ETA-QUOTIENTS AND THETA FUNCTIONS

( 1) m q (6m+1)2 24. (Γ 1 (576))

Recent Work on the Partition Function

COMBINATORIAL APPLICATIONS OF MÖBIUS INVERSION

THE ARITHMETIC OF BORCHERDS EXPONENTS. Jan H. Bruinier and Ken Ono

Ramanujan-type congruences for broken 2-diamond partitions modulo 3

Ramanujan s Deathbed Letter. Larry Rolen. Emory University

AN ARITHMETIC FORMULA FOR THE PARTITION FUNCTION

Math 259: Introduction to Analytic Number Theory Some more about modular forms

MOCK MODULAR FORMS AS p-adic MODULAR FORMS

Quantum Mock Modular Forms Arising From eta-theta Functions

CONGRUENCES MODULO SQUARES OF PRIMES FOR FU S k DOTS BRACELET PARTITIONS

Parity of the partition function

EICHLER-SHIMURA THEORY FOR MOCK MODULAR FORMS KATHRIN BRINGMANN, PAVEL GUERZHOY, ZACHARY KENT, AND KEN ONO

COMPUTATIONAL PROOFS OF CONGRUENCES FOR 2-COLORED FROBENIUS PARTITIONS

PARTITION CONGRUENCES AND THE ANDREWS-GARVAN-DYSON CRANK

NEW IDENTITIES INVOLVING SUMS OF THE TAILS RELATED TO REAL QUADRATIC FIELDS KATHRIN BRINGMANN AND BEN KANE

Mock modular forms and their shadows

Abstract. Gauss s hypergeometric function gives a modular parameterization of period integrals of elliptic curves in Legendre normal form

AN ARITHMETIC FORMULA FOR THE PARTITION FUNCTION

ASYMPTOTICS FOR RANK AND CRANK MOMENTS

ON A MODULARITY CONJECTURE OF ANDREWS, DIXIT, SCHULTZ, AND YEE FOR A VARIATION OF RAMANUJAN S ω(q)

Polynomial analogues of Ramanujan congruences for Han s hooklength formula

INFINITE FAMILIES OF STRANGE PARTITION CONGRUENCES FOR BROKEN 2-DIAMONDS

COMPUTING THE INTEGER PARTITION FUNCTION

SOME CONGRUENCES FOR PARTITION FUNCTIONS RELATED TO MOCK THETA FUNCTIONS ω(q) AND ν(q) S.N. Fathima and Utpal Pore (Received October 13, 2017)

1. Introduction and statement of results This paper concerns the deep properties of the modular forms and mock modular forms.

Before we prove this result, we first recall the construction ( of) Suppose that λ is an integer, and that k := λ+ 1 αβ

THE ASYMPTOTIC DISTRIBUTION OF ANDREWS SMALLEST PARTS FUNCTION

Arithmetic properties of harmonic weak Maass forms for some small half integral weights

4 LECTURES ON JACOBI FORMS. 1. Plan

QUANTUM MODULARITY OF MOCK THETA FUNCTIONS OF ORDER 2. Soon-Yi Kang

ARITHMETIC OF PARTITION FUNCTIONS AND q-combinatorics BYUNG CHAN KIM DISSERTATION

Distribution Agreement. In presenting this thesis or dissertation as a partial fulllment of the requirements for

ON THE MODULARITY OF CERTAIN FUNCTIONS FROM THE GROMOV-WITTEN THEORY OF ELLIPTIC ORBIFOLDS

Analogues of Ramanujan s 24 squares formula

On a certain vector crank modulo 7

Shifted Convolution L-Series Values of Elliptic Curves

Converse theorems for modular L-functions

Ramanujan s first letter to Hardy: 5 + = 1 + e 2π 1 + e 4π 1 +

The Hardy-Ramanujan-Rademacher Expansion of p(n)

HARMONIC MAASS FORMS, MOCK MODULAR FORMS, AND QUANTUM MODULAR FORMS

Super congruences involving binomial coefficients and new series for famous constants

For COURSE PACK and other PERMISSIONS, refer to entry on previous page. For more information, send to

Exact Formulas for Invariants of Hilbert Schemes

c 2010 Michael Patrick Dewar

Congruences for Fishburn numbers modulo prime powers

The part-frequency matrices of a partition

Arithmetic Properties for Ramanujan s φ function

Scott Ahlgren and Ken Ono. At first glance the stuff of partitions seems like child s play: 4 = = = =

FOURIER COEFFICIENTS OF VECTOR-VALUED MODULAR FORMS OF DIMENSION 2

arxiv: v1 [math.co] 25 Nov 2018

Transcription:

Modular forms, combinatorially and otherwise p. 1/103 Modular forms, combinatorially and otherwise David Penniston

Sums of squares Modular forms, combinatorially and otherwise p. 2/103

Modular forms, combinatorially and otherwise p. 2/103 Sums of squares Which primes can be written as a sum of two integer squares?

