arxiv: v1 [math.ap] 5 Nov 2018

Similar documents
Two uniqueness results for the two-dimensional continuity equation with velocity having L 1 or measure curl

Regularity and compactness for the DiPerna Lions flow

On uniqueness of weak solutions to transport equation with non-smooth velocity field

A NOTE ON THE INITIAL-BOUNDARY VALUE PROBLEM FOR CONTINUITY EQUATIONS WITH ROUGH COEFFICIENTS. Gianluca Crippa. Carlotta Donadello. Laura V.

A UNIQUENESS CRITERION FOR UNBOUNDED SOLUTIONS TO THE VLASOV-POISSON SYSTEM

Exponential self-similar mixing and loss of regularity for continuity equations

Uniqueness of the solution to the Vlasov-Poisson system with bounded density

LAGRANGIAN SOLUTIONS TO THE 2D EULER SYSTEM WITH L 1 VORTICITY AND INFINITE ENERGY

arxiv: v2 [math.ap] 18 Sep 2014

AN OVERVIEW ON SOME RESULTS CONCERNING THE TRANSPORT EQUATION AND ITS APPLICATIONS TO CONSERVATION LAWS

VANISHING VISCOSITY IN THE PLANE FOR VORTICITY IN BORDERLINE SPACES OF BESOV TYPE

TWO EXISTENCE RESULTS FOR THE VORTEX-WAVE SYSTEM

Global regularity of a modified Navier-Stokes equation

DIRECTION OF VORTICITY AND A REFINED BLOW-UP CRITERION FOR THE NAVIER-STOKES EQUATIONS WITH FRACTIONAL LAPLACIAN

ON A FAILURE TO EXTEND YUDOVICH S UNIQUENESS THEOREM FOR 2D EULER EQUATIONS

Remarks on the blow-up criterion of the 3D Euler equations

LACK OF HÖLDER REGULARITY OF THE FLOW FOR 2D EULER EQUATIONS WITH UNBOUNDED VORTICITY. 1. Introduction

SELF-ADJOINTNESS OF SCHRÖDINGER-TYPE OPERATORS WITH SINGULAR POTENTIALS ON MANIFOLDS OF BOUNDED GEOMETRY

On Friedrichs inequality, Helmholtz decomposition, vector potentials, and the div-curl lemma. Ben Schweizer 1

REMARKS ON THE VANISHING OBSTACLE LIMIT FOR A 3D VISCOUS INCOMPRESSIBLE FLUID

EXISTENCE AND REGULARITY RESULTS FOR SOME NONLINEAR PARABOLIC EQUATIONS

A LOWER BOUND ON BLOWUP RATES FOR THE 3D INCOMPRESSIBLE EULER EQUATION AND A SINGLE EXPONENTIAL BEALE-KATO-MAJDA ESTIMATE. 1.

THE POINCARÉ RECURRENCE PROBLEM OF INVISCID INCOMPRESSIBLE FLUIDS

Compactness in Ginzburg-Landau energy by kinetic averaging

A RECURRENCE THEOREM ON THE SOLUTIONS TO THE 2D EULER EQUATION

ON THE EVOLUTION OF COMPACTLY SUPPORTED PLANAR VORTICITY

THE L 2 -HODGE THEORY AND REPRESENTATION ON R n

Week 6 Notes, Math 865, Tanveer

Euler Equations: local existence

BIHARMONIC WAVE MAPS INTO SPHERES

ORDINARY DIFFERENTIAL EQUATIONS AND SINGULAR INTEGRALS. Gianluca Crippa

Sufficient conditions on Liouville type theorems for the 3D steady Navier-Stokes equations

THE INVISCID LIMIT FOR TWO-DIMENSIONAL INCOMPRESSIBLE FLUIDS WITH UNBOUNDED VORTICITY. James P. Kelliher

From Isometric Embeddings to Turbulence

CONNECTIONS BETWEEN A CONJECTURE OF SCHIFFER S AND INCOMPRESSIBLE FLUID MECHANICS

Blow up of solutions for a 1D transport equation with nonlocal velocity and supercritical dissipation

b i (µ, x, s) ei ϕ(x) µ s (dx) ds (2) i=1

arxiv: v1 [math.ap] 16 May 2007

On the Uniqueness of Weak Solutions to the 2D Euler Equations

Infinite-time Exponential Growth of the Euler Equation on Two-dimensional Torus

arxiv:math/ v1 [math.ap] 28 Oct 2005

A COUNTEREXAMPLE TO AN ENDPOINT BILINEAR STRICHARTZ INEQUALITY TERENCE TAO. t L x (R R2 ) f L 2 x (R2 )