Modular forms, combinatorially and otherwise p. 3/103 2 = 1 2 + 1 2 5 = 1 2 + 2 2 13 = 2 2 + 3 2 17 = 1 2 + 4 2 29 = 2 2 + 5 2

A prime p is equal to a sum of two squares if and only p = 2 or p 1 (mod 4) Modular forms, combinatorially and otherwise p. 4/103

Modular forms, combinatorially and otherwise p. 5/103 0 2 = 0 0 (mod 4) 1 2 = 1 1 (mod 4) 2 2 = 4 0 (mod 4) 3 2 = 9 1 (mod 4)

Modular forms, combinatorially and otherwise p. 5/103 0 2 = 0 0 (mod 4) 1 2 = 1 1 (mod 4) 2 2 = 4 0 (mod 4) 3 2 = 9 1 (mod 4) s 2 {0, 1} (mod 4)

Modular forms, combinatorially and otherwise p. 5/103 0 2 = 0 0 (mod 4) 1 2 = 1 1 (mod 4) 2 2 = 4 0 (mod 4) 3 2 = 9 1 (mod 4) s 2 {0, 1} (mod 4) s 2 + t 2 {0, 1, 2} (mod 4)

How many squares suffice? Modular forms, combinatorially and otherwise p. 6/103

Modular forms, combinatorially and otherwise p. 6/103 How many squares suffice? s 2 {0, 1, 4} (mod 8)

Modular forms, combinatorially and otherwise p. 6/103 How many squares suffice? s 2 {0, 1, 4} (mod 8) s 2 + t 2 + u 2 {0, 1, 2, 3, 4, 5, 6} (mod 8)

Modular forms, combinatorially and otherwise p. 7/103 Four squares theorem (Legendre) Every positive integer can be written as a sum of four integer squares

Modular forms, combinatorially and otherwise p. 8/103 Theta function θ(q) = s Z q s2

Modular forms, combinatorially and otherwise p. 8/103 Theta function θ(q) = s Z q s2 = 1 + 2q + 2q 4 + 2q 9 +

Modular forms, combinatorially and otherwise p. 9/103 θ(q) 2 = s,t Z q s2 +t 2 = 1 + 4q + 4q 2 + 4q 4 + 8q 5 +

Modular forms, combinatorially and otherwise p. 9/103 θ(q) 2 = s,t Z q s2 +t 2 = 1 + 4q + 4q 2 + 4q 4 + 8q 5 + = n=0 r 2 (n)q n r 2 (n) = # of reps of n as a sum of two integer squares

Modular forms, combinatorially and otherwise p. 10/103... + 4q 4 + 8q 5 +... 4 = (±2) 2 + 0 2 = 0 2 + (±2) 2 5 = (±1) 2 + (±2) 2 = (±2) 2 + (±1) 2

Modular forms, combinatorially and otherwise p. 11/103 Four squares theorem The coefficient of q n in θ(q) 4 is positive for every n 1

Modular forms, combinatorially and otherwise p. 11/103 Four squares theorem The coefficient of q n in θ(q) 4 is positive for every n 1 θ(q) 4 = 1 + 8q + 24q 2 + 32q 3 + 24q 4 + 48q 5 +

θ analytically Modular forms, combinatorially and otherwise p. 12/103

Modular forms, combinatorially and otherwise p. 12/103 θ analytically q = e 2πiz

Modular forms, combinatorially and otherwise p. 12/103 θ analytically q = e 2πiz θ(z + 1) = θ(z)

Modular forms, combinatorially and otherwise p. 12/103 θ analytically q = e 2πiz θ(z + 1) = θ(z) θ( 1/4z) = 2iz θ(z)

Modular forms, combinatorially and otherwise p. 13/103 Partitions A partition of n is a nonincreasing sequence of positive integers whose sum is n

Modular forms, combinatorially and otherwise p. 14/103 Partitions of 4 4 3 + 1 2 + 2 2 + 1 + 1 1 + 1 + 1 + 1

p(n) := number of partitions of n Modular forms, combinatorially and otherwise p. 15/103

Modular forms, combinatorially and otherwise p. 15/103 p(n) := number of partitions of n p(4) = 5

Modular forms, combinatorially and otherwise p. 16/103 n p(n) 10 42 20 627 30 5604 40 37338 50 204226

p(0) p(1) p(2) p(3) p(4) p(5) p(6) p(7) p(8) p(9) p(10) p(11) p(12) p(13) p(14) p(15) p(16) p(17) p(18) p(19) p(20) p(21) p(22) p(23) p(24) p(25) p(26) p(27) p(28) p(29) p(30) p(31) p(32) p(33) p(34) p(35) p(36) p(37) p(38) p(39) p(40) p(41) p(42) p(43) p(44) p(45) p(46) p(47) p(48) p(49) Modular forms, combinatorially and otherwise p. 17/103

1 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 490 627 792 1002 1255 1575 1958 2436 3010 3718 4565 5604 6842 8349 10143 12310 14883 17977 21637 26015 31185 37338 44583 53174 63261 75175 89134 105558 124754 147273 173525 Modular forms, combinatorially and otherwise p. 18/103

1 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 490 627 792 1002 1255 1575 1958 2436 3010 3718 4565 5604 6842 8349 10143 12310 14883 17977 21637 26015 31185 37338 44583 53174 63261 75175 89134 105558 124754 147273 173525 Modular forms, combinatorially and otherwise p. 19/103

Modular forms, combinatorially and otherwise p. 20/103 p(4),p(9),p(14),p(19),...,p(49) are all divisible by 5

Modular forms, combinatorially and otherwise p. 20/103 p(4),p(9),p(14),p(19),...,p(49) are all divisible by 5 Is p(5n + 4) divisible by 5 for every n 0?

Ramanujan congruences Modular forms, combinatorially and otherwise p. 21/103

Modular forms, combinatorially and otherwise p. 22/103 Ramanujan congruences For every n 0, p(5n + 4) 0 (mod 5)

Modular forms, combinatorially and otherwise p. 22/103 Ramanujan congruences For every n 0, p(5n + 4) 0 (mod 5) p(7n + 5) 0 (mod 7)

Modular forms, combinatorially and otherwise p. 22/103 Ramanujan congruences For every n 0, p(5n + 4) 0 (mod 5) p(7n + 5) 0 (mod 7) p(11n + 6) 0 (mod 11)

Other congruences for p(n)? Modular forms, combinatorially and otherwise p. 23/103

Modular forms, combinatorially and otherwise p. 24/103 Other congruences for p(n)? (Atkin-O Brien) For every n 0, p(157525693n + 111247) 0 (mod 13)

Modular forms, combinatorially and otherwise p. 24/103 Other congruences for p(n)? (Atkin-O Brien) For every n 0, p(157525693n + 111247) 0 (mod 13) (p(111247) is a number with well over 300 digits)

Modular forms, combinatorially and otherwise p. 25/103 (K. Ono) For every prime m 5, there exist positive integers A and B such that for every n 0, p(an + B) 0 (mod m).

Generating functions Modular forms, combinatorially and otherwise p. 26/103

Modular forms, combinatorially and otherwise p. 27/103 Generating functions p(0) p(1) p(2) p(3) p(4)

Modular forms, combinatorially and otherwise p. 27/103 Generating functions p(0) p(1) p(2) p(3) p(4) p(0) + p(1)q + p(2)q 2 + p(3)q 3 + p(4)q 4 +

Modular forms, combinatorially and otherwise p. 27/103 Generating functions p(0) p(1) p(2) p(3) p(4) p(0) + p(1)q + p(2)q 2 + p(3)q 3 + p(4)q 4 + = 1 + q + 2q 2 + 3q 3 + 5q 4 + 7q 5 +...

Modular forms, combinatorially and otherwise p. 27/103 Generating functions p(0) p(1) p(2) p(3) p(4) p(0) + p(1)q + p(2)q 2 + p(3)q 3 + p(4)q 4 + = 1 + q + 2q 2 + 3q 3 + 5q 4 + 7q 5 +... = n=0 p(n)q n

5q 4 Modular forms, combinatorially and otherwise p. 28/103

Modular forms, combinatorially and otherwise p. 28/103 5q 4 = q 4 + q 4 + q 4 + q 4 + q 4

Modular forms, combinatorially and otherwise p. 28/103 5q 4 = q 4 + q 4 + q 4 + q 4 + q 4 = q 4 + q 3+1 + q 2+2 + q 2+1+1 + q 1+1+1+1

Modular forms, combinatorially and otherwise p. 28/103 5q 4 = q 4 + q 4 + q 4 + q 4 + q 4 = q 4 + q 3+1 + q 2+2 + q 2+1+1 + q 1+1+1+1 = q 4 + q 3 q 1 + q 2+2 + q 2 q 1+1 + q 1+1+1+1

Modular forms, combinatorially and otherwise p. 29/103 (1 + q 1 + q 1+1 + q 1+1+1 + ) (1 + q 2 + q 2+2 + ) (1 + q 3 + q 3+3 + )

Modular forms, combinatorially and otherwise p. 29/103 (1 + q 1 + q 1+1 + q 1+1+1 + ) (1 + q 2 + q 2+2 + ) (1 + q 3 + q 3+3 + ) = n=0 p(n)q n

Modular forms, combinatorially and otherwise p. 30/103 p(n)q n = n=0 (1 + q 1 + q 1+1 + q 1+1+1 + ) (1 + q 2 + q 2+2 + ) (1 + q 3 + q 3+3 + )

Modular forms, combinatorially and otherwise p. 30/103 p(n)q n = n=0 (1 + q 1 + q 1+1 + q 1+1+1 + ) (1 + q 2 + q 2+2 + ) (1 + q 3 + q 3+3 + ) = ( 1 ) ( 1 ) ( 1 ) ( 1 ) 1 q 1 q 2 1 q 3 1 q 4

Modular forms, combinatorially and otherwise p. 31/103 Generating function for p(n) n=0 p(n)q n = n=1 ( 1 ) 1 q n

Modular forms, combinatorially and otherwise p. 32/103 Dedekind s eta function η(z) = q 1/24 (1 q n ) n=1 (q := e 2πiz )

η(z + 1) = e πi/12 η(z) Modular forms, combinatorially and otherwise p. 33/103

Modular forms, combinatorially and otherwise p. 33/103 η(z + 1) = e πi/12 η(z) η( 1/z) = z i η(z)

Modular forms, combinatorially and otherwise p. 33/103 η(z + 1) = e πi/12 η(z) η( 1/z) = z i η(z) η 24 (z + 1) = η 24 (z)

Modular forms, combinatorially and otherwise p. 33/103 η(z + 1) = e πi/12 η(z) η( 1/z) = z i η(z) η 24 (z + 1) = η 24 (z) η 24 ( 1/z) = z 12 η 24 (z)

Modular forms, combinatorially and otherwise p. 34/103 z + 1 = 1z + 1 0z + 1 ( 1 1 0 1 )

Modular forms, combinatorially and otherwise p. 34/103 z + 1 = 1z + 1 0z + 1 1 z = 0z 1 1z + 0 ( 1 1 0 1 ( 0 1 1 0 ) )

Modular forms, combinatorially and otherwise p. 34/103 z + 1 = 1z + 1 0z + 1 1 z = 0z 1 1z + 0 ( 1 1 0 1 ( 0 1 1 0 ) ) ( 1 1 0 1 ) and ( 0 1 1 0 ) generate SL 2 (Z)

Modular forms, combinatorially and otherwise p. 35/103 Integer weight modular forms A modular form of weight k on Γ = SL 2 (Z) is a holomorphic function f : H C such that for every ( ) a b Γ, c d ( ) az + b f = (cz + d) k f(z) cz + d and f is holomorphic at the cusp of Γ.