On Global Well-Posedness of the Lagrangian Averaged Euler Equations

Striated Regularity of Velocity for the Euler Equations

Weak Solutions to Nonlinear Parabolic Problems with Variable Exponent

Boundedness and Regularizing Effects of O Hara s Knot Energies

Proceedings of the 5th International Conference on Inverse Problems in Engineering: Theory and Practice, Cambridge, UK, 11-15th July 2005

C 1,α h-principle for von Kármán constraints

Relaxation methods and finite element schemes for the equations of visco-elastodynamics. Chiara Simeoni

A regularity criterion for the 3D NSE in a local version of the space of functions of bounded mean oscillations

A generalised Ladyzhenskaya inequality and a coupled parabolic-elliptic problem

On a parabolic-hyperbolic system for contact inhibition of cell growth

AN EIGENVALUE PROBLEM FOR THE SCHRÖDINGER MAXWELL EQUATIONS. Vieri Benci Donato Fortunato. 1. Introduction

SYMMETRY OF POSITIVE SOLUTIONS OF SOME NONLINEAR EQUATIONS. M. Grossi S. Kesavan F. Pacella M. Ramaswamy. 1. Introduction

SHARP BOUNDARY TRACE INEQUALITIES. 1. Introduction

The Dirichlet s P rinciple. In this lecture we discuss an alternative formulation of the Dirichlet problem for the Laplace equation:

Regularity and Decay Estimates of the Navier-Stokes Equations

HARDY INEQUALITIES WITH BOUNDARY TERMS. x 2 dx u 2 dx. (1.2) u 2 = u 2 dx.

Sharp estimates for a class of hyperbolic pseudo-differential equations

arxiv: v1 [math.ap] 21 Dec 2016

Asymptotic behavior of Ginzburg-Landau equations of superfluidity

Holder regularity for hypoelliptic kinetic equations

A Product Property of Sobolev Spaces with Application to Elliptic Estimates

On the local well-posedness of compressible viscous flows with bounded density

FINITE TIME BLOW-UP FOR A DYADIC MODEL OF THE EULER EQUATIONS

On the local existence for an active scalar equation in critical regularity setting

The Lusin Theorem and Horizontal Graphs in the Heisenberg Group

The Inviscid Limit for Non-Smooth Vorticity

arxiv: v1 [math.ap] 12 Mar 2009

Piecewise Smooth Solutions to the Burgers-Hilbert Equation

The Hopf equation. The Hopf equation A toy model of fluid mechanics

EXISTENCE OF SOLUTIONS FOR KIRCHHOFF TYPE EQUATIONS WITH UNBOUNDED POTENTIAL. 1. Introduction In this article, we consider the Kirchhoff type problem

Long time behavior of solutions of Vlasov-like Equations

arxiv: v2 [math.ap] 28 Nov 2016

arxiv: v1 [math.ap] 28 Mar 2014

Norm inflation for incompressible Euler

Continuum Mechanics Lecture 5 Ideal fluids

ANDREJ ZLATOŠ. 2π (x 2, x 1 ) x 2 on R 2 and extending ω

Mathematisches Forschungsinstitut Oberwolfach. Partielle Differentialgleichungen

ESTIMATES OF LOWER ORDER DERIVATIVES OF VISCOUS FLUID FLOW PAST A ROTATING OBSTACLE

EXISTENCE OF SOLUTIONS TO SYSTEMS OF EQUATIONS MODELLING COMPRESSIBLE FLUID FLOW

arxiv: v1 [math.ap] 10 May 2013

PARTIAL REGULARITY OF BRENIER SOLUTIONS OF THE MONGE-AMPÈRE EQUATION

A Posteriori Error Bounds for Meshless Methods

Global Solutions for a Nonlinear Wave Equation with the p-laplacian Operator

A Mean Field Equation as Limit of Nonlinear Diffusions with Fractional Laplacian Operators