Modular forms, combinatorially and otherwise p. 35/103 Integer weight modular forms A modular form of weight k on Γ = SL 2 (Z) is a holomorphic function f : H C such that for every ( ) a b Γ, c d ( ) az + b f = (cz + d) k f(z) cz + d and f is holomorphic at the cusp of Γ. We denote the C-vector space of such functions by M k (Γ), and the subset of forms that vanish at the cusp by S k (Γ).

Modular forms, combinatorially and otherwise p. 36/103 Examples η 24 (z) M 12 (Γ)

Modular forms, combinatorially and otherwise p. 36/103 Examples η 24 (z) M 12 (Γ) E 4 (z) = 1 + 240 n=0 σ 3 (n)q n M 4 (Γ)

Modular forms, combinatorially and otherwise p. 36/103 Examples η 24 (z) M 12 (Γ) E 4 (z) = 1 + 240 E 6 (z) = 1 + 504 n=0 n=0 σ 3 (n)q n M 4 (Γ) σ 5 (n)q n M 6 (Γ)

Modular forms, combinatorially and otherwise p. 36/103 Examples η 24 (z) M 12 (Γ) E 4 (z) = 1 + 240 E 6 (z) = 1 + 504 n=0 n=0 σ 3 (n)q n M 4 (Γ) σ 5 (n)q n M 6 (Γ) σ k (n) = d n d k

- M k (Γ) is a finite dimensional vector space Modular forms, combinatorially and otherwise p. 37/103

Modular forms, combinatorially and otherwise p. 37/103 - M k (Γ) is a finite dimensional vector space - M k (Γ) is spanned by {E i 4E j 6 4i + 6j = k}

Modular forms, combinatorially and otherwise p. 38/103 Modular forms with character If f ( ) az + b cz + d = χ(d)(cz + d) k f(z) for all ( a b c d ) Γ with N c, we write f M k (Γ 0 (N),χ).

Modular forms, combinatorially and otherwise p. 39/103 Example θ(z) 4 M 2 (Γ 0 (4))

Modular forms, combinatorially and otherwise p. 39/103 Example θ(z) 4 M 2 (Γ 0 (4)) dim(m 2 (Γ 0 (4))) = 2

Modular forms, combinatorially and otherwise p. 39/103 Example θ(z) 4 M 2 (Γ 0 (4)) dim(m 2 (Γ 0 (4))) = 2 G 2 (z) = 1 24 + n=1 σ 1 (n)q n

Modular forms, combinatorially and otherwise p. 39/103 Example θ(z) 4 M 2 (Γ 0 (4)) dim(m 2 (Γ 0 (4))) = 2 G 2 (z) = 1 24 + n=1 σ 1 (n)q n basis: {G 2 (z) 2G 2 (2z),G 2 (2z) 2G 2 (4z)}

θ(z) 4 = 8[G 2 (z) 2G 2 (2z)] + 16[G 2 (2z) 2G 2 (4z)] Modular forms, combinatorially and otherwise p. 40/103

Modular forms, combinatorially and otherwise p. 40/103 θ(z) 4 = 8[G 2 (z) 2G 2 (2z)] + 16[G 2 (2z) 2G 2 (4z)] = 8G 2 (z) 32G 2 (4z)

Modular forms, combinatorially and otherwise p. 40/103 θ(z) 4 = 8[G 2 (z) 2G 2 (2z)] + 16[G 2 (2z) 2G 2 (4z)] = 8G 2 (z) 32G 2 (4z) r 4 (n) = 8 d n,4 d d

Modular forms, combinatorially and otherwise p. 40/103 θ(z) 4 = 8[G 2 (z) 2G 2 (2z)] + 16[G 2 (2z) 2G 2 (4z)] = 8G 2 (z) 32G 2 (4z) r 4 (n) = 8 d n,4 d d > 0

Modular forms, combinatorially and otherwise p. 41/103 ( 1 1 0 1 ) Γ 0 (N), χ(1) = 1

Modular forms, combinatorially and otherwise p. 41/103 ( 1 1 0 1 ) Γ 0 (N), χ(1) = 1 f(z + 1) = f(z)

Modular forms, combinatorially and otherwise p. 41/103 ( 1 1 0 1 ) Γ 0 (N), χ(1) = 1 f(z + 1) = f(z) f(z) = n=0 a(n)q n

Restricted partition functions Modular forms, combinatorially and otherwise p. 42/103

Modular forms, combinatorially and otherwise p. 43/103 Restricted partition functions Suppose I am only interested in partitions into distinct parts:

Modular forms, combinatorially and otherwise p. 43/103 Restricted partition functions Suppose I am only interested in partitions into distinct parts: (1 + q 1 +q 1+1 + q 1+1+1 + ) (1 + q 2 +q 2+2 + ) (1 + q 3 +q 3+3 + )

Modular forms, combinatorially and otherwise p. 44/103 The generating function in this case is the infinite product (1 + q 1 )(1 + q 2 )(1 + q 3 )(1 + q 4 )

Modular forms, combinatorially and otherwise p. 44/103 The generating function in this case is the infinite product (1 + q 1 )(1 + q 2 )(1 + q 3 )(1 + q 4 ) = (1 + q n ) n=1

Suppose I am only interested in partitions where no summand exceeds 3: Modular forms, combinatorially and otherwise p. 45/103

Modular forms, combinatorially and otherwise p. 45/103 Suppose I am only interested in partitions where no summand exceeds 3: ( 1 ) ( 1 )( 1 ) ( 1 ) 1 q 1 q 2 1 q 3 1 q 4

Modular forms, combinatorially and otherwise p. 46/103 The generating function in this case is the finite product ( 1 1 q ) ( 1 1 q 2 )( 1 1 q 3 )

Modular forms, combinatorially and otherwise p. 47/103 l-regular partitions A partition is called l-regular provided that none of its summands is divisible by l

Modular forms, combinatorially and otherwise p. 47/103 l-regular partitions A partition is called l-regular provided that none of its summands is divisible by l b l (n) := number of l-regular partitions of n

Modular forms, combinatorially and otherwise p. 48/103 5 4 + 1 3 + 2 3 + 1 + 1 2 + 2 + 1 2 + 1 + 1 + 1 1 + 1 + 1 + 1 + 1

Modular forms, combinatorially and otherwise p. 49/103 5 4 + 1 3 + 2 3 + 1 + 1 2 + 2 + 1 2 + 1 + 1 + 1 1 + 1 + 1 + 1 + 1

Modular forms, combinatorially and otherwise p. 49/103 5 4 + 1 3 + 2 3 + 1 + 1 2 + 2 + 1 2 + 1 + 1 + 1 1 + 1 + 1 + 1 + 1 b 2 (5) = 3

Generating function for b 2 (n)? Modular forms, combinatorially and otherwise p. 50/103

Modular forms, combinatorially and otherwise p. 50/103 Generating function for b 2 (n)? ( 1 ) ( 1 )( 1 ) ( 1 ) 1 q 1 q 2 1 q 3 1 q 4

Modular forms, combinatorially and otherwise p. 51/103 b 2 (n)q n = n=0 ( 1 ) ( 1 1 q 1 q 3 ) ( 1 ) 1 q 5

Modular forms, combinatorially and otherwise p. 51/103 b 2 (n)q n = n=0 ( ) ( ) ( ) 1 1 1 1 q 1 q 3 1 q 5 ( ) 1 q 2n = 1 q n n=1

(Euler) The number of 2-regular partitions of n is equal to the number of partitions of n into distinct parts Modular forms, combinatorially and otherwise p. 52/103

Modular forms, combinatorially and otherwise p. 52/103 (Euler) The number of 2-regular partitions of n is equal to the number of partitions of n into distinct parts n=0 b 2 (n)q n = n=1 ( ) 1 q 2n 1 q n

Modular forms, combinatorially and otherwise p. 52/103 (Euler) The number of 2-regular partitions of n is equal to the number of partitions of n into distinct parts n=0 b 2 (n)q n = n=1 ( ) 1 q 2n 1 q n = (1 + q n ) n=1

Modular forms, combinatorially and otherwise p. 53/103 b l (n)q n = n=0 n=1 ( ) 1 q ln 1 q n

Given positive integers l and m, exactly when is b l (n) divisible by m? How often is b l (n) divisible by m? Modular forms, combinatorially and otherwise p. 54/103

Modular forms, combinatorially and otherwise p. 54/103 Given positive integers l and m, exactly when is b l (n) divisible by m? How often is b l (n) divisible by m? δ l (m,x) := #{1 n X b l(n) 0 X (mod m)}

Modular forms, combinatorially and otherwise p. 55/103 δ l (m, 10 6 ) m = 5 7 11 l = 5.645.161.091 7.408.741.091 11.642.145.635

Modular forms, combinatorially and otherwise p. 55/103 δ l (m, 10 6 ) m = 5 7 11 l = 5.645.161.091 7.408.741.091 11.642.145.635 m = 5 7 11 l = 5.200.143.091 7.200.143.091 11.200.143.091

(P.) Suppose 3 l 23 and p 5 are distinct primes. Then for every j 1 we have: Modular forms, combinatorially and otherwise p. 56/103

Modular forms, combinatorially and otherwise p. 56/103 (P.) Suppose 3 l 23 and p 5 are distinct primes. Then for every j 1 we have: If p l 1, then lim inf X δ l(p j,x) p + 1 2p.

Modular forms, combinatorially and otherwise p. 56/103 (P.) Suppose 3 l 23 and p 5 are distinct primes. Then for every j 1 we have: If p l 1, then If p l 1, then lim inf X δ l(p j,x) p + 1 2p. lim inf X δ l(p j,x) p 1 p.

Modular forms, combinatorially and otherwise p. 57/103 (Serre) Suppose m and k are positive integers and f(z) = a(n)q n S k (Γ 0 (N),χ) Z[[q]]. Then for almost all n, a(n) 0 (mod m).

Modular forms, combinatorially and otherwise p. 58/103 η(lz) η(z) = ql/24 n=1 (1 qln ) q 1/24 n=1 (1 qn )

Modular forms, combinatorially and otherwise p. 58/103 η(lz) η(z) = ql/24 n=1 (1 qln ) q 1/24 n=1 (1 qn ) l 1 n+ = b l (n)q 24 n=0

Modular forms, combinatorially and otherwise p. 58/103 η(lz) η(z) = ql/24 n=1 (1 qln ) q 1/24 n=1 (1 qn ) l 1 n+ = b l (n)q 24 n=0 is NOT a modular form

Modular forms, combinatorially and otherwise p. 59/103 Given l and p distinct odd primes, there exists a positive integer α such that f l,p (z) = η(lz) η(z) η(24α 1)p (lpz)η (24α+1)p (pz) is a modular form.

Modular forms, combinatorially and otherwise p. 60/103 Twisting forms If f(z) = a(n)q n M k (Γ 0 (N),χ) and ψ is a character modulo M, then

Modular forms, combinatorially and otherwise p. 60/103 Twisting forms If f(z) = a(n)q n M k (Γ 0 (N),χ) and ψ is a character modulo M, then (f ψ)(z) := ψ(n)a(n)q n

Modular forms, combinatorially and otherwise p. 60/103 Twisting forms If f(z) = a(n)q n M k (Γ 0 (N),χ) and ψ is a character modulo M, then (f ψ)(z) := ψ(n)a(n)q n M k (Γ 0 (NM 2 ),χψ 2 ).