The Euler Equations in Planar Domains with Corners

A PROPERTY OF SOBOLEV SPACES ON COMPLETE RIEMANNIAN MANIFOLDS

hal , version 1-22 Nov 2009

arxiv: v1 [math.ap] 28 Apr 2009

The inviscid limit to a contact discontinuity for the compressible Navier-Stokes-Fourier system using the relative entropy method

Sobolev regularity for the Monge-Ampère equation, with application to the semigeostrophic equations

Lagrangian analyticity for vortex patches

REGULARITY OF GENERALIZED NAVEIR-STOKES EQUATIONS IN TERMS OF DIRECTION OF THE VELOCITY

The Inviscid Limit and Boundary Layers for Navier-Stokes flows

Optimal design and hyperbolic problems

CONVERGENCE OF EXTERIOR SOLUTIONS TO RADIAL CAUCHY SOLUTIONS FOR 2 t U c 2 U = 0

Universität des Saarlandes. Fachrichtung 6.1 Mathematik

ON COMPARISON PRINCIPLES FOR

arxiv:math/ v1 [math.ap] 6 Mar 2007

Transcription:

STRONG CONTINUITY FOR THE 2D EULER EQUATIONS GIANLUCA CRIPPA, ELIZAVETA SEMENOVA, AND STEFANO SPIRITO arxiv:1811.01553v1 [math.ap] 5 Nov 2018 Abstract. We prove two results of strong continuity with respect to the initial datum for bounded solutions to the Euler equations in vorticity form. The first result provides sequential continuity and holds for a general bounded solution. The second result provides uniform continuity and is restricted to Hölder continuous solutions. 1. Introduction Let us consider the Euler equations for an incompressible fluid: { t u+u u = p divu = 0. In two space dimensions, the vorticity ω = curlu is a scalar and satisfies the continuity equation t ω +div(uω) = 0, (2) where the velocity u can be recovered from the vorticity using the Biot-Savart law: u(t,x) = 1 R2 (x y) ω(t,y)dy = K ω, (3) 2π x y 2 wherek(x) = x /(2π x 2 )isthebiot-savart kernel. Wereferto[12,13]foracomprehensive presentation of the existence and uniqueness theory for the Cauchy problem for the Euler equations. For the purposes of the present paper, it is sufficient to mention that[18] provides existence and uniqueness in the class of bounded vorticities if the initial vorticity ω belongs to L 1 L (R 2 ), while [10] establish existence of a solution of (1) for initial vorticities in L 1 L p (R 2 ), where p > 1 (the uniqueness question is however an open problem). A fundamental question in fluid dynamics is the continuity of the solution with respect to the initial datum. In the context of bounded vorticities, it is not difficult to prove continuity with respect to the Wasserstein norm (a weak norm arising in the theory of optimal mass transportation). The proof is based on the almost-lipschitz continuity of the fluid trajectories and the continuity estimate involves a double exponential function of the time (see [11, 13]). More difficult is to prove continuity estimates with respect to strong norms. To the best of the authors knowledge, the first result in this context is [17], where stability in L 1 of a circular vortex patch was proven. Notice that a circular vortex patch is a stationary solution of the Euler equations. This result was generalized (and the proof simplified) in [14]. The only known extension to non-stationary solutions involves elliptic vortex patches [16, 15], (1) 2010 Mathematics Subject Classification. 35Q31, 93D05. Key words and phrases. Euler equations; vorticity; continuity; stability; renormalized solutions. 1

2 G. CRIPPA, E. SEMENOVA, AND S. SPIRITO solutions with a rigid geometry that move with constant angular speed. Nothing is known about general vortex patches. In this note we provide two continuity results with respect to strong norms for nonstationary solutions to the Euler equations, without any geometric requirement on the shape of the solutions. Our first theorem holds for general bounded solutions ω of the Euler equations and provides strong convergence in space at time t > 0, provided that the initial data converge strongly. Theorem A. Let ω L 1 L (R 2 ) and let { ω n } n L 1 L 2 (R 2 ) be a sequence with ω n ω strongly in L 2 (R 2 ). Fix T < and for every n let ω n C([0,T];L 1 L 2 (R 2 )) be a solution of the Euler equations (2) (3) with initial datum ω n. Then ω n (t, ) ω(t, ) strongly in L 2 (R 2 ), uniformly for t [0,T], where ω is the unique solution in C([0,T];L 1 L (R 2 )) of the Euler equations (2) (3) with initial datum ω. First, we want to point out that the continuity in time with values in L 1 (R 2 ) L 2 (R 2 ) follows from the fact that for any n the the vorticity ω n is a renormalized solutions of (2) and the velocity u n is in the setting of [9], see Step 1 in the proof of Theorem A. Moreover, notice that in the above theorem we do not require boundedness of ω n, therefore the Euler equations with such initial data may have more than one solution. Nevertheless, thanks to the uniqueness for the (limit) problem with bounded initial datum ω, the result holds for any sequence of solutions, and does not require the passage to a subsequence. The proof relies on the DiPerna-Lions theory of continuity equations with Sobolev velocity field [9], see also [4] for a general account of this research area. This proof will be presented in 2. Remark 1. If the limit vorticity ω only belongs to L 1 L 2 (R 2 ) we only have convergence of a subsequence of ω n (t, ) to some solution of the limit problem, since the latter has no uniqueness: Step 4 in the proof of Theorem A does not apply. See also [5] for a proof of the existence of solutions to the Euler equations via Lagrangian techniques. Remark 2. If we consider in Theorem A a sequence of initial data { ω n } n L 1 L p (R 2 ) converging to ω strongly in L p (R 2 ), with p > 2, then it is possible to prove the strong convergence in L p (R 2 ) of ω n (t, ) to ω(t, ). On the other hand, if we relax the integrability assumption on the sequence ω n to L 1 L p (R 2 ) for some p < 2, our proof breaks down in its full generality. Indeed, a vorticity in L p advected by a velocity in W 1,p loc with p < 2 does not fall in the context of [9], therefore existence of a flow as in Step 1 of the proof of Theorem A is not guaranteed (in fact, if p < 4/3 equation (2) does not even make distributional sense). One should consider a sequence of approximate solutions ω n that are a priori required to be Lagrangian. Note that [8] guarantees that solutions obtained via vanishing viscosity approximation are indeed Lagrangian. The above theorem provides sequential continuity (with respect to the L 2 norm) of the map that associates to the initial datum the solution at time t. This continuity property holds at every bounded solution. The rate of continuity may however depend on the solution itself. Our second result provides uniform continuity with an explicit convergence

STRONG CONTINUITY FOR EULER 3 rate, provided we restrict our attention to slightly more regular solutions to the Euler equations (2) (3): we require that the (compactly supported) initial data (and therefore the solution at any time) belong to some Hölder class C α c (R 2 ), where 0 < α < 1 is arbitrary. Theorem B. Assume that ω 1, ω 2 C α c (R2 ), where 0 < α < 1, satisfy R 2 ω 1 dx = R 2 ω 2 dx, and fix T <. Let ω 1 and ω 2 be the unique solutions in C([0,T];L 1 L (R 2 )) of the Euler equations (2) (3) with initial data ω 1 and ω 2, respectively. Then ω 1 (t, ) ω 2 (t, ) L 2 Ce ct ω 1 ω 2 γ L 2 for t [0,T], (4) where C, c, and γ only depend on α, T, the norms of ω 1 and ω 2, and the diameter of the supports of ω 1 and ω 2. The proof of this theorem involves an interpolation argument in homogeneous fractional Sobolev spaces. Essentially, the Hölder regularity of the solution allows to upgrade weak estimates (as in [11, 13]) to strong estimates. The proof will be presented in 3. Remark 3. Inequality (4) can be extended to L p norms with 1 p <, although with a different value for the constants and the exponent. Acknowledgment. This research has been partially supported by the SNSF grants 140232 and 156112. 2. Proof of Theorem A Step 1. Let us consider the velocity u n associated to the vorticity ω n as in (3). Decomposing the Biot-Savart kernel as K = K 1 + K 2 = K1 x 1 + K1 x >1 and noting that K 1 L 1 (R 2 ) and K 2 L (R 2 ), we obtain with Young s inequality that u n L ([0,T];L 1 (R 2 )+L (R 2 )). In particular, formula (3) is well-defined in this summability context. Moreover, u n is divergence-free and (by elliptic regularity, since ω L ([0,T];L 2 (R 2 ))) belongs to L ([0,T];W 1,2 loc (R2 )). The bounds above imply that we are in the setting of [9]: there exists a unique forwardbackward regular Lagrangian flow (i.e., in this context, an incompressible flow defined almost everywhere in space) X n = X n (s,t,x) associated to the velocity field u n, and the vorticity ω n is transported by such a flow, in the sense that ω n (t,x) = ω n (X n (0,t,x)). (5) Step 2. From the representation (5), together with the convergence of ω n to ω, it follows that ω n L ([0,T];L 1 L 2 (R 2 )) uniformly in n. Therefore, along a subsequence we have ω n(k) w weakly* in L ([0,T];L 1 L 2 (R 2 )). Moreover, all the bounds on u n listed in Step 1 are uniform in n. Arguing as in [10, Theorem 1.2] we find a further subsequence (that we do not relabel) u n(k) converging strongly in L 2 loc ([0,T] R2 ) to a limit velocity v (notice that the convergence is strong also with respect to the time: this makes use of Aubin s lemma). One can readily check that v enjoys the same bounds as in Step 1 for the sequence u n and that the couple (v,w) solves (2) (3).