Modular forms, combinatorially and otherwise p. 61/103 Legendre symbol Given an odd prime p and d Z, ψ p (d) = 1 if d is a nonzero square mod p 1 if d is not a square mod p 0 if p d

d ψ 7 (d) 0 0 1 1 2 1 3 1 4 1 5 1 6 1 Modular forms, combinatorially and otherwise p. 62/103

Modular forms, combinatorially and otherwise p. 63/103 If p l 1, let F l,p,t (z) = (f l,p (z) ± (f l,p ψ p )(z)) E p,t (z)

Modular forms, combinatorially and otherwise p. 63/103 If p l 1, let F l,p,t (z) = (f l,p (z) ± (f l,p ψ p )(z)) E p,t (z) If p l 1, let F l,p,t (z) = (f l,p ψ p )(z) E p,t (z)

Modular forms, combinatorially and otherwise p. 63/103 If p l 1, let F l,p,t (z) = (f l,p (z) ± (f l,p ψ p )(z)) E p,t (z) If p l 1, let F l,p,t (z) = (f l,p ψ p )(z) E p,t (z) E p,t (z) = ( η p3 (z) η(p 3 z) ) 2p t 1 (mod p t )

F l,p,t (z) is a cusp form that for large t vanishes to high enough order at the cusps that on dividing out by the auxiliary eta product, one obtains a modular form Modular forms, combinatorially and otherwise p. 64/103

Durfee squares Modular forms, combinatorially and otherwise p. 65/103

Modular forms, combinatorially and otherwise p. 66/103 Durfee squares Represent the partition 5 + 4 + 4 + 2 + 1 by

Modular forms, combinatorially and otherwise p. 67/103 The Durfee square for this partition is

Modular forms, combinatorially and otherwise p. 68/103 The Durfee square for this partition is

Modular forms, combinatorially and otherwise p. 69/103 The Durfee square for this partition is

Modular forms, combinatorially and otherwise p. 69/103 The Durfee square for this partition is The partition breaks down into the 3 3 Durfee square and two partitions (2 + 1 and 3 + 1) with summands not exceeding 3

Modular forms, combinatorially and otherwise p. 70/103 The generating function for partitions with 3 3 Durfee square is therefore q 3 3 (( 1 ) ( 1 ) ( 1 )) 2 1 q 1 q 2 1 q 3

Modular forms, combinatorially and otherwise p. 70/103 The generating function for partitions with 3 3 Durfee square is therefore q 3 3 (( 1 ) ( 1 ) ( 1 )) 2 1 q 1 q 2 1 q 3 = q 9 (1 q) 2 (1 q 2 ) 2 (1 q 3 ) 2

Modular forms, combinatorially and otherwise p. 71/103 The generating function for partitions with n n Durfee square is q n2 (1 q) 2 (1 q 2 ) 2 (1 q n ) 2

Modular forms, combinatorially and otherwise p. 72/103 Since every partition has a Durfee square of some size, the generating function for p(n) can be written as 1 + n=1 P(q) := n=0 p(n)q n = q n2 (1 q) 2 (1 q 2 ) 2 (1 q n ) 2

Modular forms, combinatorially and otherwise p. 73/103 Modularity q = e 2πiz ρ(z) := q 1 P(q 24 )

Modular forms, combinatorially and otherwise p. 73/103 Modularity q = e 2πiz ρ(z) := q 1 P(q 24 ) ρ( 1/z) = i z ρ(z)

Modular forms, combinatorially and otherwise p. 74/103 Half integer wt modular forms - Theory developed by Shimura in the 1970s

Modular forms, combinatorially and otherwise p. 74/103 Half integer wt modular forms - Theory developed by Shimura in the 1970s - η(24z) S 1/2 (Γ 0 (576),χ 12 )

Modular forms, combinatorially and otherwise p. 74/103 Half integer wt modular forms - Theory developed by Shimura in the 1970s - η(24z) S 1/2 (Γ 0 (576),χ 12 ) - Shimura lift S t,k : S k+ 1 2 (Γ 0(4N),χ) M 2k (Γ 0 (2N),χ 2 ) (t a squarefree positive integer)

Mock theta functions Modular forms, combinatorially and otherwise p. 75/103

Modular forms, combinatorially and otherwise p. 75/103 Mock theta functions Two examples:

Modular forms, combinatorially and otherwise p. 75/103 Mock theta functions Two examples: f(q) := 1 + n=1 q n2 (1 + q) 2 (1 + q 2 ) 2 (1 + q n ) 2

Modular forms, combinatorially and otherwise p. 75/103 Mock theta functions Two examples: f(q) := 1 + n=1 q n2 (1 + q) 2 (1 + q 2 ) 2 (1 + q n ) 2 ω(q) := n=0 q 2n2 +2n (1 q) 2 (1 q 3 ) 2 (1 q 2n+1 ) 2

Φ(z) := q 1/24 f(q) Modular forms, combinatorially and otherwise p. 76/103

Modular forms, combinatorially and otherwise p. 76/103 Φ(z) := q 1/24 f(q) +2 3 i z g f (τ) i(τ + z) dτ

Modular forms, combinatorially and otherwise p. 76/103 Φ(z) := q 1/24 f(q) +2 3 i z g f (τ) i(τ + z) dτ g f (τ) := n= ( ( 1) n n + 1 ) 6 e 3πi (n+ 1 6) 2 τ

Ω(z) := 2q 1/3 ω(q 1/2 ) Modular forms, combinatorially and otherwise p. 77/103

Modular forms, combinatorially and otherwise p. 77/103 Ω(z) := 2q 1/3 ω(q 1/2 ) 2 3 i z g ω (τ) i(τ + z) dτ