4 G. CRIPPA, E. SEMENOVA, AND S. SPIRITO Step 3. We can therefore apply the stability theorem from [9] (see also [7, 6] for a purely Lagrangian proof of such a stability theorem, and [1, 2, 3], specific to the two-dimensional context). We obtain that the flows X n(k) from Step 1 converge locally in measure in R 2, uniformly in t, s [0,T], to the unique forward-backward regular Lagrangian flow X associated to the velocity field v. Therefore ω n(k) (t,x) = ω n(k) (X n(k) (0,t,x)) ω(x(0,t,x)) (6) strongly in L 2 (R 2 ), uniformly for t [0,T] (here one can argue using Lusin s theorem and exploiting the incompressibility of the flows, see for instance the argument in [6, Propositions 7.2 and 7.3]). Hence, the weak limit w of ω n defined in Step 2 is in fact a strong limit and coincides with ω(x(0, t, x)). Step 4. The representation in (6) entails that w is a bounded function that solves (2) (3), therefore by uniqueness it coincides with the solution ω in the statement of the theorem. By uniqueness of the limit the whole sequence ω n (t, ) (and not only the subsequence ω n(k) (t, ), as in (6)) converges to ω(t, ). This concludes the proof of Theorem A. 3. Proof of Theorem B First of all, we observe that, since ω 1, ω 2 L ([0,T];L 1 L (R 2 )), the velocities u 1 and u 2 are uniformly bounded. This in turn implies that ω 1 and ω 2 are compactly supported in space, uniformly for t [0,T]. In the course of the proof, we will use the notation Ḣs (R 2 ) to denote the homogenous Sobolev space in R 2 of real order s. Step 1. Let us fix 0 < β < α. The classical interpolation inequality for homogeneous Sobolev spaces gives 1+β ω 1 (t, ) ω 2 (t, ) L 2 ω 1 (t, ) ω 2 (t, ) Ḣ 1 ω 1(t, ) ω 2 (t, ). (7) Ḣ β It is known (see for instance [12, Page 326]) that Hölder regularity of the vorticity is propagated in time by (2), and it is immediate to check that Cc α (R 2 ) H β (R 2 ) for α > β. Since moreover R ω 2 1 (t, ) ω 2 (t, )dx = 0 for all times, the second factor in the right hand side of (7) is bounded by a constant uniformly in time. Step 2. Since ω i C α c (R2 ) uniformly in time, by elliptic regularity u i Lip loc (R 2 ) uniformly in time (see for instance [12, Page 327]). A standard L 2 -energy estimate for the difference of the equations (1) for u 1 and u 2 then implies β 1 1+β u 1 (t, ) u 2 (t, ) L 2 e ct ū 1 ū 2 L 2. (8) Notice that u 1 u 2 is globally in L 2 (R 2 ) since ω 1 ω 2 has zero integral (see [12, Page 321]). Step 3. Since the velocity is divergence-free one can check (for instance, passing in Fourier variables) that ω 1 (t, ) ω 2 (t, ) Ḣ 1= u 1 (t, ) u 2 (t, ) L 2. (9) Moreover, since ω 1 ω 2 has zero integral, elliptic regularity implies the global estimate ū 1 ū 2 L 2 C ω 1 ω 2 L 2. (10) Step 4. Combining (7) (10) we obtain (4).