Modular forms, combinatorially and otherwise p. 77/103 Ω(z) := 2q 1/3 ω(q 1/2 ) 2 3 i z g ω (τ) i(τ + z) dτ g ω (τ) := n= ( ( 1) n n + 1 ) 3 e 3πi (n+ 1 3) 2 τ

Modular forms, combinatorially and otherwise p. 78/103 Mock theta modularity (S. Zwegers) Φ( 1/z) = iz Ω(z)

Modular forms, combinatorially and otherwise p. 78/103 Mock theta modularity (S. Zwegers) Φ( 1/z) = iz Ω(z) Ω( 1/z) = iz Φ(z)

Modular forms, combinatorially and otherwise p. 78/103 Mock theta modularity (S. Zwegers) (K. Bringmann, K. Ono) Φ( 1/z) = iz Ω(z) Ω( 1/z) = iz Φ(z) Φ(24z) and Ω(6z) are harmonic weak Maass forms of weight 1/2

Modular forms, combinatorially and otherwise p. 79/103 Mock theta congruences ω(q) := n=0 α ω (n)q n = 1 + 2q + 3q 2 + 4q 3 + 6q 4 + 8q 5 + 10q 6 +

Modular forms, combinatorially and otherwise p. 79/103 Mock theta congruences ω(q) := n=0 α ω (n)q n = 1 + 2q + 3q 2 + 4q 3 + 6q 4 + 8q 5 + 10q 6 + (S. Garthwaite-P.) For every prime m 5, there exist positive integers A and B such that for every n 0, α ω (An + B) 0 (mod m).

Ω(6z) = a(n)q n + β n (y)q dn2 Modular forms, combinatorially and otherwise p. 80/103

Modular forms, combinatorially and otherwise p. 81/103 (B. Dandurand-P.) Given a nonnegative integer n, write 6n + 1 = r i=1 p e i i.

Modular forms, combinatorially and otherwise p. 81/103 (B. Dandurand-P.) Given a nonnegative integer n, write 6n + 1 = r i=1 p e i i. For each i with p i 1 (mod 3) write p i = x 2 i + 3y 2 i.

Modular forms, combinatorially and otherwise p. 81/103 (B. Dandurand-P.) Given a nonnegative integer n, write 6n + 1 = r i=1 p e i i. For each i with p i 1 (mod 3) write p i = x 2 i + 3y 2 i. Then b 5 (n) is divisible by 5 if and only if at least one of the following holds:

p i = 5 Modular forms, combinatorially and otherwise p. 82/103

Modular forms, combinatorially and otherwise p. 83/103 p i 2 (mod 3), p i 5 and e i is odd

Modular forms, combinatorially and otherwise p. 84/103 p i 1 (mod 3), 5 x i and e i is odd

p i 1 (mod 3), 5 y i and e i 4 (mod 5) Modular forms, combinatorially and otherwise p. 85/103

p i 1 (mod 3), 5 (x 2 i y2 i ) and e i 2 (mod 3) Modular forms, combinatorially and otherwise p. 86/103

p i 1 (mod 3), 5 x i y i (x 2 i y2 i ) and e i 5 (mod 6) Modular forms, combinatorially and otherwise p. 87/103

Modular forms, combinatorially and otherwise p. 88/103 p(n)x n = n=0 ( 1 ) ( 1 )( 1 ) ( 1 ) 1 x 1 x 2 1 x 3 1 x 4

Modular forms, combinatorially and otherwise p. 88/103 p(n)x n = n=0 ( 1 ) ( 1 )( 1 ) ( 1 ) 1 x 1 x 2 1 x 3 1 x 4 Consider the reciprocal (1 x)(1 x 2 )(1 x 3 )(1 x 4 )

Modular forms, combinatorially and otherwise p. 88/103 p(n)x n = n=0 ( 1 ) ( 1 )( 1 ) ( 1 ) 1 x 1 x 2 1 x 3 1 x 4 Consider the reciprocal (1 x)(1 x 2 )(1 x 3 )(1 x 4 ) = (1 x n ) n=1

Modular forms, combinatorially and otherwise p. 89/103 (1 x n ) n=1

Modular forms, combinatorially and otherwise p. 89/103 (1 x n ) n=1 = 1 x 1 x 2 + x 5 + x 7 x 12 x 15 + x 22 + x 26

Modular forms, combinatorially and otherwise p. 89/103 (1 x n ) n=1 = 1 x 1 x 2 + x 5 + x 7 x 12 x 15 + x 22 + x 26 (1, 2) (5, 7) (12, 15) (22, 26)

Modular forms, combinatorially and otherwise p. 89/103 (1 x n ) n=1 = 1 x 1 x 2 + x 5 + x 7 x 12 x 15 + x 22 + x 26 (1, 2) (5, 7) (12, 15) (22, 26) k 1 1 2 2 3 3 k(3k + 1)/2 1 2 5 7 12 15

Modular forms, combinatorially and otherwise p. 90/103 (1 x n ) 3 n=1

Modular forms, combinatorially and otherwise p. 90/103 (1 x n ) 3 n=1 = 1 3x 1 + 5x 3 7x 6 + 9x 10 11x 15 +

Modular forms, combinatorially and otherwise p. 90/103 (1 x n ) 3 n=1 = 1 3x 1 + 5x 3 7x 6 + 9x 10 11x 15 + (1, 3, 6, 10, 15)

Modular forms, combinatorially and otherwise p. 90/103 (1 x n ) 3 n=1 = 1 3x 1 + 5x 3 7x 6 + 9x 10 11x 15 + (1, 3, 6, 10, 15) l 1 2 3 4 5 2l + 1 3 5 7 9 11 l(l + 1)/2 1 3 6 10 15

Modular forms, combinatorially and otherwise p. 91/103 (1 x n ) 5 n=1

Modular forms, combinatorially and otherwise p. 91/103 (1 x n ) 5 n=1 (1 x n ) 5 = 1 5x n + 10x 2n 10x 3n + 5x 4n x 5n

Modular forms, combinatorially and otherwise p. 91/103 (1 x n ) 5 n=1 (1 x n ) 5 = 1 5x n + 10x 2n 10x 3n + 5x 4n x 5n 1 x 5n (mod 5)

Modular forms, combinatorially and otherwise p. 92/103 (1 x n ) 4 n=1

Modular forms, combinatorially and otherwise p. 93/103 (1 x n ) 4 = n=1 n=1 (1 x n ) 5 1 x n

Modular forms, combinatorially and otherwise p. 93/103 (1 x n ) 4 = n=1 n=1 n=1 (1 x 5n ) 1 x n (1 x n ) 5 1 x n

Modular forms, combinatorially and otherwise p. 93/103 (1 x n ) 4 = n=1 n=1 (1 x 5n ) n=1 n=1 (1 x 5n ) 1 x n n=1 (1 x n ) 5 1 x n ( 1 ) 1 x n

Modular forms, combinatorially and otherwise p. 93/103 (1 x n ) 4 = n=1 n=1 (1 x 5n ) n=1 (1 x 5n ) n=1 n=1 (1 x 5n ) 1 x n n=0 n=1 (1 x n ) 5 1 x n ( 1 ) 1 x n p(n)x n (mod 5)

Modular forms, combinatorially and otherwise p. 94/103 p(m)x m m=0 (1 x m ) 4 m=1 m=1 ( 1 ) 1 x 5m (mod 5)

Modular forms, combinatorially and otherwise p. 94/103 p(m)x m m=0 (1 x m ) 4 m=1 m=1 ( 1 ) 1 x 5m (mod 5) The first Ramanujan congruence is equivalent to showing that for any term of the form cx 5n+4 in the product (1 x m ) 4 m=1 we have c 0 (mod 5). m=1 ( 1 ) 1 x 5m,

Modular forms, combinatorially and otherwise p. 95/103 The first Ramanujan congruence is equivalent to showing that for any term of the form cx 5n+4 in the product (1 x m ) 4 m=1 we have c 0 (mod 5). m=1 ( 1 ) 1 x 5m

Modular forms, combinatorially and otherwise p. 96/103 The first Ramanujan congruence is implied by showing that for any term of the form cx 5n+4 in the product (1 x m ) 4 m=1 we have c 0 (mod 5).

Modular forms, combinatorially and otherwise p. 97/103 The first Ramanujan congruence is implied by showing that for any term of the form cx 5n+4 in the product (1 x m ) m=1 (1 x m ) 3 m=1 we have c 0 (mod 5).

Modular forms, combinatorially and otherwise p. 98/103 (1 x m ) m=1 k(3k + 1) 2

Modular forms, combinatorially and otherwise p. 98/103 (1 x m ) m=1 k(3k + 1) 2 (1 x m ) 3 l(l + 1) 2 m=1

k k(3k + 1)/2 l(l + 1)/2 l 0 0 0 0 1 2 1 1 2 7 3 2 3 15 6 3 4 26 10 4 Modular forms, combinatorially and otherwise p. 99/103

k k(3k + 1)/2 l(l + 1)/2 l 0 0 0 0 1 2 1 1 2 2 3 2 3 0 1 3 4 1 0 4 Modular forms, combinatorially and otherwise p. 100/103

Modular forms, combinatorially and otherwise p. 100/103 k k(3k + 1)/2 l(l + 1)/2 l 0 0 0 0 1 2 1 1 2 2 3 2 3 0 1 3 4 1 0 4 k 4 (mod 5) l 2 (mod 5)

k 4 (mod 5) l 2 (mod 5) Modular forms, combinatorially and otherwise p. 101/103

Modular forms, combinatorially and otherwise p. 101/103 k 4 (mod 5) l 2 (mod 5) l 1 2 3 4 5 2l + 1 3 5 7 9 11 l(l + 1)/2 1 3 6 10 15

Modular forms, combinatorially and otherwise p. 102/103 k 4 (mod 5) l 2 (mod 5) l 1 2 3 4 5 2l + 1 3 5 7 9 11 l(l + 1)/2 1 3 6 10 15

Modular forms, combinatorially and otherwise p. 102/103 k 4 (mod 5) l 2 (mod 5) l 1 2 3 4 5 2l + 1 3 5 7 9 11 l(l + 1)/2 1 3 6 10 15 ±x k(3k+1)/2 (2l + 1)x l(l+1)/2 0 (mod 5)

Modular forms, combinatorially and otherwise p. 103/103 Here is a mock theta function: f(q) := 1 + n=1 q n2 (1 + q) 2 (1 + q 2 ) 2 (1 + q n ) 2

Modular forms, combinatorially and otherwise p. 103/103 Here is a mock theta function: f(q) := 1 + n=1 q n2 (1 + q) 2 (1 + q 2 ) 2 (1 + q n ) 2 = 1 + q (1 + q) 2 + q 4 (1 + q) 2 (1 + q 2 ) 2 +

Modular forms, combinatorially and otherwise p. 103/103 Here is a mock theta function: f(q) := 1 + n=1 q n2 (1 + q) 2 (1 + q 2 ) 2 (1 + q n ) 2 = 1 + q (1 + q) 2 + q 4 (1 + q) 2 (1 + q 2 ) 2 + = 1 + q 2q 2 + 3q 3 3q 4 +