STRONG CONTINUITY FOR EULER 5 References [1] G. Alberti, S. Bianchini & G. Crippa: Structure of level sets and Sard-type properties of Lipschitz maps: results and counterexamples. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 12 (2013), no. 4, 863 902. [2] G. Alberti, S. Bianchini & G. Crippa: A uniqueness result for the continuity equation in two dimensions. J. Eur. Math. Soc. (JEMS) 16 (2014), no. 2, 201 234. [3] G. Alberti, S. Bianchini & G. Crippa: On the L p differentiability of certain classes of functions. Revista Matemática Iberoamericana 30 (2014), no. 1, 349 367. [4] L. Ambrosio & G. Crippa: Continuity equations and ODE flows with non-smooth velocity. Lecture Notes of a course given at Heriot-Watt University, Edinburgh. Proceedings of the Royal Society of Edinburgh: Section A Mathematics 144 (2014), n. 6, 1191 1244. [5] A. Bohun, F. Bouchut & G. Crippa: Lagrangian solutions to the Euler equations with L 1 vorticity and infinite energy. In preparation, 2015. [6] F. Bouchut & G. Crippa: Transport equations with coefficient having a gradient given by a singular integral and applications. J. Hyper. Differential Equations 10 (2013), no. 2, 235 282. [7] G. Crippa & C. De Lellis: Estimates and regularity results for the DiPerna Lions flow. J. Reine Angew. Math. 616 (2008), 15 46. [8] G. Crippa & S. Spirito: Renormalized solutions of the 2d Euler equations. Comm. Math. Phys., in press. Available at arxiv:1410.3309 [9] R. J. DiPerna & P.-L. Lions: Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98 (1989), 511 547. [10] R. J. DiPerna & A. J. Majda: Concentrations in regularizations for 2-D incompressible flow. Comm. Pure Appl. Math. 40 (1987), no. 3, 301 345. [11] G. Loeper: Uniqueness of the solution to the Vlasov-Poisson system with bounded density. J. Math. Pures Appl. (9) 86 (2006), no. 1, 68 79. [12] A. Majda and A. Bertozzi: Vorticity and incompressible flow. Cambridge Texts in Appl. Math, CUP, Cambridge, 2002. [13] C. Marchioro and M. Pulvirenti: Mathematical theory of incompressible nonviscous fluids. Springer-Verlag, New York, 1994. [14] T. C. Sideris & L. Vega: Stability in L 1 of circular vortex patches. Proceedings of the AMS 137 (2009), 4199 4202. [15] Y. Tang: Nonlinear stability of vortex patches. Transactions of the AMS 304 (1987), 617 637. [16] Y. H. Wan: The stability of rotating vortex patches. Commun. Math. Phys. 107 (1986), 1 20. [17] Y. H. Wan & M. Pulvirenti: Nonlinear stability of circular vortex patches. Commun. Math. Phys. 99 (1985), 435 450. [18] V. I. Yudovich: Non-stationary flows of an ideal incompressible fluid. Zh. Vych. Mat. i Mat. Fiz. 3 (1963), 1032 1066. G.C.: Departement Mathematik und Informatik, Universität Basel, Spiegelgasse 1, 4051 Basel, Switzerland E-mail address: gianluca.crippa@unibas.ch E.S.: Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, University of Basel, Socinstrasse 57, 4051 Basel, Switzerland E-mail address: elizaveta.semenova@unibas.ch S.S.: GSSI Gran Sasso Science Institute, Viale Francesco Crispi 7, 67100 L Aquila, Italy E-mail address: stefano.spirito@gssi.infn.it